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Abstract

In this paper a new approach of the Markowitz’s model is presented.
Indeed, using an inner product, a quantitative and explicit solution for
optimal portfolio selection is given. To do this, a scalar product is defined
in <n which allows us to calculate the composition of the optimal portfolio
and the variance for a given expected return by means of the distance
between the subspace of feasible solutions and the origin of the affine
space.
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1 Introduction.

The publication in 1952 of the work Portfolio Selection by Harry Markowitz in
The Journal of Finance marked the beginning of the modern portfolio theory.
For the first time, the relation between return and risk was included in a fi-
nancial model together with the concept of rational behaviour of the investors.
Several authors, e.g. Lintner (1964), Sharpe (1963, 1970), further developed the
portfolio theory using the ideas proposed by Markowitz, giving rise to the Diag-
onal Model and the Capital Market Line (CML) (see Bodie and Merton, 2000,
for example). In the context of this article it is worth to notice that the original
Markowitz model had the ”no short sales” constraint. Later this constraint was
relaxed (see, for example, Hillier and Lieberman (1996)). A detailed descrip-
tion of the procedure for calculating the optimal portfolio using the classical
Markowitz’s model can be found in Ødegaard (2006).

Assuming an economy consisting of a set of risky assets together with a
single riskless asset, the portfolios along the CML are superior to the efficient
frontier portfolios containing risky assets only. There exist several procedures
to derive the CML. All of them are based on the Lagrange multipliers method
(cf. Merton (1972), Elton et al. (1976), Elton and Gruber (1995), Sharpe et al.
(1999), Bodie et al. (2000), Ingersoll (1987), Huang and Litzenberger (1988),
Felman and Reisman (2003), Bick (2004)).

Our approach differs from the existing analytical solutions in several aspects:

1. We start with a scalar product defined in the space <n of the portfolio
weights for n assets; the so-called inner product is induced by the variance-
covariance matrix of the risky assets (a similar approach can be found
in Becker (2003)). Such formalization allows obtaining a solution of the
Markowitz’s model using geometric tools only, by calculating a vector with
minimum norm. The main classical results of the Markowitz theory can
be derived by simplified calculus comparing to the existing solutions.

2. The scalar product also allows to compute an orthogonal basis, a set of
portfolios whose pairwise covariances are zeros, using the Gram-Schmidt
algorithm. Therefore, we can always consider a diagonal variance-covariance
matrix of security rates which notably simplifies the problem. (A similar
idea can be found in Bouchaud and Potters (2004, Chapter 12)). This
basis has a remarkable importance because the efficient frontier can be
derived using a portfolio belonging to the basis and a zero-net investment
vector only.

3. We can extend our analysis to the case of risky assets only, as well as to
the case when we invest less than 100% of the amount of capital, thus
obtaining a superior portfolio.

The organization of this paper is as follows: in Section 2, a scalar product is
defined in <n allowing us to calculate the composition of the optimal portfolio
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for a given level of expected return using the distance between the subspace
of feasible solutions and the origin of the affine space. Thus, a formula linking
mean and variance is deduced. The main result in this section is that the efficient
frontier is a one-dimensional affine subspace of <n, where a basis of uncorrelated
portfolios can be always constructed. Finally, Section 3 summarizes our findings
and concludes.

2 Markowitz’s model in a Euclidean vector space.

Let us consider a portfolio composed by n assets for which it is possible short
sales and purchases without any limit of credit. Thus, the vector space <n can
be considered as the set

{(x1, . . . , xn) ∈ <n : xi is the proportion invested in the asset i}.

In what follows, every vector x (resp. point X) will be represented by means
of a 1× n matrix, while its transpose, xt (resp. Xt), will be a n× 1 matrix.

In the previous space it is defined the following scalar product (the so-called
inner product induced by the variance-covariance volatilities matrix of the risky
assets):

〈x, y〉 = xVyt,

for all x, y ∈ <n, where V is the matrix of variances-covariances corresponding
to the n assets. In effect, taking into account that 〈x, x〉 = xVxt is the variance
associated with the composition x of a given portfolio then V is a symmetric and
positive semidefinite matrix. If there exists no composition with null variance,
i.e. the common distribution is not concentrated on a hyperplane (practically,
this stipulation should be no impediment), it can be deduced that 〈·, ·〉 is a
scalar product.

Markowitz’s model establishes that, fixing an average return m, the optimal
portfolio will be the one with the smallest variance among the portfolios having
such average profitability. In other words, once fixed a yield m, the problem is
to find a x ∈ <n, such that

• xVxt, that is to say, the variance, is minimum,

• Rxt = m or, equivalently, the average return is m, and

• 1xt = 1; in other words, the total investment is 100%,

where R = (r1, . . . , rn), with ri the expected return of the asset i (i = 1, . . . , n),
and 1 = (1, . . . , 1).

In order to do this, let us consider the (n− 1)-dimensional affine subspaces

H1 = {Y ∈ <n : RY t = YRt = m},
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with direction linear subspace U1 = {−−→AB : A,B ∈ H1} = {y : Ryt = yRt = 0},
and

H2 = {Y ∈ <n : 1Y t = Y 1t = 1},

with direction linear subspace U2 = {−−→AB : A,B ∈ H2} = {y : 1yt = y1t = 0}.

The intersection of these hyperplanes is the (n− 2)-dimensional affine sub-
space (we assume that R and 1 are linearly independent, i.e. not all assets
have the same expected return. Otherwise, the problem is more simple and the
reasoning is analogous):

S = H1 ∩H2

which will be called the subspace of feasible solutions.

So, taking into account that x = −−→OX, the problem is reduced to find a
point X ∈ S such that the vector x has a minimum norm 〈x, x〉 = xVxt, or
equivalently, a point X ∈ S which represents the minimum distance between 0
and S.

It is well-known that it suffices to find a X ∈ S such that

〈−−→OX,−−→XY 〉 = 0,

for all Y ∈ S or, equivalently,

〈x, y − x〉 = 0.
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Figure 1. Minimum distance between O and S.

Since y − x ranges the vector subspace underlying S, the problem involves
finding a point X ∈ S, such that x is orthogonal to S. Such a point is the
intersection of S and the plane spanned by two vectors orthogonal to H1 and
H2, respectively. A vector orthogonal to H1 is RV−1, since

〈z,RV−1〉 = zVV−1Rt = zRt = 0,
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for all vector z in the linear subspace U1, because R is a vector orthogonal to
H1 according to the Euclidean scalar product. Analogously, a vector orthogonal
to H2 is 1V−1. So, vector x is a linear combination of RV−1 and 1V−1:

x = α1RV−1 + α21V−1, (1)

where α1 and α2 can be obtained starting from the condition X ∈ S. Hence it
is necessary to solve the following system of equations:{

xRt = α1RV−1Rt + α21V−1Rt = m

x1t = α1RV−11t + α21V−11t = 1

whose solution is:

α1 =
m1V−11t −RV−11t

(RV−1Rt)(1V−11t)− (RV−11t)2

and

α2 =
RV−1Rt −m1V−1Rt

(RV−1Rt)(1V−11t)− (RV−11t)2
, (2)

and so:

x =
(m1V−11t −RV−11t)RV−1 + (RV−1Rt −m1V−1Rt)1V−1

(RV−1Rt)(1V−11t)− (RV−11t)2
, (3)

which is the composition of the portfolio with average return m and minimum
variance. Now, let us calculate an expression for σ2 according to m. In effect,

xV = α1R + α21,

from which
σ2 = xVxt = α1Rxt + α21xt

and, taking into account that X ∈ S, then:

σ2 = α1m+ α2. (4)

By substituting the values of α1 and α2 (see equation (2)) in expression (4)
and using the simplifications:

a =
(RV−1Rt)(1V−11t)− (RV−11t)2

1V−11t
, (5)

b =
1

1V−11t
(6)

and

c =
RV−11t

1V−11t
, (7)
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it can be obtained:
a(σ2 − b) = (m− c)2, (8)

that is the equation of a parabola in the (m,σ2)-plane which provides the rela-
tionship between the minimum variance σ2 and the fixed return m. Moreover,
this is the equation of the efficient frontier in Markowitz’s model.

In what follows, we will identify a portfolio P with its vector composition
(x1, x2, . . . , xn):

P ≡ (x1, x2, . . . , xn).

The following lemma and its proof provide an algorithm to construct a bas-
ket composed by uncorrelated portfolios, which can help us to obtain a better
diversification. On the other hand and using that basket as a basis in the Eu-
clidean space, we can obtain a diagonal variance-covariance matrix of securities
which notably simplifies the problem.

Lemma 1. Starting from n linearly independent portfolios P1, P2, . . . , Pn,
n uncorrelated portfolios can be constructed.

Proof. In effect, given n linearly independent portfolios, to obtain n uncor-
related portfolios, we can apply Gram-Schmidt Orthogonalization Algorithm,
since, in this case, uncorrelated portfolios means orthogonal portfolios:

• P ∗1 = P1.

• P ∗2 = P2 − 〈P2,P∗
1 〉

〈P∗
1 ,P∗

1 〉
P ∗1 = P2 − α2,1P

∗
1 , being α2,1 = cov(P2,P∗

1 )
var(P∗

1 ) .

...

• P ∗k = Pk −
∑k−1

j=1 αk,jP
∗
j , where αk,j = cov(Pk,P∗

j )

var(P∗
j
) , j = 1, 2, . . . , k − 1.

The proof of the following theorem describes a methodology to obtain any
portfolio in the efficient frontier starting from two other portfolios, one of them
also in the frontier.

Theorem 1. The efficient frontier is a one-dimensional affine subspace of
<n and so it can be generated by any portfolio in the frontier and a suitable
zero-net investment vector.

Proof. Taking α1 = 0 in equation (1):

x = α21V−1,

the condition X ∈ S necessarily implies that α21V−11t = α2
1
b = 1, from which

α2 = b. Thus, the portfolio P1 = b1V−1 is in the efficient frontier. In effect,
the mean m1 of P1 is c and its variance σ2

1 is b. Thus, because of equation (8),
P1 is in the efficient frontier. Indeed, it is the minimum of the parabola.
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Analogously, taking α2 = 0 in equation (1):

x = α1RV−1,

the condition X ∈ S necessarily implies that α1RV−11t = α1
c
b = 1, from which

α1 = b
c . Thus, the portfolio P2 = b

cRV−1 belongs to the efficient frontier. In
effect, the mean m2 of P2 is c+ ab

c and its variance σ2
2 is b+ ab2

c2 . Thus, because
of equation (8), P2 is also in the efficient frontier.

Therefore, we can construct the vector

p = −−−→P1P2 =
b

c
RV−1 − b1V−1,

with the following characteristics:

• The total investment of p is p1t = 0.

• The mean of p is ab
c .

• The variance of p is ab2

c2 .

Observe that p can be considered as a zero-net investment portfolio. But, in
order to make the calculations easier, we choose p with the same variance as P1.
So, we define p∗ = c√

ab
p. Thus, the mean of p∗ is m∗ =

√
ab and its variance is

b.

Given an average return m, the portfolio in the efficient frontier (that is,
with minimum variance) is X = P1 + m−m1

m∗ p∗ or equivalently X = P1 + m−c√
ab
p∗.

Reciprocally, given a portfolio X = P1 + αp∗, it belongs to the efficient frontier
because its mean is given by m1 + αm∗ = c + α

√
ab and the variance by σ2

1 +
α2σ2

2 = b(1 + α2). We will like to remark that this means that the set of
portfolios in the efficient frontier is exactly a line in <n.

Remark 1. The portfolios P1 and p∗ could be constructed starting from
1V−1 and RV−1 and applying Lemma 1 in order to obtain two uncorrelated
portfolios:

• P ∗1 = 1V−1.

• P ∗2 = RV−1 − c1V−1.

By equation (6), P ∗1 1t = 1
b , from where bP ∗1 1t = 1 and so P1 = bP ∗1 ∈ H1.

On the other hand, we have that p∗ =
√

b
aP
∗
2 .

Remark 2. Vector p∗ could have been obtained from equation (3), by
considering the coefficient of parameter m.

Remark 3. The obtained efficient frontier coincides with the one given by
Roy (1952).

Because the efficient frontier is a parabola, some properties can be deduced:
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1. It can be calculated the portfolio with the smallest variance corresponding
to the one with mean c. In this case, the variance of the portfolio is b and
it is the smallest one among all the possible values of this parameter. Note
that this portfolio is P1.

2. c can be negative.

3. If a mean value less than c is fixed, a portfolio with a greater mean and
the same variance can be obtained.

This approach to obtain the efficient frontier allows us to consider some
particular cases in a natural way. Next, we sketch some of them.

1. There is a riskless asset. Graphically, the combination of the riskless asset
with any point of the efficient frontier portfolios containing risky assets
only is a line in the (m,σ)-plane, so that the efficient frontier will be a
combination of the riskless asset with a point in the risky composition,
such that the line connecting both points is tangent to the risky efficient
frontier.

Let rf be the rate of return of the riskless asset and X the portfolio
composition in risky assets. In this case, the mean of the total portfolio
will be

m = XRt + (1−X1t)rf = X(Rt − 1trf ) + rf (9)

(note that 1 −X1t is the percentage that has not been invested in risky
assets).

From equation (9), X must verify X(R − rf1)t = m − rf , and then we
can follow a reasoning similar to the general case to obtain the optimal
combination of risky assets, which is given by

P0 =
b

c− rf
(R− rf1)V−1 =

(R− rf1)V−1

(R− rf1)V−11
.

Let ω = 1 − X1t be the percentage of investment in the riskless asset.
Then, from equation (9), given m ≥ rf , one has:

m = ωrf + (1− ω)m0,

from which ω = m−m0
rf−m0

and 1− ω = rf−m
rf−m0

. These last equations give the
percentage of investment (ω) in the riskless asset and the proportion of
investment (1− ω) in risky assets (given by portfolio P0).

2. Composition without investing 100% of the amount. The constraint of
investing 100% of the amount seems no natural. The natural constraint
should be to invest at most 100% of the amount. But, when we do not con-
sider a riskless asset, we can take into account the possibility of investing
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less than 100% of the amount, since this strategy can give in some cases
a better optimal portfolio. This situation is equivalent to the existence of
a riskless asset with rate of return equal to zero and then we can proceed
as in the previous item.

3 Conclusion.

In this paper Markowitz’s model is considered from a new point of view. More
specifically, the frame of this paper is affine geometry because we introduce a
symmetric bilinear form (inner product or scalar product) starting from the
matrix of variances-covariances of the n assets composing the portfolio, which
allows us to study some metric concepts as distance, orthogonality, etc.

The main results of this paper are:

1. The solution of Markowitz’s model is deduced with purely geometric tools,
by means of an orthogonal projection. Of course, searching for a minimum
distance can be solved using the Lagrange constraint method, but our
approach is much more intuitive and a matter of basic vector algebra.
This approach makes possible to present this topic for an undergraduate
audience.

2. The efficient portfolio is an affine subspace of dimension one, that is, a line
in the space <n of the n-tuple representing the proportions of investment
on n assets. Thus, the efficient portfolio is an affine subspace spanned by
two (uncorrelated) points. Essentially, this is the ”two fund separation
theorem” which now can be understood in a more geometric way.

3. The application of the Gram-Schmidt Orthogonalization Algorithm al-
lows us to work with a basis of orthogonal (perpendicular) portfolios and
so with a diagonal variances-covariances matrix, which reduces the calcu-
lations and diversifies a possible ”portfolio basket”.

4. This approach allows for results being slightly sharper than corresponding
ones given in the standard literature, and may be applied to more general
situations. For example, when there is a riskless asset and when not the
whole budget is invested, obtaining even a better optimal portfolio.
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