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Chapter 1

What is System Identi�cation?

System identi�cation (SI) is a methodology for building mathematical mod-

els of dynamic systems from experimental data, i.e., using measurements of

system input and output (IO) signals.

The process of SI requires the following steps:

• Measurement of the IO signals of the system in time or frequency do-

main.

• Selection of a candidate model structure.

• Choice and application of a method to estimate the value for the ad-

justable parameters in the candidate model structure.

• Validation and evaluation of the estimated model to see if the model is

right for the application needs, preferably with a di�erent set of data.

In the sequel, we will focus on the identi�cation of linear discrete systems

systems/single input and single output (SISO).

SI is about building dynamic models from data. Namelly, it uses the IO

signals of a system to estimate the values of adjustable parameters in a given

model structure.
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1.1 What are dynamic systems?

In loose terms, a system is an object in which variables of di�erent kinds

interact and produce observable signals. The observable signals that are of

interest to us are usually called outputs. The system is also a�ected by

external stimuli. External signals that can be manipulated by the observer

are called inputs. Others are called disturbances and can be divided into

those that are directly measured and those whose in�uence is only observed

on the output.

In a dynamic system, the values of the output signals depend on both the

instantaneous values of its input signals and also on the past behaviour of

the system, that is, a dynamic system changes with time.

1.2 What is a model?

When analysing a system, some concept of how its variables relate to each

other is needed. In a broad sense, an assumed relationship among observed

signals is called a model of the system. Clearly, models may come in various

shapes and be phrased with varying or not degrees of mathematical formal-

ism. The intended use will determine the degree of sophistication that is

required to make the model purposeful.

Also there are many systems that are dealt with using mental models and

do not involve any mathematical formalisation at all.

We can formalise a dynamic system in the following manner:

u(t)−→ y(t)−→

where t represents an instant in a prede�ned time horizon T , tεT , u(t) is the

input signal and y(t) is the output signal, both at instant t.

In continuous time, a simple mathematical model that describes a dynamic

system is usually a di�erential equation

fwy

(
dny(t)

dtn
,
dyn−1(t)

dtn−1
, . . . ,

dy(t)

dt
, y(t),

dmu(t)

dtm
, . . . ,

du(t)

dt
, u(t), t

)
= 0.

(1.1)
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Since the focus of this work is on linear systems, model (1.1) can be simpli�ed

as

an(t)
dny(t)

dtn
+ . . .+ a1(t)

dy(t)

dt
+ a0(t)y(t) =

bm(t)
dmu(t)

dtm
+ . . .+ b1(t)

du(t)

dtm
+ b0u(t), (1.2)

and the discrete counterpart of model (1.2) is

an [y(k − n)Ts] + . . .+ a1 [y(k − 1)Ts] + a0 [y(kTs)] =

bm [u(k −m)Ts] + . . .+ b1 [u(k − 1)Ts] + b0 [u(kTs)] , (1.3)

where k represents the discrete time-steps and Ts is the time between suc-

cessive data samples and is called the sampling time, i.e, (k + 1) = k + Ts.

Obtaining a good model for a system depends on how well the measured data

re�ects the behavior of the system.

In practice, it appears that the system response is not completely coincident

with the models. The deviations may be due to modeling errors, inaccu-

racies in the sensors and converters and variations. In linear models, these

phenomena can be represented as a disturbing signal in the output of the

system.

It is convenient to distinguish between input signals and output signals. The

outputs are partly determined by the inputs. In most cases, the outputs are

also a�ected by more signals than the measured inputs. Such "unmeasured

inputs" will be called disturbance signals or noise. If we denote inputs,

outputs and disturbances by u, y and d, respectively, the relationship between

these signals can be depicted in the diagram the following �gure.

u−→
↓d

y−→

A system is said to be deterministic if the input, together with the initial

conditions, uniquely determines the system. Otherwise it said to be stochas-

tic.
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In stochastic control theory, the disturbances are assumed to be stochastic

processes (SP) with zero mean and covariance stationary. The spectral den-

sity factorisation Theorem (see Appendix A) allows them to be modeled as

output signals of a linear minimum phase system excited by white noise. To

describe these systems, one can use IO and State-space (SS) models.

This Theorem shows us that the condition for stability is absolutely essen-

tial for the stationarity of the process. The condition of minimum phase is

essential in order to make your prediction.

In this context, a SP can be described by the stationary model

η(t) =
∞∑
k=0

C(k)e(t− k), (1.4)

where the poles and zeros are all inside the unit circle and e(t) is the white

noise with zero mean and variance σ2.

The discrete model (1.3) can then be enlarged to accomodate its stochastic

part, for instance adding noise as an extra input:

any[(k − n)Ts] + . . .+ a1y[(k − 1)Ts] + a0[y(kTs)] =

bmu[(k − 1)Ts] + . . .+ b1u[(k − 1)Ts] + b0[u(kTs)] +

c0e(k) + c1e(k − 1) + . . .+ cnce(k − nc). (1.5)

The data may be available either in time domain or in frequency domain,

and this determines diferent choice of models.

Time domain data consists of the IO variables of the system that we record

at a uniform sampling time, Ts, over a period of time.

For correct identi�cation, in addition to having to be careful in the choice of

the estimator, we should also be very careful with the choice of the excitation

signal and the Ts used.

When working with uniformly sampled data, we should use the actual Ts
of the experiment. Each data value is assigned to a sample time, which is

calculated from the start time and Ts. When working with nonuniformly

sampled data one can specify a vector of arti�cial instants.
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Frequency domain data represents measurements of the system IO variables

that we record or store in the frequency domain. The frequency domain

signals are Fourier transforms of the corresponding time domain signals.

Frequency response plots show the complex values of the a transfer function

(TF) as a function of frequency.

In the case of linear continous time systems, the TF G is essentially an

operator that takes the input U(s) of a linear system to the output Y (s).

Y (s) = G(s)× U(s), (1.6)

where U(s) = L {u(t)} and Y (s) = L {y(t)}, i.e,

G(s)
U(s) Y (s)

With G(s) =| G(s) | ej∠G(s) and U(s) =| U(s) | ej∠U(s).

In this case, the frequency function G(jw) is the TF evaluated on the imag-

inary axis s = jw. Equation (1.6) becomes

Y (jw) = G(jw)× U(jw) =| G(jw) || U(jw) | ej(∠G(jw)+∠U(jw)).

For a discrete-time system sampled with a time interval Ts, the TF relates

the Z-transform of the input U(z) and output Y (z):

Y (z) = G(z)× U(z), zεC.

In this case, the frequency function G(eiwT ) is the TF G(z) evaluated within

the unit circle. The argument of the frequency function G(eiwT ) is scaled

by Ts to make the frequency function periodic with the sampling frequency

2π/T .

It is possible to plot the frequency response of a model in order to gain

insight into the characteristics of the linear model dynamics, including the

frequency of the peak response and stability margins. Frequency-response

plots are available for all linear parametric models and spectral analysis (SA)

(nonparametric) models.
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The frequency response of a linear dynamic model describes how the model

reacts to sinusoidal inputs. If the input, u(t), is a sinusoid of a certain

frequency, then the output, y(t), is also a sinusoid of the same frequency,

with amplitude | G(jw) || U(jw) | and a phase shift of ∠G(jw).

1.3 Model structures

A model structure is a mathematical relationship between IO variables that

contain unknown parameters. Examples of model structures are with ad-

justable poles and zeros, SS equations with unknown system matrices and

nonlinear parameterised functions.

The SI process requires the choice of a model structure and applies the esti-

mation methods to determine the numerical values of the model parameters.

The following approaches can be used to choose the model structure:

• To choose a model that is able to reproduce your measured data and is

as simple as possible. This modeling approach is called black-box (BB)

modeling.

• To choose a speci�c structure for the model which may have been de-

rived from physics principles, but whose parameters are unknown. The

model structure may be represented, for instance, as a set of di�erential

equations or SS systems.

1.3.1 BB modeling

In this section, the BB model type is explained as well as its use to SI. Also,

we distinguish between parametric and nonparametric models and highlight

the importance of each type of models.

Nonparametric identi�cation methods are techniques to estimate model be-

havior without necessarily using a given parametrised model set.

Direct estimation of the impulse or the frequency response of the system are

often called nonparametric estimation methods. These do not impose any

assumptions on the structure of the system other than its linearity. Include

correlation analysis (CA), which estimates a system's impulse response and

15



spectral analysis (SA), which estimates the system's frequency response are

typical estimation nonparametric methods.

Direct estimation of the impulse response

A linear system can be described by its impulse response gt with the property

that:

y(t) =
∞∑
k=1

gku(t− k). (1.7)

The name derives from the fact that if the u(t) is an impulse, i.e., u(t) = 1

when t=0 and u(t) = 0 when t > 0, then the output y(t) will be gt. In what

follows, t represents a discrete variable in order to "uniformise" notation with

ITSIE.

The impulse response coe�cients are estimated directly from the IO data

using CA.

In statistics, correlation expresses the relationship between two or more ran-

dom variables or observed data values.

In general statistical usage, correlation can refer to any departure of two or

more random variables from independence, but most commonly refers to a

more specialised type of relationship between mean values. There are several

correlation coe�cients, ρ or r, measuring the degree of correlation. These

concepts are explained in Appendix A.

Direct Estimation of the Frequency Response

The relation between IO is often written as

y(t) = Gu(t) + Ce(t), (1.8)

where G is the TF and e is the additive disturbance at the input. Usually,

we can estimate G(jw) as a stationary stochastic process.

The system's frequency response is directly estimated using SA. This esti-

mates the spectrum of the e(t) in the system description. This description

of the system gives considerable engineering insight into its properties.
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A speci�c model structure is assumed, and the parameters in the chosen

structure are estimated from data. This opens up a large variety of possibil-

ities, corresponding to di�erent ways of describing the system.

Parametric identi�cation methods are techniques to estimate the param-

eters of given model structures. Basically, it is a matter of �nding, by nu-

merical search, those numerical values of the parameters that give the best

agreement between the model's (either simulated or predicted) output and

the measured output. In other words, a common and general method for

estimating the parameters is the prediction error approach, where simply the

parameters of the model are chosen so that the di�erence between the model's

(predicted) output and the measured output is minimised. This method is

available to all model structures.

In what follows, we distinguish three diferent model structures. Namely

polynomial models, least-squares (LS) model and SS models.

1.4 Types of parametric methods

In this section, we present di�erents polynomial model structures such as:

Moving average models (MA), Autoregressive models (AR), Autoregressive

moving average models (ARMA), Autoregressive exogenous models (ARX),

Exogenous ARMA models (ARMAX), Output-Error (OE) models and Box-

Jenkins (BJ) models, and then, the LS model and SS models. The choice of

these models follows ITSIE.

1.4.1 Polynomial model types

In order to review the most common types of polynomial models, we �rst

de�ne the time-shift operator q.

The general polynomial equation is written in terms of the time-shift oper-

ator q−1. To understand this time-shift operator, consider the discrete-time

di�erence equation (1.3). After changing the order of the terms and dividing

every term by an and considering the coe�cients a1, . . . , ana and b1, . . . , bnb

it can be written as:
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y(t)+a1y(t−Ts)+...+anay(t−naTs) = b1u(t−Ts)+...+bnb
u(t−nbTs). (1.9)

De�ning the time-shift operator as q−1u(t) = u(t− Ts), (1.9) becomes:

y(t) + a1q
−1y(t) + ...+ anaq

−nay(t) = b1q
−1u(t) + ...+ bnb

q−nbu(t). (1.10)

If we de�ne A(q) = 1 + a1q
−1 + a2q

−2 + · · · + anaq
−na and B(q) = b1q

−1 +

b2q
−2 + · · · + bnb

q−nb , equation (1.10) can be rewritten in the compact form

as:

A(q)y(t) = B(q)u(t). (1.11)

Whether the stochastic part of the model is also included, model (1.11) be-

comes

A(q)y(t) = B(q)u(t) + C(q)e(t), (1.12)

where in model (1.4) we consider C(q) = 1 + c1q
−1 + . . . + cncq

−nc and

considering nc terms in the sum, η(t) = C(q)e(t).

The model types di�er among themselves by how many of the polynomials

of (1.12) are included. Thus, di�erent model types provide varying levels of

�exibility for modeling the dynamics and noise characteristics.

The parametric polynomials models types are subsets of the following general

polynomial equation that for SISO is

A(q)y(t) =

[
B(q)

F (q)

]
u(t− nk) +

C(q)

D(q)
e(t), (1.13)

where D(q) = 1+d1q
−1+ . . .+dnd

q−nd and F (q) = 1+f1(q)
−1+ . . .+fnf

q−nf .

u(t) is the input and nk is the input delay that characterises the delay re-

sponse time, i.e., the number of samples, nk, corresponding to the input

time delay, given by the number of samples before the output responds to

the input. The variance of the white noise e(t) is assumed to be λ. A(q)

corresponds to the poles that are common for the dynamic model and the

noise model. Using common poles for dynamics and noise is useful when the
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disturbances enter the system at the input. F determines the poles unique to

the system dynamics, andD determines the poles unique to the disturbances.

To estimate polynomial models of type (1.13), we must select some orders as

a set of integers that represent the number of coe�cients for each polynomial.

Thus, a selected structure should include na parameters of A, nb parameters

of B and nc parameters of C, nd parameters of D and nf parameters of F .

The number of coe�cients in the polynomials' denominator equals the num-

ber of poles, and the number of coe�cients in the polynomials' numerator is

equal to the number of zeros plus 1. When the dynamics from u(t) to y(t)

contains a delay of nk samples, then the �rst nk coe�cients of B are zero.

Moving average model

If we consider model (1.4) written in terms of the time-shift operator, q−1,

this model may be written as

η(t) = C(q)e(t),

as we have already seen.

As this model is a regression input, a model of this type is known as a moving

average (MA) model.

These models are very simple and can describe any SP. However, to have

acceptable precision it is often necessary to have a high order (nc very large).

Autoregressive models

Sometimes, it may be preferable to describe e(t) by a model of type

η(t) + d1η(t− 1) + · · ·+ dnd
η(t− nd) = e(t),

D(q)η(t) = e(t).

In these models there is a regression in η(t) and for this reason these are

generally known as auto-regressive (AR) models. Their TF is
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C(q) =
1

D(q)

and its order, nd, is usually signi�cantly lower than that of MA models.

Autoregressive moving average models

However, if we use regression models in the output η(t) and moving average

in the input e(t), we obtain lower order models. These models consist in

η(t) + d1η(t− 1) + · · ·+ dnd
η(t− nd) = e(t) + c1e(t− 1) + · · ·+ cnce(t− nc)

and can be written in the compact form as

D(q)η(t) = C(q)e(t). (1.14)

These models are known as autoregressive moving average models (ARMA).

The AR models are a special case of ARMA when c1 = c2 = · · · = cnc and

MA models are a special case when d1 = d2 = · · · = dnd
= 0.

The ARMAmodels is an important class of noise models, in which the process

noise is considered as a solution of a di�erence equation, whose input is white

noise.

The stochastic processes are known by the name of the models that generate

them. Thus, SP generated by ARMA models are ARMA processes; in the

same away, the models generated by AR processes are generated by the AR

and MA models are MA processes.

The invertibility of C(q) requires
1

C(q)
to be a stable function. This allows

it to generate a white noise feeding time with a linear time-invariant (LTI)

system whose TF is
1

C(q)
and the process is η(t).

For this reason,
1

C(q)
is also known as whitening �lter, as can seen in following

diagram:
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C−1
η(t) e(t)

Consider again the equation y(t) =
B(q)

A(q)
u(t) + η(t). If η(t) is a SP with zero

mean, stationary covariance and spectral density, C(e(jw))C(e(−jw))σ2, it can

be considered that η(t) is an output signal of a system and C(q) is excited

by a succession of random variable uncorrelated and having variance σ2, i.e.,

white noise.

By incorporating the ARMA model in the linear system η(t) =
C(q)

D(q)
e(t),

one obtains the stochastic dynamic system model.

Autoregressive exogenous models

ARX models are obtained by adding a moving average of the input to the AR

model. The "X" stands for the exogenous variable or external input system.

The most used model type is the simple linear di�erence equation:

y(t) + a1y(t− 1) + ...+ anay(t− na) = (1.15)

b1u(t− nk) + ...+ bnb
u(t− nk − nb + 1) + e(t).

In this type, na is equal to the number of poles, nb is the number of zeros

plus 1 and e(t) is the white-noise disturbance.

The model orders na, nb and nk need to be speci�ed to estimate ARX models.

A general IO linear model for a SISO system with input u and output y, for

the ARX model is given by

A(q)y(t) = B(q)u(t− nk) + e(t). (1.16)

Exogenous ARMA models

As the ARX models, ARMAX models are obtained by adding the entry end

of the ARMA noise.
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For a SISO system, the ARMAX model is:

y(t) + a1y(t− 1) + ...+ anay(t− na) =

b1u(t− nk) + ...+ bnbu(t− nk − nb + 1) +

e(t) + c1e(t− 1) + ...+ cnce(t− nc) . (1.17)

The ARMAX model is more �exible than the ARX model, because the AR-

MAX model type contains an extra polynomial to model the additive distur-

bance.

A general IO linear model for a SISO system with input u and output y can

be written as:

A(q)y(t) = B(q)u(t− nk) + C(q)e(t). (1.18)

In this model type, AR refers to the A-polynomial, MA to the noise C-

polynomial and X to the "extra" input B(q)u(t− nk).

ARMAX extends the ARX structure by providing more �exibility for mod-

eling noise using the C parameters of equation (1.18). Use ARMAX when

the dominating disturbances enter at the input. Such disturbances are called

load disturbances.

Output-Error model

When A(q), C(q), and D(q) are equal to 1, the general-linear polynomial

model reduces to the OE model. This model describes the system dynamics

separately from the stochastic dynamics. The OE model does not use any

parameters for simulating the disturbance characteristics

y(t) =

[
B(q)

F (q)

]
u(t− nk) + e(t). (1.19)

The parameters of the OE model type are estimated using a prediction error

method.
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OE should be used to parameterise dynamics, without estimating a noise

model.

Box-Jenkins model

The parameters of BJ model

y(t) =

[
B(q)

F (q)

]
u(t− nk) +

C(q)

D(q)
e(t) (1.20)

are estimated using a prediction error method.

Use BJ models when the noise does not enter at the input, but is primarily

a measurement disturbance. This structure provides additional �exibility for

modeling noise.

1.4.2 Least squares

Consider N experiments

yi =

p∑
j=1

xjiθ, i = 1, . . . , N, (1.21)

where xi = (x1, x2, ..., xp) is a vector of controlled variables and θ
T = (θ1, ..., θp)

is a vector of unknown parameters.

A more realistic mathematical model for the phenomenon is

yi = xθT + εi, i = 1, . . . , N, (1.22)

where εi is a random variable representing the error of experiment i.

Considering (1.22) for i = 1, ..., N , hence:

y1 = x11θ1 + x12θ2 + . . .+ x1pθp + ε1

y2 = x21θ1 + x22θ2 + . . .+ x2pθp + ε2
... (1.23)

yN = xN1θ1 + xN2θ2 + . . .+ xNpθp + εN .

23



and with,

Y = [y1, ..., yN ]T , (1.24)

X =


x11 x12 ... x1p

... ... ... ...

... ... ... ...

xN1 ... ... xNp

 =


x1

...

...

xN

 (1.25)

and E is

E = [ε1...εN ]T . (1.26)

Then

Y = Xθ + E. (1.27)

In this context, the parameters can be calculated (estimated) minimising the

following function:

E =
N∑
i=1

| Ei |2 (1.28)

that is, seeking to minimize the sum of squared errors. In matrix notation it

becomes:

E = (Y −Xθ)T (Y −Xθ), (1.29)

Di�erentiating E according to θ, we obtain

dE

dθ
= −2XTY + 2XTXθ. (1.30)

To calculate its minimum we need to solve the normal equations

dE

dθ
= 0 =⇒ XTXθ = XTY. (1.31)

If XTX is invertible a unique estimate exists

θ̂ = (XTX)−1XTY.

Note that N ≥ p is a necessary condition for XTX to be invertible. When

the matrix XTX is singular the estimate is not unique.

24



1.4.3 State-Space model

In this section we consider the general problem of estimating parameter for

linear SS models. Many of the models that we have studied so far are spe-

cial cases of this problem. The extension to SS models also opens up the

possibility to study estimation problems.

The basic SS model in innovation form can be written as

x(t+ 1) = Ax(t) +Bu(t) +Ke(t), (1.32)

y(t) = Cx(t) +Du(t) + e(t),

where AεRnk×nk , BεRnk×nu , CεRny×nk and DεRny×nu are matrices with

suitable dimensions. The x(t) is the state vector at instant t. The u(t) is the

input signal and the y(t) is the output signal. On the other hand, ny is the

number of outputs and nu is the number of inputs.

A is said the state matrix, B the input matrix, C the output matrix, D is

the matrix of direct transmission between input and output and matrix K

determines the noise properties.

To estimate an SS model, one needs to supply only 1 parameter. This pa-

rameter is the number os states, nk.

1.5 BB model structure and orders' selection

BB modeling is useful when our primary interest is to �t data regardless of a

particular mathematical structure of the model. These model structures vary

in complexity according to the needed �exibility to account for the dynamics

and noise in the system. We can choose one of these structures and compute

its parameters to �t the measured response data.

Typically, one starts with a simple linear model and progresses to more com-

plex structures.

The simplest linear BB require the fewest options to con�gure. For instance:

• A linear ARX model, which is the simplest IO polynomial model,

or

• A SS model, can be estimated by specifying the number of model states.
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To select a model structure using the model order is also possible. But one

needs to be aware that the de�nition of the model order varies with the type

of model selected. In some cases, such as for linear ARX and SS model

structures, we can estimate the model order from the data.

If the simple model structures do not produce good models, then we can

select more complex model structures according to the rules:

• Specify a higher model order for the same linear structure.

Higher model orders increase the model �exibility for capturing com-

plex phenomena. However, unnecessarily high orders can make the

model less reliable.

• Adopt explicit modeling of the noise, as shown in equation (1.8), where

C models the additive disturbance by treating the disturbance as the

output of a linear system driven by a white noise source e(t).

Using a model structure that explicitly models the additive disturbance

can help to improve the accuracy of the measured component G. Fur-

thermore, such a model structure is useful when our main interest is to

use the model for predicting future response values.

• Use a di�erent linear structure.

• Use a nonlinear model structure. Nonlinear models have more �ex-

ibility in capturing complex phenomena than liner models of similar

orders.

However, a linear model is often su�cient to accurately describe the

system dynamics and, in most cases, we should �rst try to �t linear

models. If the linear model output does not adequately reproduce the

measured output, we might need then to use a nonlinear model.

We can assess the need for using a nonlinear model structure by plotting

the response of the system to an input.

For real data, there is no such thing as a "correct model structure". However,

di�erent models can give quite di�erent model quality. The only way to �nd

this out is to try out a number of di�erent models and compare the properties

of the obtained model.

Ultimately, the simplest model structure that provides the best �t to mea-

sured data should be chosen.
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1.6 Model quality evaluation

This section shows how to evaluate model quality. Some necessary statistical

concepts are de�ned in Appendix A that are necessary to this section.

After a model is estimated, it can be evaluated by:

• Comparing the model response to the measured response.

• Analysing residual.

• Analysing model uncertainty.

1.6.1 Comparison between the model simulated response

and the measured response

It is natural to evaluate the quality of a model by comparing the model

response to the measured output for the same input signal.

The models are obtained with a particular input and the simulated responses

are compared against the measured values for the same input applied to the

real system. In this way, the model that has a better �t percentenge should

be chosen. Consider

|| ymeans − ysim ||2
|| ymeans ||2

× 100, (1.33)

where ymeans is the measured output, ysim is the simulated output, and

ymeans − ysim are the residuals. Expression (1.33) is called the �t percentage

.

1.6.2 Residuals

It is important to run a residual analysis to assess the quality of the model.

Residuals represent the portion of the output data that is not explained by

the estimated model. A good model has residuals uncorrelated with past

inputs, i.e, the residuals should be independent of the input and white noise.

In equation (1.8), the noise source e(t) represents that part of the output

that the model could not reproduce. Otherwise, they would be more in the
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output that originates from the input and that the model has not picked up.

To test this independence, we have the cross-correlation function between

input and residuals and the autocorrelation function. It is wise also to display

the con�dence region for this function. For an ideal model the correlation

function should lie entirely between the con�dence lines for positive lags.

1.6.3 Model uncertainty analysis

When the model parameters are estimated from the data their nominal values

should be accurate within a con�dence region. The size of this region is

determined by the values of the parameter uncertainties computed during

estimation. The magnitude of the uncertainties in parameters can result

from unnecessarily high model orders, inadequate excitation levels in the

input data and poor signal-to-noise ratio (SNR) 1 in the measured data.

1.7 Concluding remarks

In this chapter, we studied all aspects relating to the IS, including all concepts

underlying the same the explanation of the ITSIE, so that we can give the

reader a more complete view of all processes surrounding the identi�cation

of a system.

After reading this chapter, the reader/user should be able, among other

things, to distinguish IO signals of a system, to select the best model type

from the candidates studied, and apply the methods of estimation and vali-

dation to a model.

1Signal-to-noise ratio is a measure used in science and engineering to quantify how

much a signal has been corrupted by noise. It is de�ned as the ratio of signal power to

the noise power corrupting the signal.
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Chapter 2

Interactive Software Tool for

System Identi�cation

This chapter contains the conceptual basis and describes the main features

and functionality of an interactive software tool developed to support SI

education and discovery.

The Interactive Tool for System Identi�cation Education (ITSIE) is an inter-

active tool where all stages of identi�cation of systems co-exist in the same

screen in windows properly organised which is very useful from an educational

point of view. I.e, the great advantage of this tool is to make an identi�-

cation experiment using a single screen, with the di�erent stages connected

interactively in such a way that a modi�cation in one stage is automatically

visualised in the remaining stages.

This novel interactive software tool for SI was developed as a prototype

tool for SI education and in collaboration with Professor Sebastián Dormido,

from Universidad Nacional de Educacion a Distancia, UNED-Madrid, Spain,

and Professors José Luis Guzmán Sanchez and Manuel Berenguel Soria from

the University of Almeria, Spain, and Daniel Rivera from the Arizona State

University, USA, in 2009.

The interactive software tools have been proven as particularly useful tech-

niques with high impact on control education [5]. Interactive tools supply a

real-time connection between decisions made during the design phase and the

results obtained in the analysis phase of any control-related project. Also,

SI is a �eld rich in visual contents that can be represented intuitively and
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geometrically [7].

ITSIE has been developed using Sysquake, a Matlab-like language with fast

execution and excellent facilities for interactive windows, and is delivered

as a stand-alone executable that is made readily accessible to students and

engineers.

SI is an interactive process that deals with the problem of building dynamic

models from experimental data and is a key component in the control engi-

neering practice. SI education forms an essential part of any comprehensive

control engineering curriculum and, as such, requires �exible and simple soft-

ware tools. Although there are many others software tools for SI, they all

present several disadvantages when viewed from a primarily educational point

of view [3]. Usualy, these tools do not evaluate all stages of the SI process

and also have a graphical layout that can be confusing for students and can

lead to lost of interest from their point of view. Thence, a new generation of

software tools addressing these concerns are needed in support of advancing

SI education.

The ITSIE tool is freely available through http://aer.ual.es/ITSIE/ and

does not require a Sysquake license in order to execute. One consideration

that must be kept in mind is that the tool's main feature-interactivity-cannot

be easily illustrated with written text. Nonetheless, some of the features and

advantages of the application are shown below.

When developing a tool of this kind, it is very important that the developer

keeps in mind the organisation of the main windows and menus to facilitate

to the user an understanding of the identi�cation technique.

The purpose of this chapter is to explain the functionality of this tool.

As mentioned in Chapter 1, a comprehensive SI procedure consists of the

study the IO signals, data preprocessing, selection of a candidate model

structure and applicattion of methods and estimation of the parameters for

the candidate model as well as of the validation of the estimated models to

see if the model choice is adequate. These are some of the theoretical aspects

described in the following sections.

In ITSIE, the plant to be identi�ed consists of a discrete-time system, sam-

pled at a value speci�ed by the user (the default value is Ts = 1 min) and

subject to noise and disturbances according to the following model:
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y(t) = p∗(q)(u(t) + n1) + n2. (2.1)

The notation follows Chapter 1, therefore, in equation (2.1) y(t) is the mea-

sured output signal and u(t) is the input signal that is designed by the user,

p∗(q) is the zero-order-hold equivalent TF for p(q), where q is the time-shift

operator. The system is subject to two stationary white noise sources, n1(t)

and n2(t), introduced at di�erent locations in the plant. n1 allows evalua-

tion of the e�ects of the autocorrelated disturbances in the data, while n2(t)

introduces white noise directly to the output signal.

In ITSIE graphical tool, it is very important to understand the layout, in-

cluding the toolbar, available at the top of ITSIE to be able to start the

study of identi�cation, as can we see in following �gure.

Figure 2.1: The toolbar at the top of ITSIE.

The "Parameters, Modes and Reports" menus are the most relevant. It is

through the Modes menu selection that we choose the mode we want to work

in, then in the Parameters menu, we set the values for the parameters under

way, and �nally, when we �nish the identi�cation procedure, we go to the

Reports menu, and select Generate report option and save the report with

the required parameters for the study developed. The other menus refer to

Sysquake and are not relevant here, because they are not needed for ITSIE

use.

2.1 Di�erent working modes

The tool has two di�erent modes, the simulation mode and real data mode,

that are very useful from an educational and industrial point of view.

The simulation mode enables the student to evaluate the main stages of

system identi�cation, from input signal design through model validation, si-

multaneously and interactively in one screen on a user-speci�ed dynamic sys-
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tem. The real data mode allows the user to load experimental data obtained

externally and identify suitable models in an interactive fashion.

In the Chapter 3 of this manual, we detail study these modes using practical

examples. We can �nd two tutorials, respecting to the di�erent working

modes of ITSIE.

2.2 Simulation mode

In this section, we explain the funcionality and features of the simulation

mode step by step.

2.2.1 Selection of input signals

The sucess of any identi�cation methodology hinges on the availabilities of

an informative input/output data set obtained from a sensibly designed iden-

ti�cation experiment. An input of a test signal should be able to excite all

modes in the range frequency response.

Informative input signals that are friendly to process operations are highly

desirable in the identi�cation practice, with the goal of �nding a control-

relevant model estimate within an acceptable time-period.

ITSIE makes available two types of input periodic signals for the identi�ca-

tion of systems, the pseudo-random binary sequence (PRBS) and the mul-

tisine input. Both are considered deterministic and having periodic features

which has some advantages in SI. We study these two excitation signals, in

Section 2.2.1, respectively.

PRBS

The PRBS is a binary signal generated using a shift register module 2. A

cycle of a PRBS sequence is determined by the number of bits of shift register,

nr, and a switching time, Tsw. The signal is repeated after NsTsw time units,

where Ns = 2nr − 1. The power spectral density for a PRBS signal is given

by the following expression:
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Φu(w) =
a2
mag(Ns + 1)Tsw

Ns

sin(
wTsw

2
)

wTsw
2


2

. (2.2)

In the expression given above, amag is the magnitude of the PRBS signal, w

is the angular frequency and Ns is the signal length.

The speci�cation of parameters and applying direct time constants based

guidelines for the design of entry are evaluated in ITSIE. However, in prac-

tice, little is known about the process dynamics at the start of the identi-

�cation testing, and plant operating restrictions will discourage excessively

long, or very intrusive, identi�cation experiments. A guideline that provides

a suitable estimate of the frequency band, over which excitation is required,

can be given by the following equation.

1

βsτHdom
≤ w ≤ αs

τLdom
. (2.3)

In this equation, αs is a factor representing the closed-loop speed of response,

written as a multiple of the open loop response time and βs is an integer

factor representing the settling time of the process. This parameters specify

the high and low frequency ranges of interest in the signal, respectively, for

a given range of high and low dominant time constants, de�ned by τHdom and

τLdom, i.e., βs and τ
H
dom de�ne the lower bound of the frequency band, αs and

τLdom de�ne the higher bound of the frequency band. These two factors, τHdom
and τLdom, increase the frequency bandwidth of the input signal.

Equation (2.3) is used, to specify variables in PRBS inputs. Expressions to

specify Tsw and nr, based on equation (2.3), give rise to the expression (2.4):

Tsw ≤
2.8τLdom
αs

, Ns = 2nr − 1 ≥ 2Πβsτ
H
dom

Tsw
, (2.4)

where nr and Ns are integer values and Tsw is an integer multiple of the

sampling time Ts.

The PRBS has been widely used for SI (AH Tan and KR Godfrey, 2002).

This signal, in addition to the deterministic capacity and frequency, may

33



include properties of white noise and an optimal crest factor (CF) 2, which

is an advantage and a point of interest in choosing this type of signal.

The CF is a measurement of a waveform calculated from the peak amplitude

of the waveform divided by the RMS 3 value of the waveform.

CF =
| x |peak
xRMS

, (2.5)

It is therefore a dimensionless quantity. While this quotient is most simply

expressed by a positive rational number in commercial products it is also

commonly stated as the ratio of two whole numbers, e.g., 2:1. In signal

processing applications it is often expressed in decibels (dB).

In equation (2.5), x is the signal and xRMS =

√
x2

1 + x2
2 + . . .+ x2

n

n
.

It provides a measure of how well distributed the signal values are over the

input span. A low CF indicates that most of the elements in the input

sequence are distributed near maximum values of the sequence. Reducing

the crest factor of an input signal can signi�cantly improve the SNR of the

resulting plant output, contributing to plant-friendliness during experimental

testing, i.e, this factor should be minimised in order to better handle the input

spectrum and to match what we want.

Multisine

Another type of input signal very commonly used in SI is the multisine.

These signals, as it was already mentioned, are also deterministic and pe-

riodic. They are represented in the case of a single input, as the sum of

2The crest factor (CF) or peak-to-average ratio (PAR) or peak-to-average power ratio

(PAPR) is a measurement of a waveform, calculated from the peak amplitude of the

waveform divided by the RMS value of the waveform.

3In mathematics, the root mean square (abbreviated RMS or rms), also known as the

quadratic mean, is a statistical measure of the magnitude of a varying quantity.

It can be calculated for a series of discrete values or for a continuously varying function.

The name comes from the fact that it is the square root of the mean of the squares of the

values. It is a special case of the generalized mean with the exponent p = 2.
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sinusoids, as shown in the equation below:

u(k) = λ

ns∑
i=1

√
2αi cos[wikT + φi], (2.6)

where the frequency is wi =
2πi

NsT
, ns ≤

Ns

2
.

The power spectrum of the multisine input is

Φu(wi) =
(λ2αi

2

)
Ns, i = 1, · · · , ns (2.7)

and is directly speci�ed through the selection of a scaling factor, λ, the

Fourier coe�cients, αi, the number of harmonics, ns, and the signal length,

Ns [5]. As in the PRBS case, we can use equation (2.3) to specify variables

for multisine type inputs such as Ns, as shown below.

Ns ≤
2πβsτ

H
dom

T
, ns ≥

NsTαs
2πτLdom

. (2.8)

In both cases in order to reduce the variance of the model it is bene�c to

apply a wider range of the input signal amplitude or amag (standard devi-

ation) that will implement the largest possible number of input cycles m.

In practice, decisions concerning the magnitude of the input signal, spectral

content, duration of experimental testing are dictated by physical limitations,

economics and security considerations Ljung [2].

Multisine inputs are easy to implement in a real-time setting. As determin-

istic signals, one cycle can be designed to include all the frequency ranges

needed for consistent estimation of the plant dynamics. Under noisy test-

ing conditions, multiple cycles can be implemented until the variance in the

model estimate is reduced to acceptable levels [2].

In this case, a guideline that also provides a suitable estimate of the frequency

band over which excitation by the equation (2.2). As the PRBS, this equation

is also used in ITSIE to design variables in multisine inputs. Expressions for

specifying Tsw and nr are based on equation (2.2) from which (2.3) results.
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2.2.2 Input design

A parameter de�nition section and three interactive windows characterise

the input design stage.

The parameter de�nition section is called Input signal Parameters, being

located at the top of the middle section of the tool as is shown in the following

�gures for PRBS and Multisine, respectively.

PRBS

Figure 2.2: Menu input signal parameters for PRBS.

This �gure, shows how to select the type of input signals i.e., between a

PRBS or Multisine signals. Then if we choose guidelines 4 or not. In case

the guidelines box is not active, choose the Nocycles, the NoReg and the Tsw.

At the same time, from the Input signal parameters window, it is possible

to modify the Tsw dragging on the magenta vertical line, the signal amplitude

using the green horizontal line and the Nocycles dragging on the small black

triangle located at the x-axis. Furthermore, the Tsw can be changed from the

Power Spectrum window using the vertical lines, we �nd that the number of

stripes of the power spectrum relates to the value of Tsw.

As we change the value of the Nocycles, this is re�ected in the Power

Spectrum, Step response, Output signal, Full input signal. TheNoReg

and Tsw changes all windows on the screen.

Consider, for example, a �fth-order system whose TF is p(q) =
1

(1 + q)5
and

T = 1 min. First, we choose as the input of the systems a PRBS of 3 cycles.

4When the user does not select the guidelines, that is, the guidelines checkbox is not

active, the Input signal Parameters can be interactively modi�ed using speci�c sliders

or dragging on the windows.
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We select the guidelines and after αs = 2 and βs = 3. These αs and βs will

wide the frequency band of emphasis in the input signal and increase the

resolution of the input signal spectrum.

Figure 2.3 describes the use of a PRBS input signal for this system and aims

to illustrate the PRBS signal.

Figure 2.3: ITSIE interactive tool user interface for two cycles of a PRBS

input applied to a simulated �fth-order system, with selection of di�erent

parameters from the Input signal parameters menu.

The Figure 2.4 clari�es the use of guidelines for αs = 2, βs = 3 and a domi-

nant time constant range (3 = τLdom ≤ τdom ≤ τHdom = 5), this is noticeable in

their e�ect on the input signal.
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Figure 2.4: ITSIE interactive demonstration of three cycles of a PRBS input

applied to simulate a system of �fth-order with selection of guidelines.

Multisine

If we select Multisine, we should select, in Input signal parametersmenu

the Min Crest Factor or not, choose the Nocycles, the SeqLength, the

NoSin, the Maxp, αs and βs, and the τLdom and τHdom, according the require-

ments.
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Figure 2.5: Di�erents Input signal parameters menus for Multisine.

At the same time, from the Input signal parameters window, it is possible

to modify the Nocycles dragging on the small black triangle located at the

x-axis.

As we change the value of the Nocycles, this is re�ected in multiple windows,

such as: Power Spectrum, Step response, Output signal, Full input

signal and Autocorrelation. That is, the Nocycles re�ects how many cy-

cles are repeated in the Full input signal window, as in the Input signal

window is displayed only one signal cycle.

The SeqLength is the size of the sequence of the cycle that appears in the

window Input signal. The choice of the NoSin can also be perceived in

the window Power Spectrum, and thus is in accordance with equation (2.7).

2.2.3 Further remarks about inputs

If we analyse in detail, for example Figures 2.3 and 2.6, we can see that for

a study of a practical example in ITSIE, there are some di�erences for both

types of input.

For example, to validate the data, the model chosen for the study was

the ARX. The determination of impulse and step responses are determined

through certain specially chosen test signals, as they excite a system that

provides an y(t).

Therefore, and as an example, in the step response is noticeable that, for a

PRBS input, of the �t percentage of the model is higher when compared with
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Figure 2.6: Three cycles of a multisine input applied to a simulated �fth-order

system.

an multisine input. The determination of the impulse and step responses are

done through certain specially chosen test signals.

If the choice is the same for both signals, we also found that the PRBS has

a higher compliance compared to the multisine. Another di�erence found is

in the power spectrum. The signs show the power shifted spectra and how

these are correlated in the frequency domain.

The PRBS and multisine signals are also di�erent in terms of the CA, par-

ticularly in cross correlation between input and prediction error, namely the

behavior they display, as shown in the two images presented below:

2.2.4 Plant de�nition and simulation parameters

The central part of the tool, is a section called Simulation parameters,

which allows to modify interactively the noise sources of the simulated pro-

cess.
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Figure 2.7: Signal multisine and signal PRBS, respectively, for ARX model.

Two sliders are available. The �rst one, Noise 1, allows for modifying the

noise source n1(t) in equation (2.1) and the second one, Noise 2, is also used

to change the noise source n2(t) in the same equation.

On the other hand, other simulation parameters, such as Ts, order selection

limits, con�dence intervals and baseline values are available from an entry in

the parameters menu.

Figure 2.8: Parameters menu.

Furthermore, the simulated process can be con�gured from the Modes →
Simulation menu (in addition di�erent models can be used for the simulated

process and for the n1 �lter, although by default both are the same, as shown

in equation (2.1)), that also includes a couple of examples: a �fth-order

system and a �uidized-bad calciner plant. The process model con�guration

can also be loaded and stored from �les.

2.2.5 Data preprocessing

The purpose of examining the data of IO, is to �nd out if there are portions

of the data that are not suitable for identi�cation. That is, if the information
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contents of the data is suitable in the interesting frequency regions and if the

data have to be preprocessed in some away before being used for estimation.

Some aspects that we consider in data preprocessing is the detrending and

pre�ltering.

• Detrending the data involves removing the mean values or linear trends

from the signals (the means and the linear trends are then computed

and removed from each signal individually).

It is recommended to remove at least the mean values of the data

before the estimation phase, unless physical insight involving actual

signal levels is built into the models.

• By �ltering the IO signals through a linear �lter (the same �lter for

all signals) we can focus on the model's �t to the system to speci�c

frequency ranges.

Pre�ltering is a good way of removing high frequency noise in the data,

and also a good alternative to detrending (by cutting out low frequen-

cies from the pass band). Depending on the intended model used, we

can also make sure that the model concentrates on the important fre-

quency ranges. For a model used for control design, for example, the

frequency band around the intended closed-loop bandwidth is of special

importance.

The ITSIE data preprocessing supports mean subtraction, di�erenciating and

subtraction of baseline values; mean detrending is applied by default.

In the tool a menu exists with several options for processing data. These

options are None, Means, Differ and Baseline values, as shown in Figure

2.9.

Figure 2.9: Data preprocessing.

The Means option This option is used to subtract the mean values from

the input and the output signals to remove ofsets, i.e.

m = mean(u)

u = u(t)−m
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The None option This option is used, when the tool takes the raw real/

simulated data, without any �ltering activity.

The Baseline values option The baseline values line remove from the real

data the same values speci�ed from the menu Parameters −→ Baseline

values. These values are called Baseline values.

The Di�er option

u(t) = u(t)− u(t− 1)

2.2.6 System simulation

The �rst thing to do is to perform a detailed simulation of a model. To do

this, we choose a model from among those available on the Model parameters

menu, in the central part of the screen bellow the choice of the Input signal

parameters.

ITSIE has two di�erent types of models which are the parametric and non-

parametric. Within the parametric models we have, ARX, ARMAX, OE,

BJ and SS, and the nonparametric include the correlation analysis (CRA),

as shown bellow in Figure 2.10.

Figure 2.10: Model parameters.

2.2.7 System identi�cation

As studied in Chapter 1, every model has a di�erent structure. According

to the model type di�erent orders need to be selected. It can be Fixed or

Selection, as can be seen in Figure 2.10.
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In Fixed, we can change the orders of the model in contrast to what happens

in the Selection. For example, if we can modify the associated orders

interactively of the di�erent models, one should �rst click on Fixed, in Model

parameters menu and then put the cursor of the mouse over each one of the

parameters to change the value according to requirements.

In ITSIE, we call model structure the choice of model type together with the

choice of orders.

• To estimate an ARX model:
[
na nb nk

]
, where na, nb and nk are

orders for this model, according to equation (1.16).

• To estimate an ARMAX model:
[
na nb nc nk

]
, where na ,nb, nc

and nk are orders for this model, according to equation (1.18).

• To estimate an OE model:
[
nb nf nk

]
, where these parameters are

estimated and nb, nf and nk are orders for this model, according to

equation (1.19).

• To estimate an BJ model:
[
nb nc nd nf nk

]
, where nb, nc, nd,

nf and nk are orders for this model, according to equation (1.20).

• To estimate an SS model:
[
nk
]
, where nk is order for this model.

• To estimate an CRA model:
[
n
]
, where n is order for this model

(n = 1 . . . 100).

The parameters' ranges are set to na = nb = nc = nd = nf = nk = 1 . . . 10.

And can be selected or estimated.

Once a model structure is selected, the estimation and validation results for

that model are shown in corresponding parts of tool.

As mentioned in Section 2.2.6, below the section Input signal parameters

there is an area denominated Model parameters showing parameters to

modify the orders of the di�erent model structures. Several radio buttons are

available to choose between di�erent model structures. Also, di�erent sliders

appear making it possible to modify the associated orders interactively.

Once a input signal has been con�gured, the �nal input with all the desired

cycles is shown in a window called Full input signal, which is located at

the lower-left corner of the tool. This full input signal is applied to the sim-

ulated plant with noise in order to obtain the simulated "real data" (shown

in black in the Output signal window), which is used as real process data
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in the estimation and validation process.

Once a model structure is selected, the estimation data is used to estimate

the model parameters and the validation data is used to test the resulting

model. Then, for each selected model structure, the Full input signal

is applied to the model and the results are shown in the Output signal

window.

Finally, when we click on the Output signal window, it will generate a fresh

realisation of the noise sequences, n1 and n2, enabling the user to interactively

experience variability in the estimates resulting from the stochastic nature

of the disturbance.

2.2.8 Model validation

On top of the Step response window, located on the upper left-hand corner

of the tool, there is a set of checkboxes allowing to activate the di�erent model

types, as, namely, ARX, ARMAX, OE, BJ, SS and CRA, as it is shown in

window Step response.

Figure 2.11: Step response window for ARX model, for example.

The Step responses window shows the step responses for each resulting

model and includes a legend representing its goodness of �t percentage. The

con�dence intervals can also be shown in this window activating this option

from the Parameters menu.
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Di�erent colors are used to distinguish the responses for the di�erent models.

Black for the original data, red for ARX, green for ARX with a di�erent order

selection, magenta for ARMAX, blue for OE, cyan for BJ, orange for SS and

brown for CRA. These colors are consistently used in the di�erent parts of

the tool to refer to the model results.

In the Output signal window, an interactive magenta vertical line de�nes

the estimation and validation data sets. The area shown in yellow (at the

left of the vertical line) speci�es the estimation data, whereas the white area

represents the validation data (at the right side of the vertical line).

Model validation consists mainly of classical methods of simulation, cross-

validation, residual analysis on the prediction errors and step responses. To

enhance its educational value, the step response of the true plant is presented

alongside with the ones generated by the estimated models. The percentage

of the output variance explained by each model on the crossvalidation data

set is reported.

The validation data is used for crossvalidation purposes. Model validation

results are displayed in other three di�erent windows: Step responses,

Correlation function of residuals, and Cross correlation function

between input and output. For all these windows, the same color distri-

bution described before is used to represent the results of each model.

The highest percentage, present in the Step response window, is considered

the best. As seen in this window the models in the best �ts list are ordered

from best at the top to worst at the bottom.

On the other hand, the Correlation function of residuals and the Cross

correlation function between input and output windows, located be-

tween the Input signal and Power Spectrum windows, describe the auto

and cross correlation between the input and the prediction error for each

model. By default, the input Autocorrelation window is shown instead of

these two windows. In order to switch between the input autocorrelation

and residual analysis, two radio buttons are shown below the Input signal

window that enable this commutation.

The top axes show the Autocorrelation of residuals for the output (whiteness

test). The horizontal scale is the number of lags, which is the time di�erence

(in samples) between the signals at which the correlation is estimated.
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2.3 Real data mode

This mode allows to identify models from real data. To load real data, go

to Mode → Real data menu. The real data can be loaded in ASCII and

Matlab formats. For ASCII format, the data must be organised in columns

with the following order: time, output and input signals. If the Matlab

format is used, the �le must contain three variables called "t", "y", and "u"

for the time, the output, and the input, respectively. When real data is

loaded, the tool screen is changed such as shown in detail in Chapter 3 of

this manual, particularly in the choice of the example hairdryer.

Those areas in the simulation mode dedicated to input design and plant

de�nition and simulation parameters are changed, as for example, menus to

select and de�ne the inputs and simulation parameters do not appear in this

screen.

We identify a real data problem step by step.

2.3.1 Input design

Two interactive windows characterise the input design stage, the windows as

Full input signal and Power Spectrum.

2.3.2 Model structure selection and parameter estima-

tion

Once a model structure is selected, the estimation and validation results for

that model are shown in corresponding parts of tool. The model structure

selection and parameter estimation are exactly the same as in the simulation

mode, described in Subsection 2.2.7, with the only di�erence that we are

working with real data loaded from a �le.

In this mode, all the model parameters are always shown simultaneously on

the right side of the Step response window. The order selection, for the

di�erent models are speci�ed by slidder-bars as shown in Figure 2.12.

Once an input signal has been imported, the �nal input with all the desired

cycles is shown in a window called Full input signal, which is located

at the lower-left corner of the tool. As in simulation mode, in the Output
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Figure 2.12: Choice of parameters of models types.

signal window, an interactive magenta vertical line de�nes the estimation

and validation data sets. The area shown in yellow (at the left of the vertical

line) speci�es the estimation data, whereas the white area represents the

validation data (at the right side of the vertical line), just like what happens

in simulation mode.

2.3.3 Model validation

In this mode, also model validation consists principally of classical methods

of simulation, that have been already referred in Chapter 1, such as cross-

validation, residual analysis of the prediction errors and step responses.

To enhance its educational value, in the real mode, the step response of the

true plant is presented alongside those that are generated by the estimated

models. The percentage of the output variance explained data set is also

reported.

Model validation areas, namelly windows, are exactly the same as in the

simulation mode, and it follows that the entire procedure was explained in

the section for the simulation mode with the only di�erence is that we are

working with real data loaded from �le.

The validation data is used for crossvalidation purposes. The model valida-

tion results are displayed in other three di�erent windows: Step response,

Correlation function of residuals and Cross correlation function

between input and output.
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On the other hand, the Correlation function of residuals and Cross

correlation function between input and output windows are located

at the Power Spectrum window.

2.4 Additional options

The tool has been complemented with some additional options to be used for

educational and training purposes. The options are "How to import/export

models" and "Reports generation" are explained below.

2.4.1 How to import/export models?

The user can de�ne his own process model and the export model option

saves the model TFs de�ned from the Mode −→ Simulation −→ Model

configuration menu option, and so, we should follow the following steps.

1. Save the model through Model −→ Simulation −→ Import model

to file menu option.

2. The model is saved in a binary �le with .bin extension.

3. The model can be exported to the tool through Model −→ Simulation

−→ Export model from file menu option.

Notice that this model is the "simulated model" that we are using as

real plant.
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2.4.2 Reports generation

After we processing the data, as described in Section 3.2.3, we can delete

any data sets in File → Reset Data menu, but before we need to save our

work as report.

The tool has been complemented with some additional options to be used for

educational and training purposes one of these features is to print a report.

Once the process model is de�ned, we can export the model into a �le with

extension txt. Load the report from the Reports → Generate Report.

The reports include information about the resulting identi�ed models, e.g.,

goodness of �t, sampling time, model structure, model parameters and TF

in Matlab format.

2.5 Concluding remarks

The interactive tool provides the user with multiple degrees of freedom for

understanding the theoretical concepts and gives sensitivity for the impact

of choices made in the di�erent steps of the SI process. The main advan-

tage with respect to other existing software tools is that the most important

stages of SI are shown simultaneously in one screen (input design, model

structure selection, parameter estimation and validation), and that the in-

teractive features of the tool allow the user to understand and experience the

relationships between these di�erent stages, the meaning and e�ects of the

associated parameters, the bidirectional interpretation between parameter

modi�cations from numerical and graphical points of view.

In this chapter, we present two di�erent examples for the simulation mode so

that anyone reading this manual, may realise the functionality of this mode

and the di�erence there is between them, through two simple case studies

chosen.

In the next chapter the functionality of the tool is illustrated through an

example and compared with the toolbox of Matlab, ident. The usefulness

of this interactive is highlighted by conveying an intercative picture of SI..
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Chapter 3

Using ITSIE

Our goal is to estimate and validate models from SISO data using ITSIE and

�nd the one that best represents its system dynamics.

Large number of possible scenarios with educational value exist that can be

illustrated by the ITSIE tool [5].

After reading this manual, one should be able to accomplish the following

tasks using ITSIE software.

• To import data objects into ITSIE.

• To estimate and validate models from data.

• To generate a report.

We study some examples relevant for understanding the software. We work

out the examples from beginning to the end, explaining throughly each step.

The �rst example is a well known example: the hairdryer; analysed in the

real data mode. The second example is a �fth-order system in the simulation

mode.

This is the same example that was used in Chapter 2 to discuss the input

signals.

Before trying to identify these examples, there are some theoretical concepts

that should be understood, such as to distinguish input and output data,

di�erent types of processing the data, what type of models exist, etc. Con-

cepts that were explained in previous chapters and now need to be used in

the examples.
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3.1 Installing the tool

To install ITSIE, one should go to the page http://aer.ual.es/ITSIE/ in

order to download the tool.

Next, we have to download the folder with extension .zip in accordance with

the operating system of each user and then unzip this folder, to extract the

software.

After installing the tool it is necessary to download the folder documenta-

tion.zip and then we save it in a place of our choice, that is easily accessible.

Figure 3.1: Download of ITSIE and documentation.zip.

Finally, unzip the folder documentation.zip, in order to extract the �les of

documentation.

Inside this folder, there is a �le called dryer_data.

3.2 Case Study�Hairdryer

This system heats the air at the inlet using a mesh of resistor wire, similar

to a hairdryer. The input is the power supplied to the resistor wires, and the

output is the air temperature at the outlet. This can be considered as a BB,

as shown in Figure 3.2.

We are going to identify this system in real data mode. This is a well-known

example has been worked out in the manual of ident, the toolbox of Matlab.
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Figure 3.2: Hairdryer example [16].

3.2.1 Objectives of the case study

1. To estimate and validate linear models for a SISO system, the hairdryer,

in order to �nd the one that best describes the system dynamics using

ITSIE.

2. To tutor the fresh user how to �nd the best model for a given SISO

system.

3. To generate a report.

4. To compare the use of ITSIE with the Matlab Toolbox, ident, from

the learning point of view, since the former is an interactive tool.

3.2.2 Acessing and preparing data for SI

After this section we should be able to load the data.

ITSIE software has available the data �le dryer_data with extension .txt,

i.e., the data is stored in a �le with extension .txt which contains SISO

time-domain data from Feedback Process Trainer PT326. The input and

output signals each contain 1000 data samples.
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Loading data into the chosen �le data

To study the hairdryer example, we must follow the following steps:

1. Load the data from the Mode → Real data menu, i.e., select the op-

tions Modes → Real data → Load real data (ASCII).

Figure 3.3: Load the real data from the Modes menu.

2. Open the folder denominated by documentation and then the docu-

mentation folder data;

3. Finally, select dryer_data.txt.

Figure 3.4: Selection of the �le dryer_data.

As stated in the previous chapter, the real data can be loaded in ASCII and

Matlab formats. We decided to use the ASCII format, because it is the only

one that supports this �le in ITSIE.

When real data is loaded, the tool screen is changed as shown in Figure 3.5.

The next step is to evaluate the data and process it for SI.

Three importants channels exist:

• Input: Power in Watts (for power units);

• Output: Temperature in oC (for temperature units);

• Ts = 0.08, this value is the actual sampling time in the experiment.
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Figure 3.5: Screen layout of the ITSIE software in real mode for the hairdryer

example.

3.2.3 System simulation

In this section, the system is simulated using the di�erent models described

in Chapter 1.

We will explore the following steps:

1. In the absence of any previous knowledge, it is advisable to try the

various options available and use various models. But, for polynomial

models, a similar advantage is realised by using the ARX model. How-

ever, models like the OE and ARMAX may also be good options for

a polynomial model, due to its simplicity. So, we start to study this

models.

From the top of the Step response window select, for instance, a

model of type ARX, ARMAX and OE.

2. After choosing the models, we should specify the orders to estimate

these di�erent models.

55



Figure 3.6: Selection of the ARX, ARMAX and OE models and �t percentage

of these models for the Step response.

3.2.4 System identi�cation

Now, we select the orders for di�erent models types selected, such as [2 2

1] for ARX mode, [2 2 2 1] for the ARMAX model and [2 2 1] for the OE

model, as shown in Figure 3.7.

3.2.5 Data preprocessing

In this section, we explain why to choose:

• Option Means in Data preprocessing.

We chooce the option Means because it is necessary to subtract the

mean values of the input (power) and the output (temperature) to

remove the o�sets, and so we can get better results, able to better

visualise the behavior of the temperature.

• If we choose another option other than Means, we may notice changes in

the windows Output signal, the Power Spectrum, the Correlation

function of residuals and Cross correlation function between

input and prediction error.

For example, if we choose the option Baseline values, the change in

the windows referred to in the previous point, are quite signi�cant.
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Figure 3.7: Representation of the ARX-[2 2 1], ARMAX-[2 2 2 1] and OE-[2

2 1].

To be able to view the image, we must place the cursor over the arrow

on the Output signal window, and as you can see in the image below

is the representation of the output will only be found on a larger scale.

This option remove from the real data the same values speci�ed from

the menu Parameters−→ Baseline values.

• If we choose the option None, we see changes in the windows of tool.

This option is used, when the tool takes the raw real/ simulated data,

without any �ltering activity, i.e, this option is not relevant for this

case study, since it does nothing.

• Next, if we choose the option Differ, that makes changes to all win-

dows.

What is happening is basically u(t) = u(t)− u(t− 1).
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Figure 3.8: The top of this �gure show the output data, temperature, and

the bottom �gure show the input data, power, for this example.

Figure 3.9: Representation of the Output signal graphic for Baseline

values option.

3.2.6 Model validation

In order to choose the model with the best performance, we can compare

among themselves.

In Figure 3.6 it appears that the OE model is the best (81.48 %), compared

to the ARX (56.69 %) and ARMAX (73.17 %).

That is, we studied how e�cient is the estimation model by simulating this

model for a step reference and comparing the simulated output with the

measured output. So, we can state that the model output window shows

agreement among the di�erent model types and the measured output in the

validation data, as shown on the top left of Figure 3.7.

Bellow the Step response window, we can see that the output of the matches

the measured ouput also for the validation data, which indicates that the

models seem to capture the main system dynamics and that linear modeling

is su�cient.

We can analyse the windows Power Spectrum, Correlation function of

residuals and Cross correlation between the input signal and the

prediction error, with the three chosen models, and investigate the dif-

ferences, as shown in the Figure 3.7.

The spectrum has to do with the impulse response of the model. So SA also
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Figure 3.10: Representation of the Output signal graphic for None option.

Figure 3.11: Representation of the Output signal graphic for Differ option.

estimates the spectrum of the additive disturbance e(t) in the description of

the system.

As explained in Chapter 1, in the Cross correlation function between

input and prediction error window it is also wise to display the con�-

dence region for this same function, the dashed dotted lines mark a 99%

con�dence interval. For an ideal model the correlation function should lie

entirely between the con�dence lines for positive lags. If the model has many

positive lags, its quality is better. For example, in Figures 3.7 it appears that

the model OE is the best.

A good model should have a residual autocorrelation function within this

con�dence interval to indicate that the residuals are uncorrelated. However,

in this example, the residuals for the models appear to be correlated, which

is espected since the noise model is used to make the residuals white.

A good model should have residuals uncorrelated with inputs. Evidence of

correlation indicates that the model does not describe how a portion of the

output relates to the corresponding input. For example, when there is a peak

outside the con�dence interval for lag k, this means that the contribution

to the output y(t) that originates from the input u(t − k) is not properly

described by the model.

In this example, there is no correlation between the residuals and the inputs.

Thus, residual analysis indicates that this model is good. All these reasons,

it can be seen in Figure 3.7, the OE model is the best and we choose this

model for the case study.

But, we are still not satis�ed with the overall result, because we can �nd a

model that has more waste uncorrelated, so now let's repeat steps 1 and 2
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of Section 3.2.3, and change the orders of the ARX model to investigate the

di�erences. We select [4 3 2] for ARX model, for example.

Figure 3.12: Representation of the ARX-[4 3 2], ARMAX-[2 2 2 1] and OE-[2

2 1].

In Figure 3.12, we can observe that the model that has better �t percentage

is the ARX (88.34%) and also presents the residuals within the limited region

and uncorrelated with past inputs, for the previous example (ARX-[2 2 1]),

as these results are satisfactory, then we can consider the best ARX model,

before all the trials made.

3.2.7 Report generation

We had already described the report generation, in Section 2.4.2.

We can export the model into a �le with extension .txt and, for this example,

the generated report can be seen in the following �gure.

In the report of Figure 3.13 we have the sampling time, the numerators and

denominators of each chosen model and also its �t percentage.
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Figure 3.13: Report of a case study: hairdryer for ARX-[2 2 1], ARMAX-[2

2 2 1] and OE-[2 2 1].

Analysing �rst the ARX model agreement, which was learned in Chapter

1 and 2, we have na = 2, nb = 2 and nk = 1, so we can de�ne A(q) =

1 + a1q
−1 + a2q

−2 = 1 − 1.698q−1 + 0.772q−2 and B(q) = b1q
−1 + b2q

−2 =

0.007q−1 + 0.031q−2, therefore:

(1− 1.698q−1 + 0.772q−2)y(t) =

(0.007q−1 + 0.031q−2)u(t− 1) + e(t)⇔

⇔ y(t)− 1.698y(t− 1) + 0.772y(t− 2) =

0.007u(t− 2) + 0.031u(t− 3) + e(t)

Then for ARMAX model we have na = 2, nb = 2, nc = 2 and nk = 1,
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so we can de�ne A(q) = 1 + a1q
−1 + a2q

−2 = 1 − 1.675q−1 + 0.734q−2,

B(q) = b1q
−1 + b2q

−2 = 0.024q−1 + 0.0291q−2 and C(q) = 1 + c1q
−1 + c2q

−2,

therefore:

(1− 1.675q−1 + 0.734q−2)y(t) =

(0.024q−1 + 0.029q−2)u(t− 1) + C(q)e(t)⇔

⇔ y(t)− 1.675y(t− 1) + 0.772y(t− 2) =

= 0.024u(t− 2) + 0.029u(t− 3) + C(q)e(t)

Finally, for OE model we have nb = 2, nf = 2 and nk = 1, so we can de�ne

B(q) = b1q
−1 +b2q

−2 = −0.015q−1 +0.080q−2 and F (q) = 1+f1q
−1 +f2q

−2 =

1− 1.5795q−1 + 0.652q−2, therefore:

(1− 1.579q−1 + 0.652q−2)y(t) =

(−0.015q−1 + 0.080q−2)u(t− 1) + e(t)⇔

⇔ y(y)− 1.579y(t− 1) + 0.652y(t− 2) =

−0.015u(t− 2) + 0.0809u(t− 3) + C(q)e(t)

Now, in the report of Figure 3.14, we study the report for di�erent ARX

model structure, because the other models are equal to those present in the

previous report.

Analysing the ARX model, we have na = 4, nb = 3 and nk = 2, so we can

de�ne A(q) = 1 + a1q
−1 + a2q

−2 + a3q
−3 + a4q

−4 = 1− 1.098q−1 + 0.010q−2 +

0.308q−3 − 0.085q−4, B(q) = b1q
−1 + b2q

−2 + b3q
−3 = 0.004q−1 + 0.066q−2 +

0.054q−3, therefore:

(1− 1.098q−1 + 0.010q−2 + 0.308q−3 − 0.085q−4)y(t) =

(0.004q−1 + 0.066q−2 + 0.054q−3)u(t− 2) + e(t)⇔

⇔ y(t)− 1.698y(t− 1) + 0.772y(t− 2) +

0.308y(t− 3)− 0.085y(t− 4) =

0.004u(t− 3) + 0.066u(t− 4) + 0.053u(t− 5) + e(t)
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Figure 3.14: Report of the case study: hairdryer for ARX-[4 3 2], ARMAX-[2

2 2 1] and OE-[2 2 1].

The �t percentage appears in both reports under the designation Fitting

and is the same that appears in the window Step Response.
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3.2.8 Comparison between ITSIE and ident through a

case study

In this section, we explain the last objective of this case study.

So far we have been explaining the hairdryer in ITSIE, but this example also

have been studied in other tools, such as Identi�cation Toolbox of Matlab,

ident, because this is the identi�cation tool of Matlab.

This toolbox provides a graphical user interface (GUI). The GUI covers most

of the toolbox's functions and gives easy access to all variables that are cre-

ated during a session. It is started by typing ident in the Matlab command

window and the following interface window appears.

Figure 3.15: An example of importing hairdyrer in GUI.

The graphical layout of this tool is quite di�erent from the ITSIE. This is

without a shadow of doubt, one of the di�erences between the two tools under

discussion.

In the GUI we have to specify everything we want to address in a detailed

manner. For example, we must specify which channel of data input, output,

and sampling time, how is the data imported, among other aspects relevant

to the SI.

There are also several operation that need to be worked out in detail. For

instance, the data processing, the options to choose from various types of

models and to specify the orders of the same, among others.
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But this tool, in my opinion, has disadvantages when viewed from a primarily

educational point of view, because as explained, the GUI, do not evaluate all

the stages of the SI process in an integrated fashion and provide substantial

amounts of information in many di�erent screens, wich can be quite confusing

for students, unlike what happens in ITSIE.

Figure 3.16: Di�erents screens in GUI.
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3.3 Case Study�A �fth-order system

In this section, we describe the identi�cation process, in the simulation mode,

using an example.

This example was chosen because it is presented in ITSIE software and is a

simple case study, where all concepts of identi�cation can be visualised and

are easily understood by the user.

3.3.1 System description

The system considered is the simulated �fth-order system that is default in

the tool, represented according to the following TF which was presented in

Chapter 2, particularly, in Section 2.2.2.

p(q) =
1

(1 + q)5
(3.1)

3.3.2 Objectives for the case study

1. To study the choice of the input design.

2. Data preprocessing.

3. To estimate and validate linear models for a SISO system, using ITSIE.

4. To compare the application of two di�erent models to this system under

varying experimental conditions.

5. To tutor the fresh user how to �nd the best model for a given SISO

system, using di�erents models types and analyse the di�erences.

6. To generate a report.

3.3.3 Preparing data for SI

After this section, we should be able to load an example into ITSIE and

prepare it for identi�cation.
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Loading data into the simulation mode

To study the example, we should follow these steps:

1. After open the ITSIE software, we select the icon Modes in menu and

following select Simulation and Fifth-order system;

Figure 3.17: Selection of Fifth-order system in simulation mode.

When this example is loaded, the tool screen is changed such as shown in

following Figure 3.18.

Figure 3.18: ITSIE in the simulation mode for the �fth-order system.

Next, we evaluate the data and process it for SI.

We have simulation parameters, such as:

• Input: u(t);
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• Output: y(t);

• Ts = 1.00. This value is the actual sampling time in the experiment.

We can modify this sampling time, to do this, we select in Parameters

−→ Sample time.

• Noise sources: n1(t) and n2(t). The source n1(t) allows evaluating the

e�ects of the autocorrelated disturbances in the data, while n2(t) will

introduce white noise directly to the output signal.

3.3.4 Input design

In chapter 2, we explain how to use the input signals through an example.

Here, we will concretise the choice of the input signals.

Now, for example, we will study the following case and so, in the menu Input

signal parameters, being located at the top of the middle section of the

tool:

1. Select PRBS input;

2. Choice NoCycles = 2

3. Select the use of guidelines for αs = 2, βs = 3;

4. Select τLdom = 3;

5. Select τHdom = 5.

Figure 3.19: Input signal parameters menu with guidelines.

For each category, the step responses, autocorrelation function, cross corre-

lation function and power spectral density are observed for three di�erent

conditions, as soon as, system forced by PRBS signal in absence of noise,

noisy system forced by PRBS signal and noisy system without PRBS signal

as forcing function. The autocorrelation function of the input signal and cross
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correlation function between input and output signal were used to estimate

the TF model of the system.

We select the PRBS signal, because, multisine input signal design which

provides a shorter signal length when frequency independence is not required

for model estimation, and for this reason, PRBS signals based on maximum

length sequences are easy to generate, as can we see in following �gure, in

Input signal window, and the PRBS signal has a correlation function that

resembles a white noise correlation function.

Figure 3.20: ITSIE in the simulation mode for this example of system.

Then, the three interactive windows that characterise the input design stage

are modi�ed according to the parameters of the input signal we have chosen,

as we are shown in previous �gure .

If we do not select the guidelines, the Input signal parameters of PRBS

signal is di�erent. And for this reason, we show the following example,

represented in following �gure.

1. We select PRBS;

2. Choice NoCycles = 3
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3. Choice nr = 4;

4. Choice Tsw = 4;

Figure 3.21: ITSIE input signal parameters example of PRBS signal.

Once a input signal has been con�gured the �nal input with all the desired

cycles is shown in a window called Full input signal. This full input signal

is applied to the simulated plant with noise in order to obtain the simulated

"real data" (shown in black in the Output signal window).

3.3.5 System simulation

Now we study, in detail, the �rst exeample for this �fth-order system, already

shown in this chapter, in Section 3.3.4.

As we saw in the hairdryer example, a advantage is to start by using the

ARX model. However, models like the OE may also be a good option for a

polynomial model, due to its simplicity, for this reason, we select ARX and

OE models. So, we select, for example, the ARX and OE models.

3.3.6 System identi�cation

In this example, we select, for example, the orders [2 2 1] for ARX model

and [2 2 1] for the OE model.

Figure 3.22: Model parameters menu for ARX model.
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Figure 3.23: Model parameters menu for OE model.

3.3.7 Data preprocessing

In this part, we learn how to:

1. Subtract the mean values of the input and the output to remove o�sets.

So, in this example, select the option, in Data preprocessing, Means.

Figure 3.24: The top of �gure represents the output data and the bottom

�gure show the input data and selection the option Means.

The reason for selecting this option, and consequently we subtract the

mean values from each signal is because, we build linear models that

describe the response for deviations from a physical equilibrium. With

steady-state data, it is reasonable to assume that the mean levels of

the signals correspond to such an equilibrium. So, we can seek mod-

els around zero without modeling the absolute equilibrium levels in

physical units.

2. If we choose another option other than Means, we may notice changes in

the windows: Output signal, the Power Spectrum, the Correlation

function of residuals, the Cross correlation function between

input and prediction error and Step response graphic.

3. For example, if we choose the option None or other, and we would not

get as good results, as can we see in changes in the windows referred

to in the previous point, including the Output signal window, i.e., we

see changes in the windows of tool. This option is used, when the tool
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takes the raw real/simulated data, without any �ltering activity, i.e,

this option is not relevant for this case study, since it does nothing.

Figure 3.25: Representation of the Output signal graphic for None option.

4. For example, if we choose the option Baseline values, the change

in the windows referred to in the previous point, are quite signi�cant.

This option remove from the real data the same values spec�ed from

the menu Parameters−→ Baseline values.

To be able to view the image, we must place the cursor over the arrow

on the Output signal window, and as we can see in the image below

is the representation of the output will only be found on a larger scale.

Figure 3.26: Representation of the Output signal graphic for Baseline

values option.

5. Next, if we choose the option Differ, that makes changes to all win-

dows.

Figure 3.27: Representation of the Output signal graphic for Differ option.

What is happening is basically u(t) = u(t)− u(t− 1).

3.3.8 Model validation

In this section we perform the following steps:
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Figure 3.28: Step response window for this �fth-order system.

1. As has been referenced in Chapter 2, on top of the Step response

window, we will see the representation of the models chosen.

In this case, the ARX is what has the highest �t percentage.

2. See the Output signal window.

Figure 3.29: Representation of Output signal.

We can verify in Figure 3.29, which the model output window shows

agreement among the di�erent model structures and the measured out-

put in validation data.

3. If we see the Step response window in Figure 3.28, notes that the

OE model will be the best (71.84 %) than the ARX (60.53%), for the

model structures chosen.

In this example, the step response of the models indicates that this

models seem to capture the main system dynamics and that linear

modeling is su�cient.

4. In the Autocorrelation window, we can now select Residuals instead

of being input in order to see Input, as we can see in Figure 3.30.
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As was explained in Chapter 1 and we can see in these Figure 3.30, in

Correlation function of residuals window, shows that adding a

noise model produces uncorrelated residuals: the set of axes or dotted

lines show that the autocorrelation values should be present inside the

con�dence bounds. This indicates a more accurate model. As can we

see in Figure 3.30, the chosen models, show any �uctuations within this

con�dence interval, which are considered to be insigni�cant.

Validation criteria that indicate the inadequacy of these models (in

the absence of knowledge of the true system as provided in the step

response) include the poor �ts to both estimation and validation data

and the wide discrepancy in model step responses.

Curiously, for this data set correlation function of residuals for both

model estimates falls within the standard error bounds, incorrectly im-

plying model adequacy. Because of the short duration of the tests, the

standard error bounds (determined by ± 1√
N
, where N is the length of

the data set) are high, indicating to users that CA may be unreliable

for short data sets under these experimental conditions.

As we can see, in the Figures 3.28 and 3.30, the model OE is the best, and

so, we must choose this model.

Now, we will analyse the other situation, to see the di�erents behaviors and

if we can get better results for this example, using, for example, a di�erent

order for ARX model.

To accomplish this, it is important to know whether a higher order model

can be estimated and thus the variance of parameters estimated by the ARX

model shoud be more pronounced than in OE.

So, we can select a di�erent orders for ARX model, for example, [3 8 1] and

[2 2 1] for OE model, as can we see in Figure 3.31.
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Figure 3.30: Model validation.

In this situation, OE model is also compared to the orders [3 8 1] for ARX

model, obtained for systematic order selection over a range of model has a

higher �t over the crossvalidation dataset. I.e., we will see in Step response

that the AR model is the best (76.06%) than the OE (74.44%), as can we

see in previous �gure.

So, ARX model represents a good precursor model and can be further re�ned

through model reduction or other means.
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Figure 3.31: ITSIE tool user interface demonstrating four cycles of a PRBS

input applied to this system, where ARX model is compared with an OE.

3.3.9 Report generating

Once the process model is de�ned, we can export the model into a �le with

extension .txt. For this case study the reports generated are as follows:

In this report of Figure 3.32 we have the sampling time, the numerators and

denominators of each model is chosen and also the �t percentage of each.

Analysing �rst the ARX model agreement, which was learned in Chapter

1 and 2, we have na = 2, nb = 2 and nk = 1, so we can de�ne A(q) =

1 + a1q
−1 + a2q

−2 = 1 − 0.955q−1 + 0.102q−2 and B(q) = b1q
−1 + b2q

−2 =

−0.0024q−1 + 0.184q−2, therefore:

(1− 0.955q−1 + 0.102q−2)y(t) =

(−0.024q−1 + 0.184q−2)u(t− 1) + e(t)⇔

⇔ y(t)− 0.955y(t− 1) + 0.102y(t− 2) =

−0.024u(t− 2) + 0.184u(t− 3) + e(t)
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Figure 3.32: Report of a �fth-order system for ARX-[2 2 1] and OE-[2 2 1].

Finally, for OE model we have nb = 2, nf = 2 and nk = 1, so we can de�ne

B(q) = b1q
−1 +b2q

−2 = −0.034q−1 +0.170q−2 and F (q) = 1+f1q
−1 +f2q

−2 =

1− 1.370q−1 + 0.503q−2, therefore:

(1− 1.370q−1 + 0.503q−2)y(t) =

(−0.034q−1 + 0.170q−2)u(t− 1) + e(t)⇔

⇔ y(t)− 0.034y(t− 1) + 0.170y(t− 2) =

−1.370u(t− 2) + 0.503u(t− 3) + C(q)e(t)

For the second example:

Now in report of Figure 3.33, we study the report for di�erent ARX model

structures, because the other models structures are equal to those presented

in the previous report.

Analysing the ARX model, we have na = 3, nb = 8 and nk = 1, so we can

de�ne A(q) = 1 + a1q
−1 + a2q

−2 + a3q
−3 + a4q

−4 = 1− 0.135q−1− 0.111q−2−
0.058q−3 and B(q) = b1q

−1 + b2q
−2 + b3q

−3 + b4q
−4 + b5q

−5 + b6q
−6 + b7q

−7 +

b8q
−8 = 0.063q−1 + 0.061q−2 + 0.124q−3 + 0.134q−4 + 0.196q−5 + 0.063q−6 +

0.019q−7 + 0.052q−8, therefore:
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Figure 3.33: Report of a �fth-order system for ARX-[3 8 1] and OE-[2 2 1].

(1− 0.135q−1 − 0.111q−2 − 0.058q−3)y(t) =

(0.063q−1 + 0.061q−2 + 0.124q−3 + 0.134q−4 +

0.196q−5 + 0.063q−6 + 0.019q−7 + 0.052q−8)u(t− 1) + e(t)⇔

⇔ y(t)− 0.135y(t− 1)− 0.111y(t− 2)− 0.058y(t− 3) =

0.063u(t− 2) + 0.061u(t− 3) + 0.124u(t− 4) +

0.134u(t− 5) + 0.196u(t− 6) + 0.063u(t− 7) +

0.019u(t− 8) + 0.052u(t− 9) + e(t)

The �t percentage, which appears in both reports, Fitting is the same that

appears in the window Step Response.

Through theses reports, we can better conclude whether we are happy with

the results.

3.4 Concluding remarks

In this chapter we analysed two case studies, referring to real and simulated

data.
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These two examples were studied and explained in this manual, step by step,

and in a systematic way, since all the concepts underlying the concepts of SI.

After these tutorials, one person who initially knew nothing of identi�cation

and want to learn using the graphical tool ITSIE, or anyone wishing to depen

their knowledge, should be able to make the study of identi�cation of a system

without no problems, and also test these examples to see if everyone, working

or studying with identi�cation, understood the theoretical concepts related

to SI, presented in the previous chapters are illustrated here.
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Appendix A

Random processes - basic

concepts

In this appendix, we will understand what a random process is and discuss

in greater detail some concepts in order to understand how this is relevant

to the identi�cation problems.

First we will review the properties of a single random process such the con-

cepts of mean, standard deviation, autocorrelation and spectral density, and

also stationarity and ergodicity. Next, for two or more random processes

we will explain the notions of correlation, covariance, cross spectral density.

Finally, we will study the concept of white noise.

A.1 Deterministic and random processes

A random process {xk(t)}k∈N ,−∞ < t <∞, also called a time series or SP,

is an ensemble of real-valued (or complexed-valued) functions that can be

characterised through its probability structure. For convenience, the variable

t will be interpreted as time.

Each particular function xk(t), where t is variable and k is �xed, is called a

sample function. In practice, a sample function may be thought of as the ob-

served result of a single experiment. For any number N and any �xed times

t1, t2, · · · , tN , the quantities xk(t1), xk(t2), · · · , xk(tN), represent N random
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variables over index k. It is required that a well-de�ned N-dimensional prob-

ability distribution function exists for every N .

A particular sample function xk(t), in general, would not be suitable for

representing the entire random process {xk(t)} to which it belongs.

A determinist process is a physical process, which is represented by an explicit

mathematical relation.

A determinist process is a physical process, which is represented by an explicit

mathematical relation. For example, if in determinist processes, we have a

physical process, this is represented by an explicit mathematical relation. A

case study is, for example, the response of a single mass-spring-damper in

free vibration in laboratory. In turn, a random processes results from a large

number of separate causes and is, therefore, described in probabilistic terms

and by properties which are averages, as we will see in what follows.

In the Figure A.1 we have the representation of a random process over time,

t.

Figure A.1: Representation of random process.

The probability density function describes the general distribution of the

magnitude of the random process, but it gives no information on the time or

frequency content of the process.

A.2 Basic characterisation of a random process

In this section, we will introduce the basic properties for a single random

process, such as mean, standard deviation, autocorrelation and spectral den-

sity.

The mean value, x̄, is the height of the rectangular area having the same
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Figure A.2: Mean value.

area as that under the function x(t), as shown in the Figure (A.2).

x̄ = lim
T→∞

1

T

∫ T

0

x(t)dt. (A.1)

Figure A.3: Mean value.

The mean square value, can be given by

x̄2 = lim
T→∞

1

T

∫ T

0

x2(t)dt. (A.2)

The variance is given by

σ2
x = [x(t)− x̄]2 = lim

T→∞

1

T

∫ T

0

[x(t)− x̄]2dt. (A.3)

The standard deviation, σx, is the square root of the variance.

The autocorrelation or autocovariance, describes the general dependency of

x(t) on its value at later instants, x(t + τ), where τ is the displacement in

time and is represented by the following expression:

ρx(τ) = lim
T→∞

1

T

∫ T

0

[x(t)− x̄]2[x(t+ τ)− x̄]2dt. (A.4)
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Figure A.4: Autocorrelation.

The value of ρx(τ) at τ equal to 0 is the variance σ2
x.

The normalised autocorrelation is given by

R(τ) =
ρx(τ)

σ2
x

. (A.5)

For R(0) this expression (A.5) equals 1.

Figure A.5: Auto-Correlation.

The autocorrelation for a random process eventually decays to zero at large

τ .

The autocorrelation for a sinusoidal process (deterministic) is a cosine func-

tion which does not decay to zero. Example: With τ = 2π, the correlation

is 1.

The spectral density (auto-spectral density, power spectral density, spec-

trum) describes the average frequency content of a random process x(t).

The �rst basic relationship is

σ2
x =

∫ ∞
0

Sx(n)dn, (A.6)
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Figure A.6: Autocorrelation.

Figure A.7: Spectral density.

where Sx(n) is the spectral density. The quantity Sx(n)× σn represents the

contribution to σ2
x from the frequency increment σn. The units of Sx(n) are

[units of x]2 ×sec.

The second basic relationship is

Sx(n) = lim
T→∞

(
2

T
| XT (n) |2

)
, (A.7)

where XT (n) is the Fourier transform of the process x(t) taken over the time

interval −T/2 < t < T/2. The above relationship is the basis for the usual

method of obtaining the spectral density of experimental data, usually a fast

Fourier transform (FFT) algorithm is used.

The third basic relationship is

Sx(n) = 2

∫ ∞
−∞

ρx(τ)e(−i2πnτ)dτ. (A.8)

The spectral density is twice the Fourier transform of the autocorrelation

function. Otherwise, the inverse relationship is

ρx(τ) = Real
{∫ ∞

0

Sx(n)e(−i2πnτ)dn
}

=

∫ ∞
0

Sx(n) cos(2πnτ). (A.9)

Thus the spectral density and autocorrelation are closely linked. They basi-

cally provide the same information about the process x(t).
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A.3 Averaging, stationarity and ergodicity

To study the average of a process, we must have a record set of samples with

values at corresponding times, so that through them we can withdraw the

necessary conclusions.

If all marginal and joint density function of the process do not depend on

the choice of the time origin, the process is said to be stationary.

A stationary process is a process in which averages from a single record are

the same as those obtained from averaging over the ensemble. If almost

every number of the ensemble shows the same statistical behavior as the

whole ensemble, then it is possible to determine the statistical behavior by

examining only one typical sample function. These process is de�ned as an

ergodic process.

A most stationary random processes can be treated as ergodic.

A.4 Statistical relationships between two or more

random processes

Figure A.8: Cross-correlation.

The cross-correlation function describes the general dependency of x(t) on

another random process y(t + τ), also delayed by a time delay, τ , given by

the expression
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cxy(τ) = lim
T→∞

1

T

∫ T

0

[x(t)− x̄][y(t+ τ)− ȳ]dt. (A.10)

The covariance is the cross-correlation function with the time delay, τ , set to

zero.

cxy(0) = lim
T→∞

1

T

∫ T

0

[x(t)− x̄][y(t)− ȳ]dt. (A.11)

The correlation coe�cient, ρ, is the covariance normalized by the standard

deviations of x and y.

ρ =
cxy(0)

σx × σy
. (A.12)

When x and y are identical to each other, the value of ρ is 1 (full correlation).

When y(t) = −x(t), the value of ρ is -1. In general, the variation of ρ is

−1 < ρ < 1.

By analogy with the spectral density, we de�ne

Sxy(n) = 2

∫ ∞
−∞

cxy(τ)e(−j2πnτ)dτ. (A.13)

The cross-spectral density is twice the Fourier transform of the cross-correlation

function for the processes x(t) and y(t).

The cross-spectral density (cross-spectrum) is a complex number, Sxy(n) =

Cxy(n) + jQxy

Cxy(n) is the co(-incident) spectral density -(in phase). And Qxy(n) is the

quad(-rature) spectral density -(out of phase).

De�ne normalised co-spectral density as

ρxy(n) =
Cxy(n)√

Sx(n) ∗ Sy(n)
, (A.14)

that is e�ectively a correlation coe�cient for �uctuations at frequency n.

Theorem 1 (The spectral density factorisation theorem) When

H(z) =
∞∑
k=0

h(k)z−k (A.15)
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is a stable TF with h(0) = 1 with all zeros inside the unit circle. Then the

spectral density function φx(w) can be factorised as

φy(w) = H(e(jw))H(e(−jw))σ2. (A.16)

This theorem allows any SP model as the output of a system excited by white

noise e.

It is noted that the term spectral density is also used to designate the Z-

transform of the autocorrelation sequence, ie,

φx(z) =
∞∑
τ=0

rx(τ)z−τ

A.4.1 White noise process

White noise is a random signal (or process) with a �at power spectral density.

White noise draws its name from white light in which the power spectral

density of the light is distributed over the visible band in such a way that

the eye's three color receptors (cones) are approximately equally stimulated.

In practice, it appears that the system response is not completely coincident

with the models. The deviations may be due to errors modeling, inaccuracies

in the sensors and converters, variations in and charge interactions with the

environment. In linear models, these phenomena can be represented as a

disturbing signal output system.

y(t) = ȳ(t) + η(t) (A.17)

where η(t) is the disturbance and ȳ(t) is the output without disturbance.

In stochastic control theory, it is often considered that the disturbances are

SP with zero mean and covariance stationary. The spectral density factorisa-

tion theorem, allows them to be modeled as output signals of linear minimum

phase excited by white noise. To describe these systems, we can use models

for IO and state models.

A usual strategy is to consider a simple white noise or other processes and

then get through �lters, i.e., from the white noise through a linear system.
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The coe�cients of the linear system specify the covariance of the noise, ac-

cording to the �gure, where Ŝ is spectral density of noise, as you can see in

following diagram.

Ŝ

S

White noise

u +

+

y

Usually, the mean of white noise is assumed to be 0 and the standard devi-

ation 1. White noise is used appropriately to generate other processes with

di�erent SP.

Figure A.9 represents the white noise.

Figure A.9: Representation of white noise.
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