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Abstract: This paper describes the theoretical basis, features, and functionality of an
interactive software tool focused on control-relevant identification education. The Interactive
Tool for Control Relevant Identification (ITCRI) comprehensively captures the control-
relevant identification process, from input design to closed-loop control, depicting these stages
simultaneously and interactively in one screen. Control-relevance in ITCRI is accomplished
primarily through prefiltering, which is evaluated using single-pass and two-step algorithms. By
simultaneously displaying both open- and closed-loop responses of the estimated models and
important control-relevant validation criteria (such as the multiplicative error), ITCRI enables
the user to readily assess how design variable choices, control performance requirements, and
model error can impact the achievable closed-loop performance from a restricted complexity
model estimated under noisy conditions. This tool has been developed using Sysquake and is
delivered as a stand-alone executable program that is readily accessible for students and users.

Keywords: Control-relevant identification, control education, interactivity, prediction-error
estimation, experimental design.

1. INTRODUCTION

System identification focuses on the building of dynamical
models from data (Ljung, 1999). It is often considered
the most challenging and time consuming step in control
engineering practice and thus represents an important
component in the professional training of any control
engineer; to this end, flexible and simple-to-use software
tools are essential. Classical system identification is fo-
cused on satisfying “open-loop” criteria that may lead to
high-order models that are not be directly suitable for
control system design. However, by taking into account
controller requirements during system identification, it
becomes possible to both simplify the modeling task and
improve the usefulness of the model with respect to the
intended application of control design; this is the essence of
control-relevant identification (Rivera et al., 1992; van den
Hof and Callafon, 2003).

In recent years, advances in information technologies have
provided powerful software tools for training engineers
(Dormido, 2004; Casini et al., 2004; Nassirharand, 2008).
Moreover, interactive software tools have been proven as
particularly useful techniques with high impact on control
education (Guzmán et al., 2005, 2008). Interactive tools
provide a real-time connection between decisions made
during the design phase and results obtained in the analy-
sis phase of any control-related project. Prior work involv-
ing the authors has resulted in ITSIE, an Interactive soft-

ware Tool for System Identification Education (Guzmán
et al., 2009a,b). It includes all stages of system identifica-
tion in the same screen, with the different stages connected
interactively in such a manner that a modification in one
stage is automatically visualized in the remaining ones.
ITSIE focuses, however, exclusively on open-loop system
identification; the current work goes beyond this to explore
the problem of control-relevant identification.

The main objective of this paper is to describe the theory,
features, and application of a novel Interactive Tool for
Control Relevant Identification (ITCRI) for educational
purposes. The tool considers the control-relevant estima-
tion of low-order ARX and Output Error models conform-
ing to the IMC Prett-Garćıa PID tuning rules. To achieve
this aim, two prefiltered prediction-error estimation pro-
cedures are considered. The first estimates the low-order
models directly from prefiltering of the input/output data.
The second follows a two-step procedure where a high-
order ARX model is estimated first, followed by control-
relevant model reduction (using iterative prefiltering) of
the ARX model’s impulse response. The prefilters are
systematically defined from closed-loop performance re-
quirements and the setpoint/disturbance changes to be
faced in the control problem. The interactive tool enables
understanding how the tuning parameter of the prefilter
directly influences both the open and closed-loop responses
of the system. Validation criteria allow the user or student



to check: (i) how control-relevant modeling keeps the error
low over a bandwidth defined by the control requirements
specified by the user and (ii) how open-loop error in the
model translates into adequate or poor closed-loop behav-
ior. The interactive tool is coded in Sysquake, a Matlab-
like language with fast execution and excellent facilities
for interactive graphics (Piguet, 2004). Executable files for
the modules that do not require the Sysquake software to
operate, are in public domain and available for Windows,
Mac, and Linux operating systems.

The paper is organized as follows. First, a brief description
of the theoretical background behind the tool is presented
in Section 2, with a description of the control-relevant
estimation algorithms in Section 3. In Section 4 the func-
tionality of the tool is described; an illustrative example
is presented in Section 5. Finally, Section 6 presents the
main conclusions and future research work.

2. THEORETICAL BACKGROUND

This section is devoted to a description of the theoretical
background behind the interactive tool. Because ITCRI
and ITSIE share some common functionailty, the points
which refer exclusively to control-relevant identification
are emphasized.

2.1 Plant to be identified and controlled

The plant to be identified, and subsequently controlled,
consists of a discrete-time system sampled at a value
specified by the user (default value Ts = 1 min) and
subject to noise and disturbances according to:

y(t) = p(q)(u(t) + n1(t)) + n2(t) (1)

where: y(t) is the measured output signal, u(t) is the
input signal that is designed by the user, p(q) is the
zero-order-hold-equivalent transfer function for p(s) and
q is the forward-shift operator, n1 is a stationary white
noise that allows to evaluate the effects of autocorrelated
disturbances in the data and n2 is another stationary white
noise that is introduced directly to the output signal.

2.2 Digital PID controller design

Prett and Garćıa (1988) present an algorithm for digital
PID controller design which is based on the Internal Model
Control (IMC) design procedure for discrete-time models
(Morari and Zafiriou, 1997). These PID controllers possess
the feature that they have a single adjustable parameter
δ = exp(−Ts/λ) which is directly linked to the closed-
loop speed of response λ. In ITCRI, second-order plants
without integrator are identified according to the tuning
rules summarized in Table 1, resulting in Prett and Garćıa
(1988) controllers of the general form:

∆uk = Kc[ek − τIek−1 + τDek−2] + τF ∆uk−1 (2)

where ∆uk = uk − uk−1 is the change in controller
output and ek = r − yk is the setpoint tracking error.
The parameters Kc, τI , τD and τF are coefficients of the
difference equation in Eq. (2) and are not equivalent to the
continuous PID controllers parameters.

Table 1. Prett-Garćıa Digital PID Controller
Parameters for Low-Order Models. (0 < δ <
1, δ = exp(−Ts/λ) is an adjustable parameter;

Ts is the sampling time.

p̃(q) η̃(q) KKc τI τD τF

Aa K(q−β)

(q2−α1q+α2)
1−δ
q−δ

1− δ α1 α2 β

Bb K(q−β)

(q2−α1q+α2)
1−δ
q−δ

q−β
1−βq

1−δ
−β

α1 α2
δ(1+β)

β
− 1

Cc K(q−β)

(q2−α1q+α2)
1−δ
q−δ

q−β
(1−β)q

1−δ
1−β

α1 α2
(1−δ)β
1−β

a0 ≤ β < 1 bβ ≥ 1 cβ < 0

2.3 Model structure selection and parameter estimation

The interactive tool examines the general family of
prediction-error (PEM) models which corresponds to

A′(q)y(t) =
B′(q)
F ′(q)

u(t− nk) +
C ′(q)
D′(q)

e(t) (3)

y(t) = p̃(q)u(t) + p̃e(q)e(t) (4)
In Eq. (4) p̃(q) refers to the estimated plant model and
p̃e(q) is the noise model. A′(q), B′(q), C ′(q), D′(q) and
F ′(q) are polynomials in q, and the roots of A′(q) and
B′(q) are the poles and zeros of the plant, respectively.
The two PEM models used in ITCRI for control-relevant
identification are shown in Table 2.

Table 2. Prediction-error model structures
evaluated in ITCRI.

Method p̃(q) p̃e(q)

ARX
B′(q)
A′(q)

q−nk 1
A′(q)

Output Error
B′(q)
F ′(q)

q−nk 1

Control-relevant identification in ITCRI is accomplished
via prefiltered prediction error estimation,

arg min
p̃,p̃e

1
N

N∑

i=1

e2
F (i) (5)

where eF (t) = L(q)e(t) is the prefiltered prediction error,
and L(q) is the prefilter. The use of Parseval’s Theorem
enables a frequency-domain analysis of bias effects in PEM
estimation that allows deep insights into the selection of
the prefilter and other identification design variables. As
the number of observations N → ∞, the least-squares
estimation problem denoted by (5) can be written as:

lim
N→∞

1
N

N∑

i=1

e2
F (i) =

1
2π

π∫

−π

ΦeF
(ω)dω (6)

where ΦeF
(ω), the prediction-error power spectrum is

ΦeF (ω) =
|Le(ejω)|2
|p̃e(ejω)|2

(|p(ejω)− p̃(ejω)|2Φu(ω)

+ |p(ejω)|2σ2
n1

+ σ2
n2

)
(7)

Equation (7) helps explain systematic bias effects in iden-
tification, which can be readily explored in ITCRI. This
includes issues relating to the spectral content in the input
signal, bias that is introduced (or removed) by the choice
of model structure (particularly the noise model), and the
associated multi-objective optimization problem resulting



from varying magnitudes of the noise variances σ2
n1

and
σ2

n2
. Most importantly, Equation (7) shows that prefilter-

ing acts as a frequency-dependent weight on the goodness-
of-fit in prediction-error estimation. How to properly de-
sign this prefilter to take into account closed-loop perfor-
mance requirements is the focus of the ensuing section.

2.4 Control-Relevant Parameter Estimation

The model structures required by the controllers in Table 1
are often times too simple to describe the entire dynamic
behaviour of the plant. However, control requirements can
narrow the regions of time and frequency over which an
adequate model fit is necessary. Therefore, the objective
of the control-relevant identification process is to obtain
improved models over the frequency band of importance
of the control problem. To fulfill this objective a control-
relevant prefilter from the 2-norm closed-loop objective
function is developed, which acts as a frequency-dependent
weight on the parameter estimation problem and system-
atically incorporates control requirements in the parame-
ter estimation problem (Rivera et al., 1992).

Control-relevance thus requires that one define the control
problem for which the model is intended. In this work,
the control-relevant estimation it is exclusively focused on
a plant model p̃ to be used for single degree-of-freedom
feedback control using the tuning rules given in Prett and
Garćıa (1988). The control objective is to minimize the
2-norm of the control error ec = (r − y)

‖ec‖2 =

( ∞∑

k=0

e2
c(k)

)1/2

(8)

The feedback controller c(q) that is assumed to be a single
degree-of-freedom, is designed on the basis of p̃(q). Result-
ing in the following nominal response transfer function:

η̃(q) = p̃(q)c(q) (1 + p̃(q)c(q))−1 (9)

ε̃(q) = (1− η̃(q)) = (1 + p̃(q)c(q))−1 (10)

where ε̃ is the sensitivity operator of the closed-loop system
and η̃ is the complementary sensitivity operator (Morari
and Zafiriou, 1997). When c(q) is implemented on the plant
p(q), the deterioration in control performance caused by
plant/model mismatch is

ec(q) =
ε̃(q)

1 + η̃(q)em(q)
(r − d) (11)

where em(q) = (p(q)− p̃(q)) p̃−1(q) is the multiplicative
error between the true plant and the calculated model. Sta-
bility of c(q) on p̃(q) does not ensure stability with regards
to p(q). A computationally simpler stability requirement
used for stability is the small gain theorem:

|η̃ (
ejω

)
em

(
ejω

) | ≤ 1 ∀ − π ≤ ω ≤ π (12)

When Eq. (12) holds, Eq. (11) can be approximated by a
first term Taylor series if |η̃ (

ejω
)
em

(
ejω

) | ¿ 1 over the
bandwidth defined by ε̃(q)(r − d).

ec(q) ≈ ε̃(q) (1− η̃(q)em(q)) (r − d) (13)

The control objective function that appears in Eq. (8), can
be approximated by substituting Eq. (13) into Eq. (8).

Once expressed the approximation in the frequency do-
main via Parseval’s Theorem, the statement of the control-
relevant parameter estimation problem is obtained by min-
imizing the contribution arising from identification error:

min
p̃


 1

2π

π∫

−π

|ε̃ (
ejω

) |2|η̃ (
ejω

) |2

|r − d|2|em

(
ejω

) |2dω




1/2

(14)

Equation (14) is the problem whose solution is solved
in the time domain by means of prefiltered ARX and
Output Error (OE) estimation. As presented in Rivera
et al. (1992), the relationship between Equation (7) and
(14) leads to a general definition for the control-relevant
prefilter:

L(q) = p̃e(q)p̃−1(q)ε̃(q)η̃(q)(r(q)− d(q)) (15)

It is important to highlight the components that form the
prefilter L(q):

• The closed-loop transfer functions η̃(q) and ε̃(q) that
define the closed-loop speed of response.

• The setpoint/disturbance direction (r(q)− d(q)).
• The identified plant and noise models p̃(q) and p̃e(q).

Since p̃(q) is initially unknown, the implementation of the
prefilter is inherently iterative. However, in ITCRI two
algorithms to calculated the prefilter are implemented: (i)
a rigorous iterative implementation that is applied to an
ARX high order model and (ii) a simplified non-iterative
alternative that is applied directly to the data. These are
summarized in the ensuing section.

3. CONTROL-RELEVANT ESTIMATION
ALGORITHMS

The ITCRI tool evaluates two alternate procedures for
arriving at a control-relevant low-order model conforming
to the Prett-Garcia PID tuning rules. In both cases,
prefiltering is applied. These are described below:

Direct one-step approach using input/output data.
ARX-221 or OE-221 models are obtained directly from
the prefiltered input-output data.

Two-step approach from a full-order estimated model.
A high-order ARX model is obtained first, followed
by control-relevant model reduction to an ARX-221 or
OE-221 model structure. The control-relevant model
reduction step is accomplished via iterative prefiltered
estimation.

The reader is referred to Rivera et al. (1992) where the
iterative and direct (single-pass) algorithms are presented
with some examples; moreover, a more detailed description
of the iterative case appears in Rivera and Gaikwad (1996).
A summary of the procedures is enclosed below:

3.1 Single-pass prefilter applied to data

This algorithm requires that the user specify up-front
reasonable estimates for the dominant plant time constant



and desired closed-loop speed of response, and substitute
these into (15). For η̃, the following structure is used

η̃(q) = q−nkf(q) (16)

where the order of f(q) is dictated by the control design
procedure. In ITCRI, the second-order filter structure

f(q) =
(1− δ)2q2

(q − δ)2
(17)

is used, where δ = exp(−1.555Ts/τcl), with τcl being
the anticipated closed-loop time constant. Furthermore,
a priori knowledge of the plant dominant time constant is
used to approximate p̃ as:

p̃(q) =
q−nk+1

(q − α)
(18)

where α = e−Ts/τdom and τdom is an estimate of the
dominant time constant of the system. For OE estimation,
p̃e = 1, while for ARX models, p̃e can be approximated
with the same dominant time constant guess made for p̃:

p̃e(q) =
q

(q − α)
(19)

3.2 Two-step, iterative prefiltering approach

In the two-step approach, the first step consists of estimat-
ing a full-order PEM model that meets classical validation
criteria (e.g., white residuals uncorrelated with the input).
In ITCRI, this full-order model is estimated via high-order
ARX estimation, which can be consistently estimated if
a persistently exciting input is used (Ljung, 1999). The
second step consists of a model reduction, in which the
impulse response of the full-order model is reduced to a
restricted complexity form as summarized in Table 1. The
impulse response of the full-order plant can be adequately
represented by a FIR model:

y(t) = B(q) u(t− 1), (20)

B(q) = b1 + b2q
−1 + . . . + bnb

q−nb+1

The goal is to approximate Eq. (20) with a low-order ARX
model according to:

A′(q)y(t) = B′(q)u(t− 1) + er(t) (21)

where

A′(q) = 1 + a′1q
−1 + . . . + a′n′aq−n′a

B′(q) = b′1 + b′2q
−1 + . . . + b′n′

b
q−n′b+1

and n′a and n′b are low-numbered integers (1 or 2); in
ITCRI, n′a = 2 and n′b = 2. In this method the prediction
error er(t) represents the model reduction error. The
objective minimized in ARX identification is the squared
filtered prediction error (ef (t) = L(q)er(t)) which for
N → ∞ can be written equivalently in the frequency
domain as

V =
1
2π

π∫

−π

∣∣∣∣B(ejω)− B′(ejω)
A′(ejω)

∣∣∣∣
2

|A′(ejω)|2|L(ejω)|2Φu(ω)dω (22)

where Φu(ω) represents the power spectra for the input.
Because the model reduction step is applied to a noise-
free data set (i.e., the full-order model’s impulse response),
the influence of noise n1 and n2 is greatly reduced, in
contrast to more general PEM estimation as seen in (7).
The definition of the prefilter is obtained by comparing
the frequency-domain expressions of the prefiltered ARX
problem that appear in Eq. (22) to that of the control-
relevant parameter estimation problem in Eq. (14). Since
u(t) is an impulse, (Φu(ω) = 1 ∀ ω) this leads to:

L(q) = B′(q)−1ε̃(q)η̃(q)(r(q)− d(q)) (23)

Thus, the iterative method to calculate the prefilter for
open-loop stable systems is composed of five steps.

(1) Performance specification. From Table 1, the user
chooses the structure for p̃ and η̃. The engineer
must only specify the value for the closed-loop time
constant λ, which in turn defines the value of the filter
adjustable parameter according to δ = exp(−Ts/λ).

(2) Initialization. Here y(t), the finite impulse response,
and u(t) (a unit pulse input) are filtered using L(q)
defined according to Eq. (23) with

B′(q) = 1 η̃(q) =
(1− δ)
q − δ

r − d =
q

q − 1
One must now perform ARX estimation using yF (t)
and uF (t) (the prefiltered output and input) to obtain
an initial estimate for the reduced-order model p̃.

(3) Iteration. Use the models p̃(q) and p̃e(q) obtained
from initialization or from the previous iteration to
update B′(q), η̃(q) and thus, define a new L(q).
Proceed then to prefilter y(t) and u(t) and redo ARX
estimation.

(4) Termination. This step determines if iteration needs
to be completed. For this aim, two criteria are used. If
the objective function does not change by a specified
amount:

|Vcurrent − Vprevious| ≤ TOL (24)
and the parameters of p̃ change by less than a user-
defined tolerance, then terminate. Otherwise, com-
plete another iteration.

(5) Validation. Once iterations have converged, one must
verify that: (i) the estimated model is stable and, (ii)
the small gain condition in Eq. (12) has been satisfied.
Failure to satisfy these criteria imply that either the
closed-loop speed of response must decrease, or the
order of the model must increase.

3.3 Model validation

ITCRI provides classical methods for validation which in-
clude simulation, crossvalidation, residual analysis on the
prediction errors (for full-order ARX modeling), and step
responses. The percent output variance explained by each
model on the crossvalidation data set is also reported. For
control-relevant validation, a valuable metric is to compare
the multiplicative error em with the prefilter L(q); a good
control-relevant model will display low |em| over the band-
width denoted by L(q). Ultimately, the most informative
piece of control-relevant model validation is the closed-
loop response resulting from the estimated model, which
in the ITCRI tool is contrasted simultaneously with the
open-loop response.



3.4 Experimental design and data preprocessing

The input signals used in ITCRI are: (i) Pseudo-Random
Binary Sequences (PRBS) and (ii) multisine signals. In the
tool the input signal can be designed by means of direct
parameter specification or applying time constant-based
guidelines. The input signal guidelines and parameters
are shared with the previous work presented in Guzmán
et al. (2009a). Thus, for the sake of brevity the interested
reader is referred to Guzmán et al. (2009a,b) for a detailed
description of this component of the tool.

ITCRI data preprocessing supports mean subtraction,
differencing, and substraction of baseline values, whereas
mean detrending is applied by default.

4. INTERACTIVE TOOL DESCRIPTION

This section is devoted to describe the mean features of the
interactive tool. However, it is important to mention that
interactivity which is the main feature, cannot be noticed
in a written text. Thus, the reader is cordially invited
to download the tool at http://aer.ual.es/ITCRI/ (see
Fig. 1) and personally experience its interactive features
since it does not require a Sysquake license in order to
execute.

The plant to be identified can be loaded indicating the
transfer function for both the model and the prefilter. This
can be done form the menu option Mode → Simulation.
The graphical distribution has been designed according to
the most important steps in a control-relevant identifica-
tion. It is described as follows (see Fig. 1):

• Input signal definition. In the main screen, at the
top left corner, there is a section called Input signal
parameters. Here, the user can choose the type of
the input signal (PRBS or multisine) and by means
of the checkbox called Guidelines to decide between
specifying the input signal directly or following the
guidelines given in (Guzmán et al., 2009a,b). For
instance, if the PRBS is selected without activating
the checkbox Guidelines, a text edit and two sliders
appear to modify the number of cycles (N Cycles),
the number of registers (N Reg), and the switching
time (Tsw). At the bottom left corner, there are two
graphics namely Input signal and Power Spectrum or
AutoCorrelation depending on the chosen option. The
graph above, Input signal, shows one cycle of the
input signal, the graph below represents the input
signal correlation or the input signal power spectrum
depending on the chosen option in the radio buttons
at the top right of the graph. The input signal can
be modified dragging on both graphics too. Once
an input signal has been configured, the final input
signal is shown in Full input signal graph, located at
the bottom of the central part of the main screen.
When the checkbox Filtered Data is activated, the
input signal is filtered too.

• Process definition. Below the section Input signal pa-
rameters, there is another section called Model param-
eters, where there are two radio buttons that allow to
choose between ARX and OE, i.e. the type of model
used for control-relevant identification. The order of
the model, see Table 2.3, is limited to na = 2, nb = 2

and nk = 1 for ARX model, and nf = 2, nb = 2 and
nk = 1 for OE model. By default, the tool calculates a
high-order ARX model, ARX OS, to compare with the
low-order models calculated through control-relevant
identification. Note that, the na, nb and nk values of
this high-order model appear also in the section Model
parameters. Depending on the type of model used for
control-relevant identification, one or two sliders will
appear to determine the values of the two parameters
needed for single pass prefiltered estimation (Pref):
the dominant plant-time constant (O-L Tau), only
for the OE model, and the desired closed-loop speed
of response (C-L Tau) for both the ARX and the
OE models. Once a plant structure is selected, the
full input signal applied to the simulated plant with
noise is showed in black in the graph called Output
signal located at the center of the main screen. This
input signal is used to obtain the simulated “real
data”, which are then used as real process data in the
estimation and validation process. In this graph, an
interactive magenta vertical dashed line defines the
estimation (yellow area) and validation data (white
area) sets.

• Closed-loop specification. In the section Closed loop
and simulation parameters, at the center of the left side
of the main screen, the parameter λ for the IMC filter
time constant (first-order filter only) which is used by
the Prett-Garcia controller (Prett and Garćıa, 1988),
is specified through a slider called Lambda. Below this
slider, other two sliders called Noise 1 and Noise 2
determine the level of noise in the data, n1, and in
the output signal, n2, respectively.

• Model validation. The magenta-colored vertical line
of the Output signal graphic is interactively used
to define the estimation and validation data sets.
The validation data is used for crossvalidation pur-
poses. Model validation results are displayed in other
two different graphics: Step Responses and Correlation
function of residuals. Note that, this last one only
appears if the checkbox Residuals is activated. The
Step Responses graph, which is located at the upper
right-hand side of the tool, shows the step responses
for the following models: (i) ARX-OS: an ARX high-
order model, green solid line, (ii) Non-Pref: depending
on the chosen type of model, an ARX or OE low-
order model without prefiltering, red or blue solid line
respectively, (iii) Pref: depending on the chosen type
of model, an ARX or OE low-order model prefiltered
with the single-pass prefilter implementation, red or
blue dashed line respectively, and,(iv) Iter: an ARX
low-order model prefiltered with the iterative prefilter
implementation, magenta solid line. Together with
the step response of the models, a legend representing
its goodness of fit in % is showed. Confidence intervals
can be also shown in this graphic activating this
option from the Parameters menu. In the Correlation
function of residuals graphic, at the left of the Step re-
sponses graphic, the same color distribution explained
previously is used to represent the results of each
model. Moreover, above of this graphic there are two
radio buttons that allow to commutate between this
graphic and others two called Open-Loop Frequency
Response and Multiplicative Error. In the first one,



Fig. 1. Main screen of Interactive Software Tool for Control-Relevant Identification ITCRI, displaying results for the
illustrative example explained in Section 5.

the frequency response of the calculated models is
showed. In the second one, the frequency response of
the multiplicative error produced by each model is
showed together with the frequency response of both
the iterative and the single-pass prefilters.

• Closed-loop response. At the lower right corner of the
tool, there are two graphs that show the closed-loop
response of the resulting feedback control system.
These graphs are called Closed-loop output where
the output of the closed loop is showed and Closed-
loop input, where the output of the calculated IMC
controller is displayed.

5. ILLUSTRATIVE EXAMPLE

In this example, a simulated fifth-order system is consid-
ered. The system is represented by the transfer function:

p(s) =
1

(s + 1)5
(25)

with a default sample time of Ts = 1 min. The main
aim of this example is to compare both prefilters, the one
calculated with the iterative algorithm and the other one
calculated with the single-pass algorithm. Results of this
comparison are shown in Fig. 1. A PRBS input signal is
used for identification, with parameters: m = 3 (number
of cycles), αs = 2, (factor representing the closed-loop
speed of response), βs = 3 (factor representing the settling
time of the process), τL

dom = 3 (low estimate of the
dominant time constant) and τH

dom = 5 (high estimate
of the dominant time constant). For more information

about these parameters (see Guzmán et al. (2009a,b)).
Moreover, the noise on the output signal, n2(t) in Eq. (1),
is augmented to a value of 2, whereas the noise on the
disturbance (n1(t) in Eq. (1)), is set to 0.5.

A high-order ARX model, with a structure of ARX-[3 5 1],
is obtained from this identification signal. Its open loop
response is shown in the Step Responses graph (ARX-
OS), at the upper right-hand side of the tool, together
with the response of three ARX low-order models (ARX-
[2 2 1]): (i) Non-Pref, an ARX model without prefiltering,
(ii) Pref, an ARX low-order model prefiltered with the
single-pass prefilter implementation, and (iii) Iter, an ARX
low-order model prefiltered with the iterative prefilter
implementation. The validation criteria indicates the poor
fit of these models. This is due to the high value of the noise
signals n1 and n2, since ARX model estimation involves
a tradeoff between the fit to the noise model and the fit
to the transfer function. Notice that the ARX-OS model
displays the highest goodness of fit in %. Regarding to
closed-loop parameters, the filter parameter λ of the IMC
controllers is set to a value of λ = 5. The closed-loop time
constant estimation used in the prefilter, Pref model, is
also set to τcl = 5.

The inputs and outputs of the resulting feedback system
are shown in Closed-loop input and Closed-loop output
graphs, respectively. Notice the poor performance of the
closed-loop system without prefilter (red solid line in the
graphs), with a large overshoot of 30 % of the setpoint
change magnitude. This fact is due to the high level of the
noise in the data, which does not allow a good fit of the



open loop model Non-Pref. From the Step Responses graph,
it is possible to note how there is a substantial mismatch
in the static gain between the Non-Pref model and the real
plant.

In the case of the Pref model, the prefilter is calculated
with the single-pass algorithm, PREF Prefilter and applied
directly to the noisy input/output data in order to cal-
culate an ARX model, Pref. The frequency response of
both the prefilter and the multiplicative error associated
with the ARX model can be observed in the Multiplicative
Error graph, where it is possible to note how the prefilter
enables the ARX model to achieve the control require-
ments imposed by specifiying τcl = 5. Although the Pref
model displays a poor fit with an open-loop response that
resembles an underdamped system, as seen in Fig. 1 the
closed-loop response from this model is much better than
the previous model, Non-Pref, with a substantial reduction
in overshoot as a result of control-relevant modeling.

The third model, Iter, is calculated from the high-order
ARX model (ARX-OS) through the iterative prefiltering
method, Iter Prefilter. Its frequency response, together with
the multiplicative error associated with the Iter model,
are shown in the Multiplicative Error graph. With the two
step approach, it is possible to calculate an ARX model
that better fulfills control requirements in comparison
to the Pref model. The multiplicative error for the Iter
model (Magenta line) is the lowest of all control-relevant
reduced-order models, matching closely the error of the
high-order ARX model (green line) up to a few multiples
past the bandwidth of the iterative prefilter (Iter Prefilter,
orange solid line). The closed-loop controlled variable
response (magenta solid line) displays no overshoot, very
little oscillation, and the fastest settling time of all three
reduced-order controllers evaluated.

6. CONCLUSIONS

In this paper, an interactive tool to perform the main
stages of the control-relevant identification process has
been developed. The tool provides different functionality
modes which make possible to use its capabilities for
students and engineers with a small learning curve. The
tool is available for free from http://aer.ual.es/ITCRI/.

The interactive tool allows the student to compare the
closed-loop results from different models which have been
developed with and without prefiltering. Moreover, the
student can discover that some models resulting from
identification are not suitable for control, since they have
not been designed taking into account control require-
ments. The example included in this work illustrates these
features, by comparing three ARX models, two of them
estimated from control-relevant prefiltering and the re-
maining one without prefilter. Although the three models
fit the open-loop data poorly due to the high magnitude
of noise in the data, the two models calculated from
control-relevant prefiltering display better closed-loop per-
formance since the prefilter allows the models to emphasize
a goodness-of-fit in the regions of time and frequency most
important for meeting control requirements. Between these
two models, the one calculated from an ARX high-order
model through the two-step iterative algorithm obtains
better results that the one calculated from the single

pass method; these benefits are achieved, however, at the
expense of identifiying a high-order ARX model first as
a precursor model, and the additional computations in-
volved in the iterative algorithm.

Future efforts include an extension to multivariable prob-
lems, the ability to import real data, and an evaluation of
closed-loop control-relevant identification.
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Prett, D.M. and Garćıa, C.E. (1988). Fundamental Process
Control. Butterworths, Stonehan, MA.

Rivera, D.E. and Gaikwad, S.V. (1996). Digital PID
controller design using ARX estimation. Computers
Chemical Engineering, 20(11), 1317–1334.

Rivera, D.E., Polland, J.F., and Garćıa, C.E. (1992).
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