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Abstract

In recent years special attention has been devoted to the problem of finding a copula, the diagonal section and opposite diagonal 
section of which are known. For given diagonal function and opposite diagonal functions, we provide necessary and sufficient 
conditions for the existence of a copula to have these functions as diagonal and opposite diagonal sections. We make use of 
techniques related to interpolation between the diagonals, the construction of checkerboard copulas, and linear programming. This 
result allows us to solve two open problems: to characterize the class of copulas where the knowledge of diagonal and opposite 
diagonal sections determines the copula in a unique way, and to formulate necessary and sufficient conditions for each pair of such 
functions to be the diagonal and opposite diagonal sections of a unique copula.
© 2014 Published by Elsevier B.V.
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1. Introduction

Copulas are of interest in statistical analysis and modelling because they allow to build families of bivariate dis-
tributions with given marginals, and to study scale-free measures of dependence. The importance of copulas derives 
from Sklar’s Theorem (see [1,29]), which states that the joint distribution function H of the random pair (X, Y) with 
respective marginals F and G can be expressed by H(x, y) = C(F(x), G(y)) for all (x, y), where C is a copula that 
is uniquely determined on Ran(F ) × Ran(G). For details of copulas and their applications we refer to [14,25,28].

In recent years, in view of the fact that tail dependence is dictated by the behaviour of the copula on the diagonal 
and/or opposite diagonal of the unit square, special attention has been devoted in several papers to the problem of 
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finding a copula C when its diagonal is known and to determining the best-possible bounds for the functions thus 
constructed. Specifically, there has been a growing interest in the determination of copulas with given values at some 
fixed sections, having pre-assigned values on some regions, or making use of a geometric nature on the copula, such 
as properties of the graphs of vertical, horizontal and diagonal section, which have specific tail dependences and 
asymmetries (see [2,9–12,15,18,26]).

As we have just observed, the diagonal and opposite diagonal sections of a copula have probabilistic interpretations 
and they can be used to study the upper–upper and lower–lower (upper–lower and lower–upper, respectively) tail de-
pendence (see [5,19,25] and the references therein). On the other hand, in [13] a method is presented for constructing 
copulas based on the redefinition that a known copula assumes on some rectangles in the unit square (“rectangular 
patchwork” construction), and they provide copulas with a variety of tail dependence. In [18] the necessary and suffi-
cient conditions are formulated for a function in the unit square to be the diagonal section of a multivariate absolutely 
continuous copula. Finally, we note that copulas are 1-Lipschitz aggregation operators and relevant applications of 
this fact are used in fuzzy logic theory. See, for instance, [22] and the references therein, where smallest and greatest 
1-Lipschitz aggregation operators with given diagonal section and opposite diagonal section are determined.

At this point, to the best of our knowledge, the formulation of sufficient conditions that guarantee the generation 
of copulas with given diagonal section and opposite diagonal section is an open problem (see [4]).

The answer to this problem allows us to solve two other problems posed by Klement and Kolesárová in [23]:

(i) to characterize the class of copulas where the knowledge of its diagonal and opposite diagonal determines the 
copula in a unique way, and

(ii) to characterize all pairs of functions δ and ω such that there is a unique copula with diagonal section δ and 
opposite diagonal section ω.

The aim of this paper is to review these problems and to present a new method, based on interpolation between 
the diagonals, for creating copulas with given diagonal sections, and determining under which conditions (that are 
as weak as possible) the copulas with given diagonal and opposite diagonal can be obtained. Our method uses the 
concept of checkerboard copulas (see [24]) and the technique of linear programming (LP).

2. Preliminaries

A bivariate copula (briefly, a copula) is a function C: I2 → I (with I = [0, 1]) satisfying the following conditions:

(C1) C(x, 0) = C(0, x) = 0 for all x ∈ I,
(C2) C(x, 1) = C(1, x) = x for all x ∈ I,
(C3) for all x1, x2, y1, y2 in I with x1 ≤ x2 and y1 ≤ y2, VC([x1, x2] ×[y1, y2]) = C(x2, y2) −C(x1, y2) −C(x2, y1) +

C(x1, y1) ≥ 0.

VC is called the C-volume of the rectangle [x1, x2] × [y1, y2]. A copula C induces a probability measure μC on I
2

defined for each rectangle R ⊆ I
2 by μC(R) = VC(R), and is extendible in a standard way to the σ -algebra of all 

Borel sets in I2.
Classical examples of copulas are M(x, y) = min{x, y}, Π(x, y) = xy, and W(x, y) = max{x + y − 1, 0} express-

ing, respectively, comonotonicity, independence and counter-monotonicity between two random variables.
The diagonal section of a copula C is the function δC : I → I defined by δC(t) = C(t, t). On the other hand, 

a diagonal function δ: I → I is a function which satisfies the following conditions:

(D1) δ(1) = 1,
(D2) δ(t) ≤ t for all t ∈ I,
(D3) δ is increasing, and
(D4) |δ(v) − δ(u)| ≤ 2|v − u| for all u, v ∈ I.

Note that the diagonal section δC of any copula C is a diagonal function.
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The opposite diagonal section ωC of a copula C is a function ωC : I → I defined by ωC(t) = C(t, 1 − t). An 
opposite diagonal function is a function ω: I → I satisfying the following conditions:

(W1) ω(t) ≤ min(t, 1 − t), for all t ∈ I,
(W2) |ω(v) − ω(u)| ≤ |v − u| for all u, v ∈ I.

Then the opposite diagonal section of a copula is an opposite diagonal function. Conversely, for any opposite 
diagonal function there exists at least one copula with the function as opposite diagonal section (see [5]).

Given a diagonal function δ: I → I, Cδ denotes the class of all copulas having diagonal section equal to δ. Cδ is a 
non-empty set; it contains the diagonal copula Kδ, defined by

Kδ(x, y) = min

{
x, y,

δ(x) + δ(y)

2

}
. (1)

Let C be a copula, then for any 0 < a1 < a2 · · · < an < 1 and 0 < b1 < b2 · · · < bm < 1 there exists a copula 
D, named checkerboard copula, such that the measure μD distributes uniformly a mass equal to VC([ai, ai+1] ×
[bj , bj+1]) on the rectangle [ai, ai+1] × [bj , bj+1].

3. Copulas with given diagonal and opposite diagonal sections

In [5], a method for constructing copulas with given diagonal and opposite diagonal sections is presented. It makes 
use of a method for constructing cross-copulas with given horizontal and vertical sections.

Now, we solve an open problem concerning the minimal set of sufficient conditions on δ and ω that guarantees the 
existence of a copula with functions δ and ω as diagonal and opposite diagonal sections.

Let us consider the following assumptions: let δ be a diagonal function and ω an opposite diagonal function 
satisfying:⎧⎪⎪⎨

⎪⎪⎩

(a) ∀t ∈ [0,1/2], 0 ≤ ω(t) − δ(t); 0 ≤ ω(1 − t) − δ(t),

(b) ∀t ∈ [1/2,1], δ(t) − ω(t) ≤ 2t − 1; δ(t) − ω(1 − t) ≤ 2t − 1,

(c) ∀t, t ′ ∈ [0,1/2], t < t ′,
δ(t) + δ(1 − t) − ω(t) − ω(1 − t) ≥ δ

(
t ′
) + δ

(
1 − t ′

) − ω
(
t ′
) − ω

(
1 − t ′

)
.

(2)

From (2)(a) and (2)(b), it follows that δ( 1
2 ) = ω( 1

2 ). Taking this equality into account and putting t ′ = 1
2 in (2)(c), 

we have that δ(t) + δ(1 − t) − ω(t) − ω(1 − t) ≥ 0, for all t ∈ [0, 1/2].
Note that conditions (2) are necessary conditions, in the sense that for any copula C it holds that its diagonal and 

opposite diagonal sections satisfy these conditions. Conditions (a) and (b) essentially express that when one moves 
from a point on the diagonal (resp. opposite diagonal) horizontally or vertically to a point on the opposite diagonal 
(resp. diagonal), the values of any copula C in those two points cannot differ more in absolute value than the distance 
between the two points. In other words, conditions a) and b) follow from the 1-Lipschitz continuity property of copulas 
(which is itself a consequence of the defining properties (C1)–(C3)). Condition c), on the other hand, follows directly 
from the 2-increasingness property (C3) of copulas. It expresses that for any copula C, the C-volume of an arbitrary 
square centered on the main and opposite diagonal of the unit square (i.e. with two opposite corner points on the 
diagonal and the other two corner points on the opposite diagonal) is greater or equal than the C-volume of any other 
square that is centered on the diagonal and opposite diagonal and is entirely contained in the given square. As the 
midpoint of the square (1/2, 1/2) can be regarded as a (degenerated) square with zero C-volume that is contained in 
any square centered on the diagonal and opposite diagonal, condition (c) also indirectly expresses that for any copula 
C and any square centered on the diagonal and opposite diagonal, it holds that the C-volume of that square is positive. 
Note that the latter condition alone is not equivalent with condition (c) as it does not guarantee the monotonicity of 
C-volumes on growing squares.

In what follows we will prove that the necessary conditions (2) are also sufficient conditions, in the sense that 
for any diagonal function δ and any opposite diagonal function ω satisfying (2), there exists at least one copula that 
has δ and ω, respectively as diagonal and opposite diagonal sections. This is the main result of our paper which is 
formally stated in Theorem 3.2. The major part of the paper is concerned with the proof of this theorem. Our proof 
is constructive, in the sense that given a diagonal function δ and opposite diagonal function ω satisfying (2), we 
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Fig. 1. Division in case n = 1.

construct (in a limiting procedure) a binary function defined on the unit square that has the boundary properties (C1) 
and (C2) and has δ and ω as diagonal and opposite diagonal section, respectively. To prove that this function also has 
the 2-increasingness property (C3) – proving that it is also a copula – we rely on an algebraic technique that has been 
used previously for proving the existence of ternary copulas with given values in some points of the unit cube [6]. 
The main idea is to bring the condition of 2-increasingness into a form such that, by means of Farkas’ lemma, it 
suffices to show that the target function of some well-defined associated linear programming problem (LP-problem) 
has minimum value zero. Let us recall Farkas’ lemma (see [16,27]) which is a theorem stating that of two systems, 
one or the other has a solution, but not both nor none. In the sequel, the notation x ≥ 0 denotes xi ≥ 0 for all the 
components of the vector x.

Lemma 3.1 (Farkas’ lemma). Let M be an m × n matrix and c an m-dimensional vector. Then, exactly one of the 
following two statements is true:

(i) There exists a vector y ∈R
n such that My = c and y ≥ 0.

(ii) There exists a vector x ∈R
m such that Mtx ≥ 0 and ctx < 0.

We now state the main theorem of the present paper. As the proof contains many steps we reserve the whole 
Section 4 to it.

Theorem 3.2. Let δ be a diagonal function and ω an opposite diagonal function for which (2) holds. Then there exists 
a copula C whose diagonal section and opposite diagonal section are equal to δ and ω, respectively.

4. Proof of Theorem 3.2

4.1. Construction of a checkerboard function

We state that for m values 0 < a1 < · · · < am < 1/2, a copula B exists and satisfies that

⎧⎪⎪⎨
⎪⎪⎩

B(ai, ai) = δ(ai),

B(1 − ai,1 − ai) = δ(1 − ai),

B(ai,1 − ai) = ω(ai),

B(1 − ai, ai) = ω(1 − ai),

for i = 1, . . . , m. This copula is precisely a checkerboard copula.
First, we will prove that a copula exists while interpolating δ and ω at points a1 and 1 − a1, with 0 < a1 < 1/2

(case n = 1). Let us divide the unit square I2 as Fig. 1 shows.
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Fig. 2. Decomposition at the corners.

B1 is the checkerboard copula satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VB1(R1) = δ(a1),

VB1(R2) = ω(a1) − δ(a1),

VB1(R3) = a1 − ω(a1),

VB1(R4) = ω(1 − a1) − δ(a1),

VB1(R5) = δ(a1) + δ(1 − a1) − ω(a1) − ω(1 − a1),

VB1(R6) = 1 − 2a1 + ω(a1) − δ(1 − a1),

VB1(R7) = a1 − ω(1 − a1),

VB1(R8) = 1 − 2a1 + ω(1 − a1) − δ(1 − a1),

VB1(R9) = −1 + 2a1 + δ(1 − a1).

Conditions (2), with the fact that δ is a diagonal function and ω is an opposite diagonal function, ensure that 
VB1(Ri) ≥ 0. For instance, as a consequence of Condition (2)(b), we have that VB1(R8) ≥ 0. If we add the B1-volumes, 
then B1 satisfies the boundary conditions, and B1 is a copula. Furthermore, the choice of the allocations of values to 
VB1(Ri) ensures us that⎧⎪⎪⎨

⎪⎪⎩

B1(a1, a1) = δ(a1),

B1(1 − a1,1 − a1) = δ(1 − a1),

B1(a1,1 − a1) = ω(a1),

B1(1 − a1, a1) = ω(1 − a1).

Let us suppose that for a given n there exists a checkerboard copula that interpolates δ and ω at the points

0 < a1 < · · · < an < 1/2 < 1 − an < · · · < 1 − a1 < 1.

We now prove, by induction, that this is also true for n + 1. Given the points

0 < a0 < a1 < · · · < an < 1/2 < 1 − an < · · · < 1 − a1 < 1 − a0 < 1,

using hypothesis induction, we build the interpolating checkerboard copula for

0 < a1 < · · · < an < 1/2 < 1 − an < · · · < 1 − a1 < 1.

We denote it by Bn. To build Bn+1 we only modify the mass distribution on the rectangles in the form

[0, a1] × [α,β], [1 − a1,1] × [α,β], [α,β] × [0, a1], [α,β] × [1 − a1,1],
where α, β ∈ {a1, . . . , an, 1 − an, . . . , 1 − a1} and ]α, β[ ∩ {a1, . . . , an, 1 − an, . . . , 1 − a1} = ∅. For the case corre-
sponding to [0, a1]2, we have a division by rectangles R1,1, R1,2, R1,3 and R1,4 shown in Fig. 2. In the other corners, 
we proceed in a similar way

The rectangle A2 is divided in two parts as follows: the former is A′
2 = [0, a0] × [a1, 1 − a1] and the latter is 

A′′ = [a0, a1] × [a1, 1 − a1]. The mass allocated to A′ equals
2 2
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VBn

(
A′

2

) = min
{
VBn(A2),ω(a0) − δ(a0)

} = min
{
ω(a1) − δ(a1),ω(a0) − δ(a0)

}
.

On each of the subrectangles of A′
2 and A′′

2, the mass is proportionally distributed as it was in the corresponding 
rectangle in A2.

We proceed analogously with the rectangles A1, A3, and A4, allocating to them corresponding masses VBn(A
′
1), 

VBn(A
′
3) and VBn(A

′
4), in the same way in which VBn(A

′
2) was defined.

4.2. 2-increasingness of the checkerboard function

Let rij = V (Ri,j ). Considered as unknowns in the vector

(r12, r13, r14, r21, r31, r42, r24, r34, r22, r33, r43, r44)
t ,

where t means the transpose, we must prove that the system of linear equations with augmented matrix (i.e. the matrix 
obtained by adding to the matrix of the system the right-hand side of the system):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0 0 0 0 t1
0 1 0 1 0 0 0 0 0 0 0 0 t2
1 1 1 0 0 0 0 0 0 0 0 0 t3
0 0 0 1 0 0 1 0 1 0 0 0 t4
0 0 0 0 1 0 0 1 0 1 0 0 t5
0 0 0 0 0 1 0 0 0 0 1 1 t6
0 0 0 0 0 1 0 1 0 0 0 0 t7
0 0 0 0 0 0 1 0 0 0 1 0 t8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

admits a positive solution where

t1 = max
(
0,ω(1 − a0) − ω(1 − a1) + δ(a1) − δ(a0)

)
,

t2 = max
(
0,ω(a0) − ω(a1) + δ(a1) − δ(a0)

)
,

t3 = δ(a1) − δ(a0),

t4 = a1 − a0 + ω(a0) − ω(a1),

t5 = a1 − a0 + ω(1 − a0) − ω(1 − a1),

t6 = 2(a1 − a0) + δ(1 − a1) − δ(1 − a0),

t7 = max
(
0,2(a1 − a0) + ω(1 − a0) − ω(1 − a1) + δ(1 − a1) − δ(1 − a0)

)
,

t8 = max
(
0,2(a1 − a0) + ω(a0) − ω(a1) + δ(1 − a1) − δ(1 − a0)

)
,

and clearly ti ≥ 0 for all i ∈ {1, . . . , 8}.
By Gaussian elimination, we transform this system into the equivalent system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0 0 0 0 t1
0 1 0 1 0 0 0 0 0 0 0 0 t2
0 0 1 −1 −1 0 0 0 0 0 0 0 t3 − t1 − t2
0 0 0 1 0 0 1 0 1 0 0 0 t4
0 0 0 0 1 0 0 1 0 1 0 0 t5
0 0 0 0 0 0 −1 −1 0 0 0 1 t6 − t7 − t8
0 0 0 0 0 1 0 1 0 0 0 0 t7
0 0 0 0 0 0 1 0 0 0 1 0 t8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that only the third and sixth expression in the last column can be strictly negative and that the submatrix made 
from columns 1, 2, 3, 9, 10, 12, 6 and 11 is the unit matrix I8.

Farkas’ theorem implies that this system has a positive solution if and only if there does not exist a vector x ≥ 0
for which it holds that
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 −1 1 0 0 0 0
1 0 −1 0 1 0 0 0
0 0 0 1 0 −1 0 1
0 0 0 0 1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6
x7
x8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

t1 x1 + t2 x2 + (t3 − t1 − t2) x3 + t4 x4 + t5 x5 + (t6 − t7 − t8)x6 + t7 x7 + t8 x8 < 0.

We can reformulate this problem as an LP problem. Indeed, we must prove that the target function

t1 x1 + t2 x2 + (t3 − t1 − t2) x3 + t4 x4 + t5 x5 + (t6 − t7 − t8)x6 + t7 x7 + t8 x8

subject to the conditions

⎛
⎜⎜⎝

0 1 −1 1 0 0 0 0
1 0 −1 0 1 0 0 0
0 0 0 1 0 −1 0 1
0 0 0 0 1 −1 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6
x7
x8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠

and the positivity conditions

xj ≥ 0 ∀j ∈ {1,2, . . . ,8}
has minimum value 0 (x = 0 being the minimizer).

4.3. Solving the LP-problem with the simplex method

Introducing slack variables x9, x10, x11 and x12, the LP minimization problem is described by the following simplex 
table (the first column being associated with variable x1, ... , and the last one with x12):

0 1 −1 1 0 0 0 0 −1 0 0 0 0
1 0 −1 0 1 0 0 0 0 −1 0 0 0
0 0 0 1 0 −1 0 1 0 0 −1 0 0
0 0 0 0 1 −1 1 0 0 0 0 −1 0
t1 t2 t3 − t1 t4 t5 t6 − t7 t7 t8 0 0 0 0 0

−t2 −t8

Since the last column contains only zeros, we change signs on all rows to obtain the equivalent table

0 −1 1 −1 0 0 0 0 1 0 0 0 0
−1 0 1 0 −1 0 0 0 0 1 0 0 0
0 0 0 −1 0 1 0 −1 0 0 1 0 0
0 0 0 0 −1 1 −1 0 0 0 0 1 0
t1 t2 t3 − t1 t4 t5 t6 − t7 t7 t8 0 0 0 0 0

−t −t
2 8
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which is the canonical simplex table associated with the basic variables x9, x10, x11, x12. The entries on the last row 
(below the solid line) are called reduced cost coefficients; they must be zero for the basic variables (if they are not 
zero, they must be made zero by elementary row operations) and they are in general non-zero for the other variables. 
If all reduced cost coefficients are positive, then the basic solution is an optimal basic solution. Such basic solution 
has all its components corresponding to columns that are not basis vectors, equal to zero. Hence x2 = x3 = x4 =
x5 = x6 = x7 = x8 = 0. Furthermore the components corresponding to basis vectors can be directly read off the last 
column, but since this column contains only zeros, it follows that x9 = x10 = x11 = x12 = 0, whence x = 0. Moreover, 
the minimum value of the target function is 0.

Let us recall some well-known facts from linear programming and the simplex method (notations and conventions 
are not uniformly fixed, we use those from [3]). If at least one reduced cost coefficient is strictly negative, then the 
actual basic solution may not be optimal. Two situations can be distinguished. If all entries above the line in a column 
with strictly negative reduced cost coefficient are negative, then the LP problem is unbounded, and the target function 
can be made as negative as one wishes by letting one or more of the variables grow indefinitely. If, however, some 
of the entries in that column are strictly positive, then the column can be transformed into a unit vector and the 
reduced cost coefficient can be made 0 by elementary row operations, such that the associated variable becomes a 
basic variable. The element of the table that is selected to become the 1-component of the new unit vector is called 
the pivot element. Hence, the above LP problem is reduced to the problem of proving that for all possible values of 
t1, t2, . . . , t8, it is always possible to find a sequence of pivot elements such that all reduced cost coefficients become 
non-negative.

Now, if t3 − t1 − t2 ≥ 0 and t6 − t7 − t8 ≥ 0 then the actual basic solution is optimal, which proves that the target 
function has minimal value 0.

We further distinguish the three mutual exclusive cases

a. t3 − t1 − t2 < 0 and t6 − t7 − t8 ≥ 0.
b. t3 − t1 − t2 ≥ 0 and t6 − t7 − t8 < 0.
c. t3 − t1 − t2 < 0 and t6 − t7 − t8 < 0.

In the following subsections, we treat each of these cases separately.

4.4. The case t3 − t1 − t2 < 0 and t6 − t7 − t8 ≥ 0

In the last simplex table we retain element (1, 3) as pivot; hence we make the third column equal to the basis 
vector �e1 and the associated cost coefficient equal to 0 by means of appropriate row operations. We obtain the new 
table

0 −1 1 −1 0 0 0 0 1 0 0 0 0
−1 1 0 1 −1 0 0 0 −1 1 0 0 0
0 0 0 −1 0 1 0 −1 0 0 1 0 0
0 0 0 0 −1 1 −1 0 0 0 0 1 0
t1 t3 − t1 0 t4 + t3 t5 t6 − t7 t7 t8 t1 + t2 0 0 0 0

−t1 − t2 −t8 −t3

Since by assumption t1 + t2 − t3 ≥ 0, there remain two cost coefficients that can be strictly negative, namely t3 − t1
and t4 + t3 − t1 − t2. We distinguish the following mutual exclusive subcases: A: t3 − t1 < 0 (no condition on the sign 
of t4 + t3 − t1 − t2) and B: t3 − t1 ≥ 0, t4 + t3 − t1 − t2 < 0 (hence also t4 − t2 < 0).

4.4.1. Subcase A: t3 − t1 < 0
We must take element (2, 4) as pivot and obtain the table

−1 0 1 0 −1 0 0 0 0 1 0 0 0
−1 1 0 1 −1 0 0 0 −1 1 0 0 0
0 0 0 −1 0 1 0 −1 0 0 1 0 0
0 0 0 0 −1 1 −1 0 0 0 0 1 0
t3 0 0 t4 − t2 t5 + t3 t6 − t7 t7 t8 t2 0 0 0 0

−t −t
1 8
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Since t3 ≥ 0 and t2 ≥ 0 and

t5 + t3 − t1 ≥ a1 − a0 ≥ 0

only the cost coefficient t4 − t2 can still be strictly negative. If t4 − t2 ≥ 0, then the actual basic solution is optimal and 
yields minimum value 0.

We must take element (2, 2) as pivot and obtain the table

−1 0 1 0 −1 0 0 0 0 1 0 0 0
−1 1 0 1 −1 0 0 0 −1 1 0 0 0
−1 1 0 0 −1 1 0 −1 −1 1 1 0 0
0 0 0 0 −1 1 −1 0 0 0 0 1 0

t3 + t4 t2 − t4 0 0 t5 + t3 t6 − t7 t7 t8 t4 t2 − t4 0 0 0
−t2 −t1 + t4 −t8

−t2

Now t2 − t4 > 0. Columns 1 and 5 have only negative entries; therefore, the corresponding cost coefficients must 
be positive or zero as otherwise the claim of the theorem would fail. However

t3 + t4 − t2 ≥ a1 − a0 ≥ 0

and

t3 + t4 + t5 − t1 − t2 ≥ 2(a1 − a0) − [
δ(a1) − δ(a0)

] ≥ 0,

and therefore the actual basic solution is optimal and yields minimum value 0.

4.4.2. Subcase B: t3 − t1 ≥ 0 and t3 + t4 − t1 − t2 < 0
As stated before, this case also implies that t4 − t2 < 0.
We can only choose as pivot the element (2, 4). The table is transformed into the equivalent table

−1 0 1 0 −1 0 0 0 0 1 0 0 0
−1 1 0 1 −1 0 0 0 −1 1 0 0 0
−1 1 0 0 −1 1 0 −1 −1 1 1 0 0
0 0 0 0 −1 1 −1 0 0 0 0 1 0

t3 + t4 t2 − t4 0 0 t5 + t3 t6 − t7 t7 t8 t4 t1 + t2 0 0 0
−t2 +t4 − t1 −t8 −t3 − t4

−t2

We have shown before that t3 + t4 − t2 ≥ 0 and t3 + t4 + t5 − t1 − t2 ≥ 0. Hence, also in this case the actual basic 
solution is optimal and yields minimum value 0.

This finishes the discussion of the case t3 − t1 − t2 < 0 and t6 − t7 − t8 ≥ 0.

4.5. The case t3 − t1 − t2 ≥ 0 and t6 − t7 − t8 < 0

This situation is completely analogous as the previous one. In fact we can formally perform the analogous steps by 
making use of the following substitutions:

t1 ↔ t8, t2 ↔ t7, t3 ↔ t6, t4 ↔ t5.

The subcase t3 − t1 < 0 becomes t6 − t8 < 0 and we have to check the positivity of t4 + t6 − t8, i.e.

t4 + t6 − t8 ≥ a1 − a0 ≥ 0.

Next t4 − t2 < 0 becomes t5 − t7 < 0 and we must check the positivity of t5 + t6 − t7 and of t4 + t5 + t6 − t7 − t8:

t5 + t6 − t7 ≥ a1 − a0 ≥ 0,

t4 + t5 + t6 − t7 − t8 ≥ δ(1 − a0) − δ(1 − a1) ≥ 0.
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4.6. The case t3 − t1 − t2 < 0 and t6 − t7 − t8 < 0

Now we consecutively use the elements (1, 3) and (4, 6) as pivots, to obtain the following table:

0 −1 1 −1 0 0 0 0 1 0 0 0 0
−1 1 0 1 −1 0 0 0 −1 1 0 0 0
0 0 0 −1 1 0 1 −1 0 0 1 −1 0
0 0 0 0 −1 1 −1 0 0 0 0 1 0
t1 t3 − t1 0 t4 + t3 t5 + t6 0 t6 − t8 t8 t1 + t2 0 0 t7 + t8 0

−t1 − t2 −t7 − t8 −t3 −t6

There remain four cost coefficients that can become negative, namely t3 − t1, t6 − t8, t4 + t3 − t1 − t2 and t5 + t6 −
t7 − t8. We will consider the following mutual exclusive subcases:

A. t3 − t1 < 0, t6 − t8 ≥ 0, t5 + t6 − t7 − t8 ≥ 0.
B. t3 − t1 ≥ 0, t3 + t + 4 − t1 − t2 < 0, t6 − t8 ≥ 0, t5 + t6 − t7 − t8 ≥ 0.
C. t3 − t1 ≥ 0, t + 3 + t4 − t1 − t2 ≥ 0, t6 − t8 < 0.
D. t3 − t1 ≥ 0, t3 + t + 4 − t1 − t2 ≥ 0, t6 − t8 ≥ 0, t5 + t6 − t7 − t8 < 0.
E. t3 − t1 < 0, t6 − t8 < 0.

4.6.1. Subcase A: t3 − t1 < 0, t6 − t8 ≥ 0, t5 + t6 − t7 − t8 ≥ 0
Note that we make no a priori statement on the sign of t3 + t4 − t1 − t2. We choose element (2, 2) as pivot to obtain 

the following table:

−1 0 1 0 −1 0 0 0 0 1 0 0 0
−1 1 0 1 −1 0 0 0 −1 1 0 0 0
0 0 0 −1 1 0 1 −1 0 0 1 −1 0
0 0 0 0 −1 1 −1 0 0 0 0 1 0
t3 0 0 t4 − t2 t5 + t6 0 t6 − t8 t8 t2 t1 − t3 0 t7 + t8 0

−t7 − t8 −t6
+t3 − t1

There are still two coefficients that could be negative, namely t4 − t2 and t5 + t6 − t7 − t8 + t3 − t1.
First, assume that t4 − t2 < 0, then we use element (2, 4) as pivot to obtain:

−1 0 1 0 −1 0 0 0 0 1 0 0 0
−1 1 0 1 −1 0 0 0 −1 1 0 0 0
−1 1 0 0 0 0 1 −1 −1 1 1 −1 0
0 0 0 0 −1 1 −1 0 0 0 0 1 0

t3 + t4 t2 − t4 0 0 t5 + t6 0 t6 − t8 t8 t4 t1 − t3 0 t7 + t8 0
−t2 −t7 − t8 +t2 − t4 −t6

+t3 − t1
+t4 − t2

Clearly, all reduced cost coefficients are positive, except for possibly the coefficient t3 + t4 + t5 + t6 − t1 − t2 − t7 − t8, 
of which it is required that it is positive, for otherwise there would exist an unbounded solution to the LP-problem. 
Hence it should hold that

t3 + t4 + t5 + t6 − t1 − t2 − t7 − t8

≥ −ω(a0) + ω(a1) − δ(a1) + δ(a0)

− ω(1 − a0) + ω(1 − a1) − δ(1 − a1) + δ(1 − a0)

be positive. This is guaranteed by (2)(c).
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Next, assume that t4 − t2 ≥ but t5 + t6 − t7 − t8 + t3 − t1 < 0. Taking (3, 5) as pivot, we obtain

−1 0 1 −1 0 0 1 −1 0 1 1 −1 0
−1 1 0 0 0 0 1 −1 −1 1 1 −1 0
0 0 0 −1 1 0 1 −1 0 0 1 −1 0
0 0 0 −1 0 1 0 −1 0 0 1 0 0
t3 0 0 t4 − t2 0 0 t1 + t7 t3 + t5 t2 t1 − t3 t7 + t8 t3 + t5 0

+t5 + t6 −t3 − t5 −t7 − t8 +t1 − t3 −t1
−t7 − t8 +t6 −t5 − t6
+t3 − t1

Now, as we have seen before

t3 + t4 + t5 + t6 − t1 − t2 − t7 − t8 ≥ 0.

Furthermore from the assumption t5 + t6 − t7 − t8 + t3 − t1 < 0, it follows that

t1 + t7 − t3 − t5 > t6 − t8 ≥ 0,

the last inequality also being one of the assumptions. Next, since by assumption t5 + t6 − t7 − t8 ≥ 0, it follows that

t3 + t5 + t6 − t7 − t8 ≥ t3 ≥ 0.

Finally, we have already shown that

t5 + t3 − t1 ≥ a1 − a0 ≥ 0.

Hence, case A is completed, with the conclusion that there always exists an optimal basic solution yielding zero as 
minimum value of the target function.

4.6.2. Subcase B: t3 − t1 ≥ 0, t3 + t4 − t1 − t2 < 0, t6 − t8 ≥ 0, t5 + t6 − t7 − t8 ≥ 0
We must take (2, 4) as pivot and obtain the following simplex table:

−1 0 1 0 −1 0 0 0 0 1 0 0 0
−1 1 0 1 −1 0 0 0 −1 1 0 0 0
−1 1 0 0 0 0 1 −1 −1 1 1 −1 0
0 0 0 0 −1 1 −1 0 0 0 0 1 0

t3 + t4 t2 − t4 0 0 t5 + t6 0 t6 − t8 t8 t4 t1 + t2 0 t7 + t8 0
−t2 −t7 − t8 −t3 − t4 −t6

+t4 + t3
−t1 − t2

It is easily verified that all reduced cost coefficients are positive (either by the assumptions or the stated conditions 
of the theorem). Hence this case is immediately completed.

4.6.3. Subcase C: t3 − t1 ≥ 0, t3 + t4 − t1 − t2 ≥ 0, t6 − t8 < 0
Due to the inbuilt symmetry (one can simultaneously interchange t1 and t8, t2 and t7, t3 and t6, and t4 and t5, the 

steps required in this subcase are similar to those of Subcase A. Hence, we can immediately conclude that there exists 
an optimal basic solution yielding zero as minimum value of the target function.

4.6.4. Subcase D: t3 − t1 ≥ 0, t3 + t4 − t1 − t2 ≥ 0, t6 − t8 ≥ 0, t5 + t6 − t7 − t8 < 0
For the same reasons of symmetry, this subcase is completely analogous to Subcase B, leading to the same conclu-

sion.
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4.6.5. Subcase E: t3 − t1 < 0, t6 − t8 < 0
We take as consecutive pivots the elements (2, 2) and (3, 7) and find the following simplex table:

−1 0 1 0 −1 0 0 0 0 1 0 0 0
−1 1 0 1 −1 0 0 0 −1 1 0 0 0
0 0 0 −1 1 0 1 −1 0 0 1 −1 0
0 0 0 −1 0 1 0 −1 0 0 1 0 0
t3 0 0 t4 − t2 t5 − t7 0 0 t6 t2 t1 − t3 t8 − t6 t7 0

+t6 − t8 +t3 − t1

The cost coefficients that can still be negative are t4 + t6 − t2 − t8 and t3 + t5 − t1 − t7. Assume that t3 + t5 − t1 −
t7 < 0. Then we should take (3, 5) as pivot and we obtain:

−1 0 1 −1 0 0 1 0 −1 1 1 −1 0
−1 1 0 0 0 0 1 0 −1 1 1 −1 0
0 0 0 −1 1 0 1 −1 −1 0 1 −1 0
0 0 0 −1 0 1 0 −1 0 0 1 0 0
t3 0 0 t4 − t2 0 0 t1 + t7 t6 + t3 t2 t1 − t3 t8 − t6 t3 + t5 0

+t6 − t8 −t3 − t5 +t5 − t1 −t3 − t5 −t1
+t3 + t5 −t7 +t1 + t7
−t1 − t7

It is easy to check that all reduced cost coefficients are positive. In particular

t3 + t5 + t6 − t1 − t7 ≥ a1 − a0 − ω(1 − a0) + ω(1 − a1) ≥ 0

Also since t8 − t6 ≥ 0 and t1 + t7 − t3 − t5 ≥ 0 by assumption, it holds that their sum is positive too.
In case t4 + t6 − t2 − t8 < 0, a similar computation leads to the same conclusions.

4.7. Finalizing the proof

Finally, let Cn denote a copula that interpolates the points i
2n+1 , with 1 ≤ i ≤ n. By compactness arguments v.g. 

the class of all copulas is compact w.r.t. to the norm of supremum (see [8]), the sequence (Cn) has a convergent 
subsequence, and the limit of this subsequence is a copula having δ as diagonal and ω as opposite diagonal sections. 
This observation finalizes our proof of Theorem 3.2.

5. Characterization of copulas with given diagonal and opposite diagonal sections

Given a diagonal and opposite diagonal function such that conditions (2) are satisfied, we have constructed in the 
proof of Theorem 3.2 a sequence of checkerboard copulas whose limit yields a copula that has the given diagonal 
and opposite diagonal functions as diagonal and opposite diagonal sections, respectively. This construction method 
clearly has its theoretical merit, but for actually constructing copulas with the given sections it is highly unpractical 
(especially due to the limiting procedure). Easier techniques for constructing such copulas have been established 
recently, amongst which we mention the methods based on linear or quadratic interpolation between points on the 
diagonal and opposite diagonal [5,20,21]. Also, in general there is not a unique copula with given diagonal and 
opposite diagonal sections, as is illustrated by the following example.

Example 5.1. Consider as given diagonal and opposite diagonal function the diagonal and opposite diagonal section 
of the product copula Π , i.e.:

δ(x) = x2, ω(x) = x(1 − x).

Obviously, since the product copula Π has δ as diagonal and ω as opposite diagonal section, conditions (2) are satis-
fied. If we apply the technique of linear interpolation [20], then whether we construct the so-called orbital semilinear 
copula or the so-called radial semilinear copula, we always retrieve the product copula Π itself. However, if we apply 
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the technique of quadratic interpolation [21], then we obtain orbital semiquadratic and radial semiquadratic copulas 
that differ from Π . For instance, it has been proven that all copulas in the parametrized family

Cλ(x, y) =
{

xy − λ(y − x)(x + y − 1)min(y,1 − y), if (x ≤ y ∧ x + y ≥ 1) ∨ (x ≥ y ∧ x + y ≤ 1)

xy − λ(x − y)(x + y − 1)min(x,1 − x), otherwise

with λ ∈ [−1, 1], are (orbital) semiquadratic copulas that have the same diagonal section and opposite diagonal section 
as Π . Hence, in this case there is even an infinity of copulas with the same diagonal and opposite diagonal section.

An obvious question that arises from the previous example is to characterize the diagonal and opposite diagonal 
functions for which there exists a unique copula that has these functions as diagonal and opposite diagonal section, 
respectively. This is exactly one of the two problems posed by Klement and Kolesárová in [23]. We are now able to 
solve both these problems.

Theorem 5.2. Let C be a copula, and let δ and ω be its diagonal and opposite diagonal sections, respectively. Then 
C is the unique copula with these sections if and only if

(a) δ(x) = ω(x)

(b) δ(x) = δ(1 − x) − 1 + 2x

(c) ω(x) = ω(1 − x)

(3)

for all x ∈ [0, 1/2].

Proof. Following the ideas in [7], based on the use of a rectangular patchwork (see for instance [13]), we obtain that 
the copula C is unique if and only if μC is concentrated on the diagonals of the unit square.

If μC is concentrated on the diagonals of the unit square, then conditions (3) are necessary.
Conversely, conditions (3) ensure that there is no mass out of the diagonals. �
Finally, we characterize all pairs of functions δ and ω such that there is a unique copula with diagonal δ and 

opposite diagonal ω. In fact, it is only necessary for δ and ω to be “compatible”, and to satisfy the conditions imposed 
in Theorem 5.2.

Theorem 5.3. Let δ be a diagonal function and ω be an opposite diagonal function. Then there exists a unique copula 
having δ and ω as diagonal and opposite diagonal sections, respectively, if and only if δ and ω satisfy conditions (2)
and (3).

Note that the uniqueness of the copula implies that its support is in the union of the diagonal and opposite diag-
onal of the unit square. Copulas that have the latter property have been previously called X-copulas and it has been 
proven that any X-copula is a Bertino copula [17]. It follows that the unique copula with diagonal sections satisfying 
conditions (2) and (3) is a Bertino copula, hence a copula that can be written as:

C(x, y) = min(x, y) − min
t∈[{x,y}]

(
t − δ(t)

)
,

where [{x, y}] denotes the closed interval with endpoints x and y. It is no surprise that this construction only entails 
δ, as ω is entirely fixed by the given δ by means of conditions (3a) and (3c).

Example 5.4. Consider as given diagonal and opposite diagonal functions

δ(x) = x2, ω(x) = min
(
x2, (1 − x)2).

They satisfy conditions (2) and (3). Note that δ is again the diagonal section of Π . It follows that the unique copula 
that has δ and ω as diagonal and opposite diagonal section, respectively, is the Bertino-copula

C(x, y) = min(x, y) − min
(
x − x2, y − y2).
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6. Conclusions

We hereby provide the necessary and sufficient conditions for the existence of a copula to have given functions 
as diagonal and opposite diagonal sections. The techniques we use are interpolation, construction of checkerboard 
copulas and linear programming.

Among other results, we have found the answer to some open problems. For example that proposed by Klement 
and Kolesárová [23]:

(i) To characterize the class of copulas where the knowledge of their diagonal and opposite diagonal determines the 
copula in a unique way, and

(ii) To characterize all pairs of functions δ and ω that there is a unique copula with a diagonal section δ and opposite 
diagonal section ω.

The potential use of the result concerns the study of the relation of statistical data situated around the diagonal 
and opposite diagonal sections and located near the corners, and the correlation between extreme events. We need to 
highlight the fact that the construction method has theoretical interest but hardly any practical use.

Finally, an open problem to be the subject of further work can be established as:
Given a diagonal function and opposite diagonal function that satisfy all the properties that guarantee the existence 

of at least one copula with these functions as diagonal and opposite diagonal sections, respectively, does there exist a 
(pointwise) smallest (resp. greatest) copula with these sections, and if so, can we construct this copula?
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