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Abstract: The paper describes the main features of an interactive software tool developed in
support of system identification education. This Interactive Tool for System Identification
Education (ITSIE) provides two distinct functional modes that are very useful from an
educational point of view. The simulation mode enables the student to evaluate the main stages
of system identification, from input signal design through model validation, simultaneously and
interactively in one screen on a user-specified dynamical system. The real data mode allows
the user to load experimental data obtained externally and identify suitable models in an
interactive fashion. The interactive tool enables students to discover a myriad of fundamental
system identification concepts with a much lower learning curve than existing methods.

Keywords: System identification education, interactivity, experimental design, prediction-error
estimation, model validation.

1. INTRODUCTION

System identification deals with the problem of building
dynamical models of systems from experimental data, and
is a key component in control engineering practice [Ljung,
1999]. Consequently, system identification education forms
an essential part of any comprehensive control engineering
curriculum, and as such requires flexible and simple-to-use
software tools. There are many powerful software tools
available for system identification [Garnier and Mensler,
2000, Ljung, 2003a,b], but these present several disad-
vantages when viewed from a primarily educational point
view. Normally, these tools do not evaluate all stages of the
system identification process (experimental design, model
structure selection, parameter estimation, and validation)
in an integrated fashion. Furthermore, available tools pro-
vide substantial amounts of information in many different
screens, which can be quite confusing for students. Finally,
system identification is naturally performed in an itera-
tive manner, that is, it involves a refining process where
subsequent stages need to be recalculated step by step
when a parameter or specification is modified. Failure to
accomplish these iterations in a manner transparent for
the user diminishes any educational benefits since students
lose the connection with theoretical ideas and become less
motivated. Thus, a new generation of software tools ad-
dressing these concerns are needed in support of advancing
system identification education.

Interactive software tools have been proven as particularly
useful techniques with high impact on control education
[Dormido et al., 2005, Guzmán et al., 2005, Guzmán,
2006, Guzmán et al., 2008]. Interactive tools provide a

real-time connection between decisions made during the
design phase and results obtained in the analysis phase of
any control-related project. Because system identification
is a field rich in visual content that can be represented
intuitively and geometrically [Ljung, 2003a], it naturally
lends itself to interactivity. A novel interactive software
tool for system identification was developed in Guzmán
et al. [2009] based on these ideas. This Interactive Tool
for System Identification Education (ITSIE) addresses the
various issues described previously. It includes all stages
of system identification in the same screen, with the dif-
ferent stages connected interactively in such a way that a
modification in one stage is automatically visualized in the
remaining stages.

The work described in Guzmán et al. [2009] represents
an initial effort to develop an interactive software tool for
identification, with some limitations from an educational
perspective. The only plant option available is a simulated
SISO fifth-order system, with no option to enable the
instructor to configure his/her own simulated example
that could be shared with students. It is not possible to
load external data in order to identify models from real
experiments, Finally, students cannot generate any reports
summarizing the results obtained with the tool.

This paper presents a new improved version of this tool
providing all these new features, among others. The tool
consists of a graphical interface depicting the various
stages of system identification. The paper emphasis is on
describing the tool that examines the integrated effect
of experimental design and model structure selection on
prediction-error estimation. Both pseudo-random binary
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sequence (PRBS) and minimum crest factor multisine in-
puts are applied for ARX, ARMAX, Output Error (OE),
Box-Jenkins (BJ), and State Space (SS) estimation of this
system [Braun et al., 2002]. Experimental duration, esti-
mation and crossvalidation data sets, input signal band-
width and magnitude, and model structure are evaluated
under varying signal-to-noise ratios, with all results com-
puted and displayed interactively to the user. The inter-
active tool is coded in Sysquake, a Matlab-like language
with fast execution and excellent facilities for interactive
graphics [Piguet, 2004]. Executable files for the modules
that do not require the Sysquake software to operate are
in the public domain and available for Windows, Mac, and
Linux operating systems [Guzmán et al., 2009].

The paper is organized as follows: a brief description on
the theoretical background behind the tool is presented
in Section 2. A summary of the tool’s functionality is
presented in Section 3. A series of illustrative examples
are presented in Section 4. The paper concludes with a
brief discussion of development plans for the future.

2. THEORETICAL BACKGROUND

The theoretical background behind ITSIE is presented
in Guzmán et al. [2009]; we summarize here the more
salient points, with emphasis on the simulation mode. In
ITSIE, the plant to be identified consists of a discrete-time
system sampled at a value specified by the user (default
value T = 1 min) and subject to noise and disturbances
according to

y(t) = p∗(q) (u(t) + n1(t)) + n2(t). (1)

In (1), y(t) is the measured output signal and u(t) is the
input signal that is designed by the user. p∗(q) is the zero-
order-hold-equivalent transfer function for p(s), where q is
the forward-shift operator. The system is subject to two
stationary white noise sources (n1 and n2) introduced at
different locations in the plant. n1 allows evaluating the
effects of autocorrelated disturbances in the data, while
n2 introduces white noise directly to the output signal.

A comprehensive system identification procedure consists
of experimental design and execution, data preprocessing,
model structure selection and parameter estimation, and
model validation. The following are emphasized in the tool:

• Experimental design and execution. The success of
any identification methodology hinges on the avail-
ability of an informative input/output data set ob-
tained from a sensibly designed identification exper-
iment. In ITSIE, deterministic, periodic signals rely-
ing on pseudo-random binary sequence (PRBS) and
multisine inputs are considered. A PRBS is binary
signal generated by using shift register modulo 2
addition. One cycle of a PRBS sequence is determined
by the number of registers nr and the switching time
Tsw. The signal repeats itself after NsTsw units of
time, where Ns = 2nr − 1; amag is the magnitude of
the PRBS signal. Multisine signals are deterministic,
periodic signals, represented in the single input case
by the equation

u(k) = λ

ns∑
i=1

√
2αi cos(ωikT + φi) (2)

ωi = 2πi/NsT, ns ≤ Ns/2
The power spectrum of the multisine input is directly
specified through the selection of the scaling factor λ,
the Fourier coefficients αi, the number of harmonics
ns, and the signal length Ns.

Both direct parameter specification and applying
time constant-based guidelines for input design are
evaluated in the tool. In practice, little is known about
the process dynamics at the start of identification
testing, and plant operating restrictions will discour-
age excessively long or very intrusive identification
experiments. A guideline that provides a suitable
estimate of the frequency band over which excitation
is required is

1
βsτH

dom

≤ ω ≤ αs

τL
dom

, (3)

where τH
dom and τL

dom are high and low estimates of the
dominant time constant, and βs is an integer factor
representing the settling time of the process. For
example, βs = 3; specifies the low frequency bound
using the 95% settling time (T95%) of the process. αs,
meanwhile, is a factor representing the closed-loop
speed of response, written as a multiple of the open-
loop response time.

Equation (3) is used in ITSIE to specify design vari-
ables in both PRBS and multisine inputs. Expressions
for specifying Tsw and nr based on (3) are developed
in Rivera [1992]:

Tsw ≤ 2.8τL
dom

αs
, Ns = 2nr − 1 ≥ 2πβsτ

H
dom

Tsw
(4)

nr and Ns are integer values, while Tsw is an integer
multiple of the sampling time T . Similarly, Equa-
tion (3) can also be used to specify design variables
in multisine inputs, using guidelines found in Rivera
et al. [1993]

Ns ≥ 2πβsτ
H
dom

T
, ns ≥ NsTαs

2πτL
dom

(5)

In both cases increasing αs and βs will widen the
frequency band of emphasis in the input signal and
increase the resolution of the input signal spectrum.
To reduce model variance it is beneficial to apply the
highest input signal amplitudes amag or λ that oper-
ations will allow, and implement the greatest number
of input cycles m possible. In practice, decisions re-
garding the magnitude of the input signal, spectral
content, and experimental test duration are dictated
by physical limitations, economics, and safety consid-
erations Ljung [1999].

In multisine inputs, the choice of phase angles
φi does not influence the power spectrum, but it
does strongly influence plant-friendly metrics such as
crest factor [Rivera et al., 2003]. Both the work of
Schroeder [1970], who derives a closed-form formula
to select the phases in (2) and the successive p-norm
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approach by Guillaume et al. [1991] are implemented
in ITSIE.

• Data preprocessing. ITSIE data preprocessing sup-
ports mean subtraction, differencing, and substrac-
tion of baseline values; mean detrending is applied
by default. Future versions of the tool will emphasize
issues in prefiltering and control-relevance.

• Model structure selection and parameter estimation.
ITSIE examines the general family of prediction-error
models which corresponds to

A(q)y(t) =
B(q)
F (q)

u(t − nk) +
C(q)
D(q)

e(t) (6)

y(t) = p̃(q)u(t) + p̃e(q)e(t) (7)
where

A(q) = 1 + a1q
−1 + . . . + ana

q−na

B(q) = b1 + b2q
−1 + . . . + bnb

q−nb+1

C(q) = 1 + c1q
−1 + . . . + cnc

q−nc

D(q) = 1 + d1q
−1 + . . . + dnd

q−nd

F (q) = 1 + f1q
−1 + . . . + fnf

q−nf

The five most popular PEM models shown in Table 1
are evaluated in ITSIE, with FIR belonging as a
subset of ARX models. The tool also includes PEM
estimation of state-space models.

Method p̃(q) p̃e(q)

ARX
B(q)
A(q)

q−nk 1
A(q)

ARMAX
B(q)
A(q)

q−nk C(q)
A(q)

FIR B(q)q−nk 1

Box-Jenkins
B(q)
F (q)

q−nk C(q)
D(q)

Output Error
B(q)
F (q)

q−nk 1

Table 1. Prediction-error model structures
evaluated in ITSIE.

As noted in Ljung [1999], PEM estimation involves
either linear and nonlinear regression, depending on
the model structure being evaluated.

arg min
p̃,p̃e

1
N

N∑
i=1

e2(i) = arg min
θ

1
N

N∑
i=1

[
y − ϕT (t|θ)θ]2(8)

The use of Parseval’s Theorem enables a frequency-
domain analysis of bias effects in PEM estimation
that allows deep insights into the selection of design
variables for these techniques. As the number of
observations N → ∞, the least-squares estimation
problem denoted by (8) can be written as:

lim
N→∞

1
N

N∑
i=1

e2(t) =
1
2π

π∫
−π

Φe(ω)dω (9)

where Φe(ω), the prediction-error power spectrum is

Φe(ω) =
1

|p̃e(ejω)|2
(|p∗(ejω) − p̃(ejω)|2Φu(ω)

+ |p∗(ejω)|2σ2
n1

+ σ2
n2

)
(10)

Equation (10) helps explain systematic bias effects
in identification, which can be readily explored in

ITSIE. This includes issues relating to the spectral
content in the input signal, bias that is introduced
(or removed) by the choice of model structure (par-
ticularly the noise model), and the associated multi-
objective optimization problem resulting from vary-
ing magnitudes of the noise variances σ2

n1
and σ2

n2
.

• Model validation. In ITSIE, model validation consists
principally of classical methods of simulation, cross-
validation, residual analysis on the prediction errors,
and step responses. To enhance its educational value,
in the simulation mode the step response of the true
plant is presented alongside that generated by the
estimated models. The percent of the output variance
explained by each model on the crossvalidation data
set is also reported.

Leveraging the interplay between the various stages of
the identification problem is readily supported in ITSIE.
One example is ARX estimation, where model structure
selection can be accomplished without substantial user
intervention through the sensible use of crossvalidation.
Because ARX parameter estimation consists of solving
a linear least squares problem, a large number of model
structures defined by ranges for na, nb and nk can be eval-
uated without incurring significant computational burden.
The model order that minimizes the loss function over a
crossvalidation data set can be obtained without iteration.

3. INTERACTIVE TOOL DESCRIPTION

This section briefly describes the functionality of the de-
veloped tool, which highlights the theoretical concepts de-
scribed in the previous section. The tool is freely available
through http://aer.ual.es/ITSIE/ and does not require
a Sysquake license in order to execute [Guzmán et al.,
2009]. One consideration that must be kept in mind is
that the tool’s main feature - interactivity - cannot be
easily illustrated with written text. Nonetheless, some of
the features and advantages of the application are shown
below. The reader is cordially invited to download the tool
and personally experience its interactive features.

When developing a tool of this kind, one of the most
important things that the developer needs to keep in mind
is the organization of the main windows and menus to
facilitate to the user an understanding of the identification
technique [Dormido, 2004, Guzmán, 2006]. The tool has
two different modes, a simulation mode and a real data
mode, which are depicted in Figures 1 and 2, respectively.
The ensuing subsections briefly describe the main features
of these modes.

3.1 Simulation mode

In this mode, a user-specified simulated process is evalu-
ated. The graphical distribution has been performed ac-
cording to the most important steps in a system identifi-
cation process, described as follows (see Figure 1):

• Plant definition and simulation parameters. The cen-
tral part of the tool in this mode has a section
called Simulation parameters, which allows interac-
tively modifying the noise sources of the simulated
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Fig. 1. ITSIE interactive tool user interface demonstrating four cycles of a PRBS input applied to a simulated fifth-order
system. The time-constant guidelines from Section 2 are used to define input parameters. An OE-[2 2 1] model is
compared with an ARX-[5 7 1] model obtained from exhaustive order selection on a crossvalidation data set.

process. On the other hand, other simulation pa-
rameters, such as sampling time, are available from
an entry at the Parameters menu. Furthermore,
the simulated process can be configured from the
Mode→Simulation menu. The process model config-
uration can be also loaded and stored from files.

• Input design. A parameter definition section and three
interactive graphics characterize the input design
stage. The parameter definition section is called Input
signal parameters, being located at the top of the
middle section of the tool. The three graphics are
located at the right-hand side of the tool, namely,
Input signal, Autocorrelation, and Power Spectrum,
representing one cycle of the input signal, the input
signal autocorrelation, and the input signal power
spectrum, respectively (see Figure 1). From the Input
signal parameters area, the user can choose the type of
the input signal (PRBS or multisine) and whether to
use the checkbox called Guidelines to decide between
specifying the input signal directly or following the
guidelines mentioned in Section 2. When the user
does not select the guidelines, that is, the Guidelines
checkbox is not active, the input signal parameters
can be interactively modified using specific sliders or
dragging on the graphics.

• Model structure selection and parameter estimation.
On top of the Step responses graphic, located on
the upper left-hand side of the tool, there is a set
of checkboxes allowing to active the different model
structures, namely, ARX, ARMAX, OE, BJ, and SS.

Once a model structure is selected, the estimation
and validation results for that model are shown in
corresponding parts of the tool. Below the Input sig-
nal parameters section there is an area called Model
parameters showing parameters to modify the orders
of the different model structures. Several radio but-
tons are available to choose between the different
model structures. Once a model structure is selected,
different sliders appear making it possible to mod-
ify the associated orders interactively. Once a input
signal has been configured, the final input with all
the desired cycles is shown in a graphic called Full
input signal, which is located at the lower-left corner
of the tool. This full input signal is applied to the
simulated plant with noise in order to obtain the
simulated “real data” (shown in black in the Output
signal graphic), which is used as real process data in
the estimation and validation process. In the Output
signal graphic, an interactive magenta vertical line
defines the estimation and validation data sets. The
area shown in yellow (at the left of the vertical line)
specifies the estimation data, whereas the white area
represents the validation data (at the right side of the
vertical line).

• Model validation. As mentioned in the previous bullet,
the magenta-colored vertical line of the Output signal
graphic is interactively used to define the estimation
and validation data sets. The validation data is used
for crossvalidation purposes. Model validation results
are displayed in other three different graphics: Step
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Fig. 2. Real mode of the ITSIE interactive tool evaluating external data corresponding to the System Identification
Toobox’s“hairdryer” data set in Matlab. Model estimates for ARX, ARMAX and OE estimation are shown along
with residual analysis of the prediction errors.

responses, Correlation function of residuals, and Cross
correlation function between input and output. For all
these graphics, the same color distribution noted
before is used to represet the results of each model.
The Step responses graphic, which is located at the
upper left-hand side of the tool, shows the step
responses for the each resulting model and a legend
representing its goodness of fit in %. Confidence
intervals can be also shown in this graphic activating
this option from the Parameters menu.

3.2 Real data mode

This mode allows to load real data from the Mode→Real
data menu. The real data can be loaded in ASCII and
Matlab formats 1 . For ASCII format, the data must be or-
ganized in columns with the following order: time, output,
and input signals. If the Matlab format is used, the file
must contain three variables called “t”, “y”, and “u” for
the time, the output, and the input, respectively. When
real data is loaded, the tool screen is changed such as
shown in Figure 2. As it can be observed, those areas
in the simulation mode dedicated to input design and
plant definition and simulation parameters are changed.
The Model Structure Selection, Parameter Estimation and
Model Validation areas are exactly the same than in the
simulation mode, but now working with real data loaded
from file. In this mode, all the model parameters are
1 For the Matlab format, the data must be compatible with Matlab
version 4. Use -V4 option with “save” Matlab command.

always shown simultaneously on the right side of the Step
responses graphic.

3.3 Additional options for education

The tool has been complemented with some additional
options to be used for educational purposes. For instance,
the teacher can define his/her own process model for
the simulation mode using the Mode→Simulation menu,
such as mentioned above. Once the the process model
is defined, the teacher can export the model into a file
and share it with the students. Notice that the model
is hidden for the students. On the other hand, students
and teachers can obtain detailed reports of the results
from the Reports menu. The reports include information
about the resulting identified models, e.g., goodness of fit,
model structure, model parameters, and transfer functions
in Matlab format.

4. ILLUSTRATIVE EXAMPLES

We have noted that there are large numbers of possible
scenarios with educational value that can be illustrated by
the ITSIE tool. The list below is by no means exhaustive,
but representative of some valuable concepts:

(1) The importance of selecting crossvalidation data, and
how it impacts parameter estimation, particularly the
effectiveness of automated order selection in ARX
estimation.
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(2) A comparison between two different input signal
types (i.e., PRBS versus multisines) and the useful-
ness of crest factor minimization for achieving “plant-
friendliness” [Rivera et al., 2003].

(3) Understanding the issue of persistent excitation, as
displayed in the interrelationship between input de-
sign and model order selection. This is particularly
useful when using the multisine input signal, given
that the user can directly specify the number of
nonzero harmonics in this signal.

(4) The importance of taking advantage of a priori
knowledge in input design. The time-constant guide-
lines presented in Section 2 can be thoroughly evalu-
ated and appreciated.

(5) The relative merits of various validation criteria. Cor-
relation analysis on the residuals may indicate that
there is still a need to refine on model structure;
however, the model may still describe a large per-
centage of the output variance in the validation data
and closely match the plant step response.

Figures 1 and 2 depict two interesting cases evaluated
with the tool. Figure 1 presents the use of a PRBS signal
designed using the guidelines in Section 2 for the simulated
fifth-order system according to

p(s) =
1

(s + 1)5
, T = 1 min (11)

Four cycles of data are generated, with two used for
estimation, and two used for validation purposes. An OE-
[2 2 1] model is compared to an ARX-[4 5 3] model
structure obtained from systematic order selection over a
range of model structures; this model has a superior fit
over the crossvalidation dataset.

Figure 2 illustrates the real mode of the ITSIE interactive
tool, evaluating the “hairdryer” data set that is used as
an illustrative example in Matlab’s System Identification
Toolbox. Model estimates for ARX-[2 2 1], ARMAX-[2 2 2
1] and OE-[2 2 1] estimation are shown along, with residual
analysis of the prediction errors. The residual analysis
results indicate the need to modify the model structure
in each of these estimation scenarios.

5. CURRENT USE AND FUTURE PLANS

The first official use of lTSIE in a classroom setting was
as part of a system identification short course taught at
the University of Almeŕıa in September, 2008. It was also
used as part of ChE 494-598: Introduction to System
Identification, a combined undergraduate-graduate level
course taught at Arizona State University in spring 2009.
Student response has been positive, and has provided
input for further refinement and organization of the tool.

This paper has focused on the initial offerings of what
we envision as a comprehensive family of novel interactive
tools for system identification. Future tools will examine
the interplay between input design, data prefiltering, and
model structure on control-relevance, as well as tradeoffs
in closed-loop identification and issues in multivariable
system identification.
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