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Abstract: This paper describes ITCLI, an interactive software tool for understanding SISO
closed-loop identification using prediction-error techniques. The tool enables an interactive
evaluation regarding how bias and variance effects play a role in identification under closed-loop
circumstances. The role of external signal design, choice of model structure, controller tuning
during identification testing, and signal injection points (at either the manipulated variable or
the setpoint) all under the presence of autocorrelated disturbances are considered. The software
is developed using Sysquake and is provided as a stand-alone executable version in multiple
operating environments.
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1. INTRODUCTION

Closed-loop identification is an important practical prob-
lem in system identification (Wellstead, 1977; Forssell and
Ljung, 1999; Ljung, 1999). In many practical situations, it
is not possible to identify a system in the open-loop; hence
closed-loop identification becomes a necessity. A funda-
mental challenge presented by closed-loop identification
in contrast to open-loop is that there exists correlation
between the manipulated variable and the disturbance
as a result of the action of a closed-loop system. Prior
research in the area establishes that despite the correlation
between these signals, it is possible to consistently estimate
both the plant and disturbance models in the absence of
any external excitation (outside of what may be naturally
present in the closed-loop system) provided there is a pri-
ori information regarding the model structure. In practice
this is often not the case, so it is important to establish how
appropriate experimental design and selection of other de-
sign variables in the identification process can facilitate the
closed-loop identification problem. This includes the use,
excitation, and location of an experimental signal, as well
as sensible tuning of the closed-loop system. The purpose,
then, of ITCLI, an Interactive Software Tool for Closed
Loop System Identification is to examine these various
design variables in closed-loop system identification in an
accessible and informative software environment.

In recent years, advances in information technologies have
provided powerful software tools for training engineers
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(Dormido, 2004; Guzmán et al., 2009). Moreover, inter-
active software tools have been proven as particularly
useful techniques with high impact on control education
(Guzmán et al., 2005, 2008). Interactive tools provide a
real-time connection between decisions made during the
design phase and results obtained in the analysis phase
of any control-related project. Prior work involving the
authors has resulted in ITSIE, an Interactive software
Tool for System Identification Education (Guzmán et al.,
2009, 2012b) and ITCRI an Interactive Tool for Control

Relevant Identification (Álvarez et al., 2011; Álvarez et al.,
2013). ITSIE focuses exclusively on open-loop system iden-
tification, while ITCRI deals with the control-relevant
identification based on open-loop prefiltered prediction-
error estimation procedures. Our team has also devel-
oped i-pIDtune, an interactive tool that integrates system
identification and PID controller design (Guzmán et al.,
2012a). i-pIDtune considers the estimation of a high-order
ARX model and control-relevant model reduction to ob-
tain models consistent with the Internal Model Control
(IMC) PID tuning rules. All these interactive tools are
coded in Sysquake, a MATLAB-like language with fast
execution and excellent facilities for interactive graphics
(Piguet, 2004).

The paper is organized as follows. First, a brief description
of theoretical background relating to the tool is presented
in Section 2. Issues in closed-loop identification, with em-
phasis on how bias is influenced by the choice of design
variables in closed-loop id is discussed in Section 3. Sec-
tion 4 describes the functionality of the tool, with illus-
trative examples presented in Section 5. Finally, Section 6
presents the main conclusions and future research work.



2. THEORETICAL BACKGROUND

This section summarizes the major steps of the methodol-
ogy for closed-loop identification, which are included in the
proposed interactive tool. These steps include experimen-
tal design and execution and prediction-error parameter
estimation under closed-loop conditions.

2.1 Plant to be identified and controlled

The plant to be identified consists of a fifth-order system
according to

p(s) =
1

(s+ 1)5
. (1)

The model per (1) is sampled at a value specified by the
user (default value T = 1 min) and is subject to noise and
disturbances according to

y(t) = p(q)(u(t) + n1(t)) + n2(t) (2)

= p(q)u(t) + ν(t) (3)

where y(t) is the measured output signal, u(t) is the
input signal that is designed by the user, p(q) is the
zero-order-hold-equivalent transfer function for p(s) and
q is the forward-shift operator, n1 is a stationary white
noise that allows to evaluate the effects of autocorrelated
disturbances in the data and n2 is another stationary white
noise that is introduced directly to the output signal.
The total disturbance signal is represented as ν(t) =
P (q)n1(t) + n2(t).

2.2 Experimental design and data preprocessing

The success of the identification methodology hinges
on the availability of an informative input/output data
set obtained from a sensibly designed identification ex-
periment. The input signals used in this work are: (i)
Pseudo-Random Binary Sequences (PRBS) and (ii) mul-
tisine signals. In ITCLI, the input signal can be designed
through direct parameter specification or by applying time
constant-based guidelines. The input signal guidelines and
parameters are shared with the previous works, and thus,
for the sake of brevity the interested reader is referred to
Guzmán et al. (2012b) for a detailed description. Data
preprocessing in ITCLI supports mean subtraction, dif-
ferencing, and subtraction of baseline values.

2.3 Prediction error model estimation

The interactive tool uses data from (2) to estimate a
prediction-error (PEM) model. The general family of
prediction-error models corresponds to

A(q)y(t) =
B(q)

F (q)
u(t− nk) +

C(q)

D(q)
e(t) (4)

y(t) = p̃(q)u(t) + p̃e(q)e(t) (5)

where p̃(q) refers to the estimated plant model and p̃e(q)
is the noise model, and A(q) through F (q) are polynomials
in q

A(q) = 1 + a1q
−1 + . . .+ anaq

−na

B(q) = b1 + b2q
−1 + . . .+ bnbq

−nb+1

C(q) = 1 + c1q
−1 + . . .+ cncq

−nc

D(q) = 1 + d1q
−1 + . . .+ dndq

−nd

F (q) = 1 + f1q
−1 + . . .+ fnf q

−nf

nk is the system delay, represented as an integer multiple
of sampling intervals. The five most popular PEM models
are evaluated in ITCLI, with FIR belonging as a subset
of ARX models. The tool also includes PEM estimation of
state-space models.

PEM model estimation possesses two attractive prop-
erties, namely, robust computation using regression ap-
proaches (linear and nonlinear) and consistency. The pa-
rameters of (5) can be determined by minimizing the
squared prediction error

arg min
p̃,p̃e

1

N

N∑
i=1

e2(i) = arg min
θ

1

N

N∑
i=1

[
y − ϕT (t|θ)θ

]2
(6)

where N represents the number of data, θ is a vector
including the model parameters to be identified and ϕ(t|θ)
is the model output for a given combination of the model
parameters θ.

2.4 Closed-loop control

Closed-loop control implemented in ITCLI stems from
the application of the IMC design procedure to restricted
complexity approximations for the plant according to (1),
using the control-relevant identification procedure imple-
mented in i-pIDtune. The resulting controllers conforming
to PI, PID, and PID with filter structures (summarized in
Table 1) have an adjustable parameter λ that corresponds
to roughly the closed-loop speed-of-response.

Model KKc τI τD τF
K(−βs+1)
τs+1

τ
β+λ

τ - -
K(−βs+1)

τ2s2+2ζτs+1
2ζτ
β+τ

2ζτ τ
2ζ

-
K(−βs+1)

τ2s2+2ζτs+1
2ζτ

2β+λ
2ζτ τ

2ζ
βλ

2β+λ

Table 1. IMC-PID tuning rules for first and
second-order plants without integrator and
with nonminimum phase zero β > 0. The
general PID controller form is represented by

c(s) = Kc(1 + 1
τIs

+ τDs)
1

(τF s+1) .

3. UNDERSTANDING CLOSED-LOOP
IDENTIFICATION

Error in system identification is a consequence of bias and
variance effects. Bias refers to systematic errors that occur
in identification as a result of factors such as the choice
of model structure, the magnitude of the input signal,
and the mode of operation (open or closed loop). These
errors persist even if an infinite number of data points
were collected during the identification. Variance effects
are a consequence of randomness in the data, and this
can normally be reduced through increasing the number of
data points collected, increasing power for certain inputs,



and model structure. In the closed-loop identification
setting, controller tuning will play a role as well.

3.1 Problems caused by bias

Bias expressions can be very helpful in terms of relating
design variables in identification to the performance objec-
tive of the parameter estimation problem. Bias expressions
for open-loop least-squares prediction-error identification
are well known, based on the seminal work by Ljung
(1999). Consider a linear plant with disturbance repre-
sented by the equation (2). u(t) is a quasi-stationary time
series with power spectra Φu, while n1 and n2 are white
noise sequences with spectra σ2

n1
and σ2

n2
respectively.

Consequently, u, n1 and n2 are all mutually uncorrelated.
Furthermore, we will consider prefiltered input/output
data

yF (t) = L(q)y(t) uF (t) = L(q)u(t) (7)

The objective of the parameter estimation procedure is
to approximate (2) to a model according to (5). This
is accomplished by minimizing the prefiltered prediction
error (eF (t) = L(q)e(t))

min
p̃,p̃e

N∑
i=1

e2
F (i) (8)

Using Parseval’s theorem, it becomes possible to express
the least-squares parameter estimation problem in the
frequency domain

lim
N→∞

N∑
i=1

e2
F (i) =

1

2π

π∫
−π

ΦeF (ω)dω (9)

where ΦeF is defined as

ΦeF (ω) =
|L(ejω)|2

|p̃e(ejω)|2
(
|p(ejω)− p̃(ejω)|2Φu(ω)

+ |p(ejω)|2σ2
n1

+ σ2
n2︸ ︷︷ ︸

Φν(ω)

) (10)

Equation (10) provides a number of insights regarding the
significant effects in open-loop least-squares identification.
The input signal power spectral density Φu, the choice
of prefilter L(q), the structure of p̃ and p̃e, and the
disturbance spectrum Φν(ω) (further broken down into
the noise variances σ2

n1
and σ2

n2
) all play an important

role in the resulting parameter estimates. From (10) we
can infer that if u(t) is a persistently exciting input (i.e.,
Φu 6= 0 for all frequency) and p̃ and has the correct
model structure, then an optimum is reached when p̃ = p;
consistent estimation of the plant model p is possible, even
if the structure of the noise model p̃e is incorrect.

When addressing closed-loop direct prediction-error esti-
mation, similar expressions to open-loop prediction-error
estimation can be obtained which relate the objective func-
tion to the estimated model, the prefilter, the manipulated
and disturbance transfer functions, and the closed-loop
transfer functions. The closed-loop structure considered is
according to Figure 1, which consists of a classical feedback
structure with possible signal injection points at r and ud.

Fig. 1. Closed-loop feedback system considered in ITCLI,
with signal injection points r and ud, and external
disturbance ν(t) = P (q)n1(t) + n2(t).

The derivation of the bias expression is not presented for
reasons of brevity; the final result is shown below:

lim
N→∞

N∑
i=1

e2
F (i) =

1

2π

π∫
−π

ΦeF (ω)dω (11)

where

ΦeF =
|L|2

|p̃e|2
(
|p− p̃|2

(
|p−1η|2Φr + |ε|2Φud

)
+ |1 + p̃c|2|ε|2

Φν(ω)︷ ︸︸ ︷(
|p(ejω)|2σ2

n1
+ σ2

n2

)
) (12)

and

η = pc(1 + pc)−1 Complementary sensitivity function

ε= (1 + pc)−1 Sensitivity function

The important fact to consider from (12) is that in closed-
loop identification, consistent estimation of p with p̃ is not
obtained even if the external signals are white noise and
uncorrelated to each other. In this case, the crosscorrela-
tion between the input signal u and the disturbance signals
n1 and n2 is nonzero because of the action of the controller.
Plainly speaking, the controller “gets in the way” of the
identification, affecting the quality of the parameter esti-
mates. Hence, in addition to the effects discussed in the
open-loop case, the feedback controller c also introduces
an additional source of bias to the parameter estimation
problem, which must be analyzed carefully if one is to
obtain adequate models from closed-loop data.

The effect of the feedback controller c is reflected in two
ways. We see it in its effect on the closed-loop transfer
functions ε and p−1η, which directly weight the additive
error term p− p̃; we also see it in the term (1 + p̃c), which
establishes a trade-off between the magnitudes of the input
signal power spectral density Φu(ω) and the disturbance
spectrum Φν(ω) = |p(ejω)|2σ2

n1
+ σ2

n2
.

We discuss first the effect of the closed-loop transfer func-
tions ε and p−1η. These transfer functions act as weights on
the parameter estimation problem. The specific nature of
these transfer functions determines what frequency ranges
are attenuated or amplified. Consider the case of injecting
the external signal at the manipulated variable (ud). In
this case, the closed-loop transfer function weighting the
effect of ud is the sensitivity function ε. For controllers with
integral action, the amplitude ratio of the sensitivity func-
tion is 0 at ω = 0, and increases with increasing frequency.
The effect of the control system is to attenuate the low-
frequency portion of the external signal, which implies that



significant detuning of c may be required in order to obtain
an appropriate steady-state fit. In contrast, the effect of an
external signal introduced at the set point is that the signal
is weighted by |p−1η|2, which does not attenuate the low
frequencies when the controller is tightly tuned. However,
a tightly tuned controller may also lead to amplification
of the higher frequencies. Hence an “intermediate” tuning
setting that does not highly amplify the high frequencies
may be sensible to apply in this case.

We need to examine the effect of c as reflected in the term
(1+ p̃c). One way of understanding this function is to view
it as the reciprocal of the sensitivity function based on
the estimated plant model. The implication of this term
is that bias in closed-loop identification will be present
even if ud and d are independent, white noise sequences
and A(q) = 1. The extent of bias on the estimate of p̃
will depend greatly on the magnitudes of the input signals
and disturbance power spectrums. Assume for purposes of
illustration that Φr = 0 for all frequencies. Under these
circumstances, the excitation in the system is driven by
the external disturbance signal ν(t) = P (q)n1(t) + n2(t).
For frequencies where Φud/Φν � 1, then ΦeF ≈ 0 when

p̃ = −1

c
(13)

which means that the estimated plant model approxi-
mates the inverse of the controller. For frequencies where
Φud/Φν � 1 then p̃ = p which emphasizes the importance
in closed-loop identification, of having a high input signal-
to-noise ratio over the frequency range of interest.

In summary, analyzing the bias distribution in closed-loop
identification indicates that for best results, substantial
power in the input signals (i.e., large enough so that ud
or r have a predominant effect on y) and, if ud is the
signal injection point, substantial detuning of the con-
troller c. While these recommendations result in greater
deviations of the controlled variable from setpoint, they
are fundamentally necessary in order to perform meaning-
ful identification in the presence of feedback. Introducing
the external signal at the controlled variable setpoint can
reduce the need for detuning; however, a high ratio of the
input signal-to-disturbance power is still necessary for low
bias in the estimation.

3.2 Problems caused by variance

Similarly, there exist expressions for variance in the closed-
loop that contrast those in the open-loop (Gevers et al.,
2001). We shall focus primarily on the variance associated
with p̃. In open-loop identification when u and ν are
uncorrelated, the asymptotic covariance expression for
unbiased estimation is

Covp̃(ejω) ∼ n

N

Φν(ω)

Φu(ω)
(14)

where n is the model order and N is the number of data.
For closed-loop identification under the feedback structure
described in Fig. 1, the corresponding asymptotic covari-
ance expression is

Covp̃(ejω) ∼ n

N

Φν(ω)

Φext
u (ω)

=
n

N

(
Φν(ω)

|p−1η|2Φr + |ε|2Φud

)
(15)

We see the continuing effects of controller tuning, as
reflected in the closed-loop transfer functions ε and p−1η,
in influencing the variance of the plant estimate, as well as
the important role of the power spectral densities in the
external signals r and ud.

4. INTERACTIVE TOOL DESCRIPTION

This section summarizes the mean features of the in-
teractive tool, which can be downloaded for free at
http://aer.ual.es/ITCLI/. The graphical distribution
of the tool has been developed according to the most
important steps in a closed-loop identification problem.
It is described as follows (see Fig. 2):

• Input signal definition. The input signal information
in the tool is characterized by four different areas.
A section called Input signal parameters is located
at the top center zone of the tool. This section is
devoted to choose the type of the input signal (PRBS
or multisine) and by means of the checkbox called
Guidelines to decide between specifying the input
signal directly or following the guidelines given in
Guzmán et al. (2012b). For instance, if the PRBS is
selected without activating the checkbox Guidelines, a
text edit and two sliders appear to modify the number
of cycles (N Cycles), the number of registers (N Reg),
and the switching time (Tsw). At the center right area
and top right corner, there are two graphics namely
Input signal and Power Spectrum. The graph in the
top, Input signal, shows one cycle of the input signal,
the graph below represents the input signal power
spectrum. The input signal can be also modified
dragging on both graphics. Once an input signal has
been configured, the full input signal with the total
number of cycles is shown in Full input signal graph,
located at the left-bottom of the central part of the
main screen.

• Model estimation. The different model structures can
be selected from a set of checkboxes located on the
top of the Step responses graphic, at the top left
part of the tool. When a model structure is selected,
estimation and validation results for that model are
calculated and shown in the corresponding graphics of
the tool. The model parameters can be modified from
the section called Model parameters, which is available
below the Input signal parameters section. Several
radio buttons are available to choose between the
different model structures. Once a model structure
is selected, different sliders appear being possible to
modify the associated orders interactively. Regarding
the estimation process, once an input signal has been
configured, the full input signal is applied to a high-
order process model in order to obtain the simulated
“real data” (shown in black in the Output signal
graphic), which is used as real process data in the
estimation process. In this tool, the input signal can
be applied for open-loop or closed-loop identification
purposes. On the top of the Full input signal graph,
there are two sets of radio buttons allowing to switch
between these two options. The first radio button
group, located on the top right part of the Full input
signal graph, allows to choose between open-loop or
closed-loop identification. When the open-loop option



Fig. 2. Main screen of ITCLI, displaying results for the first illustrative example explained in Section 5, using a PRBS
input introduced at the set point.

is selected, the full input signal is applied directly
in open loop to the high-order model like done in
ITSIE (Guzmán et al., 2012b). This option has been
kept here to compare the results between open-loop
and closed-loop identification methodologies. On the
other hand, when the closed-loop option is active,
the full input signal is applied in close loop on the
high-order model. The input signal can be introduced
in the loop at the reference or at the manipulated
variable paths, and this option can be determined
from the second radio button group located at the top
center part of the Full input signal graph. Based on the
selected option (reference or manipulated variable),
the full input signal should be shown at the Output
signal or Full input signal graphic, respectively. The
different parameters for the closed-loop simulation are
available at the Closed loop and simulation parameters
section.

In the Output signal graphic, there is a interac-
tive pink vertical line defining the estimation and
validation data. The area shown in yellow (at the
left of the vertical line) defines the estimation data,
whereas the white area represents the validation data
(at the right side of the vertical line). Therefore,
when a model structure is selected, the open-loop or
closed-loop estimation data is used to estimate the
model parameters and the validation data to test the
resulting model. Then, for each selected model struc-
ture, the full input signal is applied to the obtained
model, and the results are shown in the Output signal
graphic together with the original data of the high-
order system. Different colors are used to distinguish
between the results of each model.

• Model validation. As commented above, the valida-
tion data is represented in white in the Output signal
graphic. This validation data is used for crossvalida-
tion purposes. Model validation results are displayed
in other two different graphics: Step Responses and
Correlation function of residuals (which can be shown
using the radio buttons located on the top of the
Power Spectrum graphic). The Step Responses graph,
which is located at the top left-hand side of the tool,
shows the step responses for the each selected models
and a legend representing its goodness of fit in %

• Closed-loop identification. The closed-loop parame-
ters are located below the Model parameters section.
PI, PID or PID with filter controller structures can
be selected from three radio buttons. Moreover, a
slider called Lambda allows to specify the parameter
λ for the IMC filter time constant according to IMC-
PID tuning rules (Rivera et al., 1986) summarized in
Table 1. Other two sliders called Noise 1 and Noise 2
determine the level of noise in the data, n1, and in the
output signal, n2, respectively. When the closed-loop
option is selected from the radio button located at top
right part of the Full input signal graph, the closed-
loop simulation data is shown at the Output signal or
Full input signal graphics for the output and control
signals, respectively. At the lower right corner of the
tool, there is a graph that shows the Bode magnitude
of the additive error (|p− p̃|) for each selected model
as well as the magnitude of the sensitivity function,
|ε|, when the external signal is introduced at the
manipulated variable or, |p̃−1η| = |c ε|, when the
external signal is introduced at the reference. The
plots of these frequency responses are very useful for



studying bias shifts and variance effects as a result of
changes in controller tuning (according to the analysis
in Section 3 and Equation (12)).

5. ILLUSTRATIVE EXAMPLES

We consider the simulated fifth-order system presented
previously and described by the transfer function

p(s) =
1

(s+ 1)5
(16)

with a default sample time of Ts = 1 min. This plant is
identified in the closed-loop using built-in PI / PID / PID
w/ filter controllers obtained from i-pIDtune. In all these
controllers, the IMC filter λ can be adjusted as part of the
tool. The magnitude-only Bode plots for the closed-loop
transfer functions are evaluated (along with the additive
error) and shown in the bottom right of the ITCLI screen.

Three cases are shown in this paper as part of this example.
In the first two cases, a PRBS input signal is used for
identification, with parameters: m = 2 (number of cycles),
αs = 2, (factor representing the closed-loop speed of
response), βs = 3 (factor representing the settling time of
the process), τLdom = 3 (low estimate of τdom) and τHdom = 7
(high estimate of τdom). For more information about these
parameters see Guzmán et al. (2012b).

The two different signal injection points r and ud are
evaluated. Results are shown in Figure 2 for the case
of external excitation at the reference set point; both
ARX and OE model structures are estimated. Working
with the tool shows that controller tuning during this
identification must be at some “intermediate” level; that
is, the amplitude |p−1η| must be as flat as possible. The
second result, shown in Figure 3, shows that for the
same external input, but now introducing the signal at
the manipulated variable, the controller must be detuned
substantially through a significant increase in λ. Despite
the detuning, the low frequencies are still being attenuated
by the action of the controller, and consequently the
steady-state gain is not estimated as precisely compared
to the set point case.

The final result, shown in Figure 4, illustrates one of the
main points stressed in Section 3 regarding the reasons
why external excitation in closed-loop identification is
so important. In this case, the excitation in the data is
provided completely by the disturbance signal ν(t); the
external input magnitude is lowered effectively to zero.
Here we see how closed-loop identification displays a per-
fect fit to data from completely erroneous models. This is
illustrated for both ARX and Output Error identification.

6. CONCLUSIONS

This paper describes an interactive tool for evaluating
important aspects of closed-loop identification. By using
ITCLI it is possible to achieve this understanding inter-
actively; this being the motivating philosophy behind the
methodology described in this paper. The tool provides
different functionality modes which make it possible for
students and engineers to use its capabilities with a small
learning curve. The tool is available free of charge from

http://aer.ual.es/ITCLI/. Future work will be oriented
to include prefiltering as a design variable in closed-
loop identification, and include other illustrative model
examples beyond the fifth-order system. A comparisons
to alternative forms of identification under closed-loop
settings (such as relay feedback, Liu et al. (2013)) are being
contemplated.
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Fig. 3. Results for the second illustrative example explained in Section 5. Here the external excitation is introduced at
the manipulated variable, with the closed-loop system needing to be detuned substantially to achieve identification
with low estimation error. Despite this, precise estimation of the steady-state gain is difficult to achieve.

Fig. 4. Results for the third illustrative example explained in Section 5. If only excitation from disturbances is considered,
it is possible in closed-loop identification to fit to data “perfectly” with highly erroneous models. This motivates
the need for a sensibly designed external input signal.


