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Abstract: The paper describes the conceptual basis and functionality of ITSIE, an Interactive
Tool for System Identification Education. The tool is developed using Sysquake, a Matlab-like
language with fast execution and excellent facilities for interactive graphics, and is delivered as
a stand-alone executable that is readily accessible to students and users. The tool focuses on
the open-loop identification of a SISO fifth-order system subject to multiple noise sources using
classical prediction-error methods. The various stages of system identification, ranging from
input signal design using PRBS and multisine signals through model validation are evaluated
simultaneously and interactively in one screen. The highly visual and strongly coupled nature of
system identification is very amenable to interactive tools, and the tool presented in this paper
enables students to discover a myriad of important identification topics with a much lower
learning curve than existing methods. Plans for additional tools in the series are discussed.

Keywords: System identification education, interactivity, experimental design, prediction-error
estimation, model validation.

1. INTRODUCTION

Advances in information technologies have resulted in
novel instructional methods that increase student moti-
vation and improve educational outcomes. In the control
engineering field, interactive tools have resulted in par-
ticularly useful techniques with high impact on control
education [Dormido et al., 2005, Guzmán et al., 2005,
Guzmán, 2006, Guzmán et al., 2008b]. Interactive tools
provide a real-time connection between decisions made
during the design phase and results obtained in the analy-
sis phase of any control-related project. As a consequence
of interactivity, the impact of problem variables chosen in
one step can be contrasted “on the fly” with specifications
made in other problem stages; such functionality has clear
benefits for both educator and student [Dormido, 2004].

System identification is a field rich in visual content that
can be represented intuitively and geometrically [Ljung,
2003]. Furthermore, system identification methodologies in
general involve a series of sequential yet integrated stages
(experimental design, model structure selection, parame-
ter estimation, and validation) where the outcome of one
stage will have a profound effect on the others. Conse-
quently, the ability to implement identification techniques
interactively is expected to have an impact on both system
identification education and practice. The objective of
this paper is to present the initial offering in a series of
interactive learning tools that are being developed by the
authors for the purpose of exploring this vast untapped
potential of interactivity in the identification field. The

tool draws from the experience of the authors in teaching
system identification courses in both short and semester-
long formats, and to diverse audiences.

The interactive tool is coded in Sysquake, a Matlab-like
language with fast execution and excellent facilities for
interactive graphics [Piguet, 2004], and is delivered as a
stand-alone executable that makes it readily accessible to
users [Guzmán et al., 2008a]. The tool consists of graphical
interfaces depicting the various stages of system identifi-
cation. The paper focuses on describing an introductory
tool that examines the integrated effect of experimen-
tal design and model structure selection on prediction-
error estimation of a SISO linear high-order system under
noise. Both pseudo-random binary sequence (PRBS) and
minimum crest factor multisine inputs are applied for
ARX, ARMAX, Output Error (OE), Box-Jenkins (BJ),
and State Space (SS) estimation of this system [Braun
et al., 2002]. Experimental duration, specifying estimation
and crossvalidation data sets, input signal bandwidth and
magnitude, and model structure are evaluated under vary-
ing signal-to-noise ratios, with all results computed and
displayed interactively to the user.

The paper is organized as follows: the theoretical back-
ground behind ITSIE is described in Section 2. A summary
of the tool’s functionality is presented in Section 3, with a
series of illustrative examples described in Section 4. The
paper concludes with a brief discussion of development
plans for the future.
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2. THEORETICAL BACKGROUND

In ITSIE, the plant to be identified consists of a fifth-order
system according to

p(s) =
1

(s+ 1)5
. (1)

The model per (1) is sampled at a value specified by the
user (default value T = 1 min) and is subject to noise and
disturbances according to

y(t) = p∗(q) (u(t) + n1(t)) + n2(t). (2)

In (2), y(t) is the measured output signal and u(t) is the
input signal that is designed by the user. p∗(q) is the zero-
order-hold-equivalent transfer function for p(s), where q is
the forward-shift operator. The system is subject to two
stationary white noise sources (n1 and n2) introduced at
different locations in the plant. n1 allows evaluating the
effects of autocorrelated disturbances in the data, while
n2 introduces white noise directly to the output signal.

A comprehensive system identification procedure consists
of experimental design and execution, data preprocessing,
model structure selection and parameter estimation, and
model validation. The following are emphasized in the tool:

Experimental design and execution. The success of any
identification methodology hinges on the availability of
an informative input/output data set obtained from a
sensibly designed identification experiment. In ITSIE,
deterministic, periodic signals relying on pseudo-random
binary sequence (PRBS) and multisine inputs are con-
sidered. A PRBS is binary signal generated by using
shift register modulo 2 addition. One cycle of a PRBS
sequence is determined by the number of registers nr
and the switching time Tsw. The signal repeats itself
after NsTsw units of time, where Ns = 2nr − 1. The
power spectral density for a PRBS signal is given by

Φu(ω) =
a2
mag(Ns + 1)Tsw

Ns

[
sin(ωTsw

2 )
ωTsw

2

]2

, (3)

where amag is the magnitude of the PRBS signal.

Both direct parameter specification and applying time
constant-based guidelines according to Rivera [1992]
are evaluated in the tool. In practice, little is known
about the process dynamics at the start of identification
testing, and plant operating restrictions will discourage
excessively long or very intrusive identification experi-
ments. A guideline that provides a suitable estimate of
the frequency band over which excitation is required is

1
βsτHdom

≤ ω ≤ αs
τLdom

, (4)

where τHdom and τLdom are high and low estimates of the
dominant time constant, and βs is an integer factor rep-
resenting the settling time of the process. For example,
βs = 3; specifies the low frequency bound using the 95%
settling time (T95%) of the process. αs, meanwhile, is
a factor representing the closed-loop speed of response,
written as a multiple of the open-loop response time.

Equation (4) is used to specify design variables in
PRBS inputs. Expressions for specifying Tsw and nr
based on (4) are developed in Rivera [1992]:

Tsw ≤
2.8τLdom

αs
, (5)

Ns = 2nr − 1 ≥ 2πβsτHdom

Tsw
. (6)

nr and Ns are integer values, while Tsw is an integer
multiple of the sampling time T . Increasing αs and βs
will widen the frequency band of emphasis in the input
signal and increase the resolution of the input signal
spectrum. To reduce model variance it is beneficial to
apply the highest input signal amplitude amag that op-
erations will allow, and implement the PRBS input for
the greatest number of cycles m possible. In practice,
decisions regarding the magnitude of the input signal,
spectral content, and experimental test duration are
dictated by physical limitations, economics, and safety
considerations, as noted by Ljung [1999].

Multisine signals are deterministic, periodic signals,
represented in the single input case by the equation

u(k) = λ

ns∑
i=1

√
2αi cos(ωikT + φi) (7)

ωi = 2πi/NsT, ns ≤ Ns/2
The power spectrum of the multisine input

Φu(ωi) =
(
λ2αi

2
Ns

)
i = 1, · · · , ns (8)

is directly specified through the selection of the scaling
factor λ, the Fourier coefficients αi, the number of
harmonics ns, and the signal length Ns. Equation (4)
can also be used to specify design variables in multisine
inputs, using guidelines found in Rivera et al. [1993]

Ns ≥
2πβsτHdom

T
ns ≥

NsTαs
2πτLdom

. (9)

While the phase angles φi do not influence the power
spectrum in a multisine, they do strongly influence
plant-friendly metrics such as crest factor [Rivera et al.,
2003]. Early work in the design of low crest factor
multisines includes the work of Schroeder [1970], who
derives a closed-form formula to select the phases in (7).
The formula gives a reasonable result when the user-
defined spectrum is flat and wideband, but under other
conditions (bandlimited, in the presence of harmonic
suppression, etc.) the results can be very undesirable.
The deficiencies of Schroeder-phasing have motivated
the need for more rigorous approaches, such as those
involving optimization. A significant contribution in this
regard is the successive p-norm approach by Guillaume
et al. [1991], which is implemented in ITSIE.

Data preprocessing. Stationary data sets are generated in
ITSIE, so only mean detrending is applied by default.
Future versions of the tool will emphasize issues in
prefiltering and control-relevance.

Model structure selection and parameter estimation. The
general family of prediction-error models corresponds to
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A(q)y(t) =
B(q)
F (q)

u(t− nk) +
C(q)
D(q)

e(t) (10)

y(t) = p̃(q)u(t) + p̃e(q)e(t) (11)
where

A(q) = 1 + a1q
−1 + . . .+ ana

q−na

B(q) = b1 + b2q
−1 + . . .+ bnb

q−nb+1

C(q) = 1 + c1q
−1 + . . .+ cncq

−nc

D(q) = 1 + d1q
−1 + . . .+ dnd

q−nd

F (q) = 1 + f1q
−1 + . . .+ fnf

q−nf

The five most popular PEM models shown in Table 1
are evaluated in ITSIE, with FIR belonging as a subset
of ARX models. The tool also includes PEM estimation
of state-space models.

Method p̃(q) p̃e(q)

ARX
B(q)
A(q)

q−nk 1
A(q)

ARMAX
B(q)
A(q)

q−nk C(q)
A(q)

FIR B(q)q−nk 1

Box-Jenkins
B(q)
F (q)

q−nk C(q)
D(q)

Output Error
B(q)
F (q)

q−nk 1

Table 1. Prediction-error model structures
evaluated in ITSIE.

As noted in Ljung [1999], PEM estimation involves
either linear and nonlinear regression, depending on the
model structure being evaluated.

arg min
p̃,p̃e

1
N

N∑
i=1

e2(i) = arg min
θ

1
N

N∑
i=1

[
y − ϕT (t|θ)θ

]2
(12)

The use of Parseval’s Theorem enables a frequency-
domain analysis of bias effects in PEM estimation that
allows deep insights into the selection of design variables
for these techniques. As the number of observations
N → ∞, the least-squares estimation problem denoted
by (12) can be written as:

lim
N→∞

1
N

N∑
i=1

e2(t) =
1

2π

π∫
−π

Φe(ω)dω (13)

where Φe(ω), the prediction-error power spectrum is

Φe(ω) =
1

|p̃e(ejω)|2
(
|p∗(ejω)− p̃(ejω)|2Φu(ω)

+ |p∗(ejω)|2σ2
n1

+ σ2
n2

)
(14)

Equation (14) helps explain systematic bias effects in
identification, which are readily explored by the ITSIE
tool. This includes issues relating to the spectral content
in the input signal, bias that is introduced (or removed)
by the choice of model structure (particularly the noise
model), and the associated multi-objective optimization
problem resulting from different magnitudes of the noise
variances σ2

n1
and σ2

n2
.

Model validation. In ITSIE, model validation consists
principally of classical methods of simulation, crossval-
idation, residual analysis on the prediction errors, and
step responses. To enhance its educational value, the

step response of the true plant is presented alongside
that generated by the estimated models. The percent
of the output variance explained by each model on the
crossvalidation data set is also reported.

Leveraging the interplay between the various stages of
the identification problem is readily supported in ITSIE.
One example is ARX estimation, where model structure
selection can be accomplished without substantial user
intervention through the sensible use of crossvalidation.
Because ARX parameter estimation consists of solving
a linear least squares problem, a large number of model
structures defined by ranges for na, nb and nk can be eval-
uated without incurring significant computational burden.
The model order that minimizes the loss function over a
crossvalidation data set can be obtained without iteration.

3. INTERACTIVE TOOL DESCRIPTION

This section briefly describes the functionality of the de-
veloped tool, which highlights the theoretical concepts
described in the previous section. The tool is freely avail-
able through http://aer.ual.es/ITSIE/ [Guzmán et al.,
2008a] and can be used in Windows, Mac, and Linux oper-
ating systems without the need for a Sysquake license. One
consideration that must be kept in mind is that the tool’s
main feature - interactivity - cannot be easily illustrated
with written text. Nonetheless, some of the features and
advantages of the application are shown below. The reader
is cordially invited to download the tool and personally
experience its interactive features.

When developing a tool of this kind, one of the most
important things that the developer needs to keep in mind
is the organization of the main windows and menus to
facilitate to the user an understanding of the identification
technique [Dormido, 2004, Guzmán, 2006]. The main win-
dow of the tool is divided into several sections represented
in Figures 1 and 2. The graphical distribution has been
performed according to the most important steps in a
system identification process, described as follows:

• Plant definition and simulation parameters. The cen-
tral part of the tool has a section called Simulation
parameters, which allows interactively modifying the
noise sources of the fifth-order plant from Equations
(1) and (2). Two sliders are available. The first one,
noise 1, allows modifying the noise source n1(t) and
the second one, noise 2, is used to change the noise
source n2(t). On the other hand, other simulation
parameters, such as sampling time, are available from
an entry at the Parameters menu. Notice that the
sampling time can be also modified from the Input
signal graphic by dragging on the red vertical line.
• Input design. A parameter definition section and three

interactive graphics characterize the input design
stage. The parameter definition section is called Input
signal parameters, being located at the top of the
middle section of the tool. The three graphics are
located at the right-hand side of the tool, namely,
Input signal, Autocorrelation, and Power Spectrum,
representing one cycle of the input signal, the input
signal autocorrelation, and the input signal power
spectrum, respectively (see Figure 1). From the Input
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Fig. 1. ITSIE interactive tool user interface demonstrating four cycles of a PRBS input (autocorrelation shown) based
on application of the Section 2 time-constant guidelines. ARX-[2 2 1] and OE-[2 2 1] models are compared with an
ARX-[4 5 3] model obtained from exhaustive analysis of model orders on a crossvalidation data set.

signal parameters area, the user can choose the type
of the input signal (PRBS as shown in Figure 1
or multisine as shown in Figure 2) and whether to
use the checkbox called Guidelines to decide between
specifying the input signal directly or following the
guidelines mentioned in Section 2. When the user
does not select the guidelines, that is, the Guidelines
checkbox is not active, the input signal parameters
can be interactively modified using specific sliders or
dragging on the graphics. For instance, if the PRBS
is selected (such as shown in Figure 1), a text edit
and two sliders appear to modify the number of
cycles (N Cycles), the number of registers (N Reg),
and the switching time (Tsw). At the same time,
from the Input signal graphic, it is possible to modify
the switching time dragging on the magenta vertical
line, the signal amplitude using the green horizontal
line, and the number of cycles dragging on the small
black triangle located at the x-axis. Furthermore,
the number of registers and the switching time can
be changed from the Power Spectrum graphic using
the green vertical lines. The user can rely on these
interactive features to understand the influence of
input signal parameters from different points-of-view.

• Model structure selection and parameter estimation.
On top of the Step responses graphic, located on
the upper left-hand side of the tool, there is a set
of checkboxes allowing to active the different model
structures, namely, ARX, ARMAX, OE, BJ, and SS.
Once a model structure is selected, the estimation

and validation results for that model are shown in
corresponding parts of the tool. Below the Input signal
parameters section there is an area called Model pa-
rameters showing parameters to modify the orders of
the different model structures. Several radio buttons
are available to choose between the different model
structures. Once a model structure is selected, dif-
ferent sliders appear making it possible to modify
the associated orders interactively. For instance, if an
ARX model is chosen, sliders representing na, nb, and
nk are shown. Furthermore, for the case of the ARX
model structure, a checkbox is displayed to activate
the automatic order selection mode using crossval-
idation, as described in Section 2. By default, the
parameter ranges are set to na = 1...10, nb = 1...10,
and nk = 1...10, but these limits can be changed from
the Parameters menu.

Once a input signal has been configured, the final
input with all the desired cycles is shown in a graphic
called Full input signal, which is located at the lower-
left corner of the tool. This full input signal is applied
to the fifth-order plant with noise in order to obtain
the simulated “real data” (shown in black in the
Output signal graphic), which is used as real process
data in the estimation and validation process. In
the Output signal graphic, an interactive magenta
vertical line defines the estimation and validation
data sets. The area shown in yellow (at the left of the
vertical line) specifies the estimation data, whereas
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Fig. 2. ITSIE interactive tool user interface depicting four cycles of a minimum crest factor multisine input with phases
per Guillaume et al. [1991] from directly specified signal parameters. Model estimates for ARX, ARMAX, OE, and
Box-Jenkins estimation are shown along with residual analysis of the prediction errors.

the white area represents the validation data (at
the right side of the vertical line). Therefore, when
a model structure is selected, this estimation data
is used to estimate the model parameters and the
validation data to test the resulting model. Then, for
each selected model structure, the full input signal
is applied to the obtained model, and the results
are shown in the Output signal graphic together with
the original data of the fifth-order system. Different
colors are used to distinguish between signals, black
for the original data of the fifth-order system, red for
ARX, green for ARX with order selection, magenta
for ARMAX, blue for OE, cyan for BJ, and orange
for SS. These colors are consistently used in different
parts of tool to refer to the model results. Clicking
on the Output signal graphic will generate a fresh
realization of the noise sequences n1 and n2, enabling
the user to interactively experience variability in the
estimates resulting from the stochastic nature of the
disturbance.
• Model validation. As mentioned in the previous bullet,

the magenta-colored vertical line of the Output signal
graphic is interactively used to define the estimation
and validation data sets. The validation data is used
for crossvalidation purposes. Model validation results
are displayed in other three different graphics: Step
responses, Correlation function of residuals, and Cross
correlation function between input and output. For all
these graphics, the same color distribution noted be-
fore is used to represet the results of each model. The

Step responses graphic, which is located at the upper
left-hand side of the tool, shows the step responses for
the each resulting model and a legend representing its
goodness of fit in %. On the other hand, Correlation
function of residuals and Cross correlation function be-
tween input and output graphics, located between the
Input signal and Power spectrum graphics, describe the
auto- and cross-correlation between the input signal
and the prediction-error for each model. By default,
the input Autocorrelation graphic is shown instead of
these two graphics. In order to switch between the
input autocorrelation and residual analysis, two radio
buttons are shown below the Input signal graphic that
enable this commutation.

The interactive tool provides the user with multiple de-
grees of freedom for understanding the theoretical con-
cepts and impact of choices made in the different steps
on the system identification process. The main advantage
with respect to other existing software tools is that the
most important stages on system identification are shown
simultaneously in one screen (input design, model struc-
ture selection, parameter estimation, and validation), and
that the interactive features of the tool allow the user to
understand and experience the relationships between these
different stages, the meaning and effects of the associated
parameters, and the bidirectional interpretation between
parameter modifications from numerical (using sliders)
and graphical (using interactive elements on the graphics)
points of view.
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4. ILLUSTRATIVE EXAMPLES

We have noted that there are large numbers of possible
scenarios with educational value that can be illustrated by
the ITSIE tool. The list below is by no means exhaustive,
but representative of some valuable concepts:

(1) The importance of selecting crossvalidation data, and
how it impacts parameter estimation, particularly the
effectiveness of automated order selection in ARX
estimation.

(2) A comparison between two different input signal
types (i.e., PRBS versus multisines) and the useful-
ness of crest factor minimization for achieving “plant-
friendliness” [Rivera et al., 2003].

(3) Understanding the issue of persistent excitation, as
displayed in the interrelationship between input de-
sign and model order selection. This is particularly
useful when using the multisine input signal, given
that the user can directly specify the number of
nonzero harmonics in this signal.

(4) The importance of taking advantage of a priori
knowledge in input design. The time-constant guide-
lines presented in Section 2 can be thoroughly evalu-
ated and appreciated.

(5) The relative merits of various validation criteria. Cor-
relation analysis on the residuals may indicate that
there is still a need to refine on model structure;
however, the model may still describe a large per-
centage of the output variance in the validation data
and closely match the plant step response.

Figures 1 and 2 depict two interesting cases evaluated
with the tool. Figure 1 presents the use of a PRBS signal
designed using the guidelines in Section 2. Four cycles of
data are generated, with two used for estimation, and two
used for validation purposes. ARX-[2 2 1] and OE-[2 2
1] models are evaluated in this case, with the OE-[2 2 1]
model showing a much closer fit to the true step response
as a consequence of having an independently parametrized
noise model, which reduces bias. The order selection fea-
ture recommends an ARX-[4 5 3] model structure, which
has the best fit of any of the evaluated models.

In Figure 2 a minimum crest factor multisine input with
user-specified parameters but phases chosen according to
the algorithm by Guillaume et al. [1991] is evaluated. Nine
harmonics are specified by the user, with the ability to
adjust each amplitude interactively. Residual analysis for
ARX, ARMAX, Output Error, and Box-Jenkins estima-
tion is shown, with the need to improve model structure
in the ARX-[2 2 1] model clearly depicted.

5. CURRENT AND FUTURE PLANS

The first official use of ITSIE in a classroom setting was
as part of a system identification short course taught at
the University of Almeŕıa in September, 2008. The tool
was warmly received by students. It is being extensively
used as part of ChE 494-598: Introduction to System
Identification, a combined undergraduate-graduate level
course being taught at Arizona State University in spring
2009. Detailed reports of the experience with the tool will
be made during the SYSID 2009 meeting in July.

This paper has focused on one member of a family of
interactive tools for system identification envisioned by
the authors. Extensions to the current tool consist of
expanding the range of plants that can be evaluated and
enabling students to import their own data. Future tools
will examine the interplay between input design, data
prefiltering, and model structure on control-relevance, as
well as tradeoffs in closed-loop identification and issues in
multivariable system identification.
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