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a b s t r a c t

We consider parametric classes (Tr )r∈(0,1/2) of so-called transformation matrices and their
induced families (Ar )r∈(0,1/2) and (µr )r∈(0,1/2) of two-dimensional copulas and doubly
stochastic measures with fractal support respectively. By using tools from Symbolic Dy-
namics we show that for each pair r, r ′

∈ (0, 1/2) with r ≠ r ′ there exists a homeomor-
phism Hrr ′ between the supports of µr and µr ′ mapping a Borel set of µr -measure one to
a set of µr ′ -measure zero. Differentiability properties of these homeomorphisms are stud-
ied and Hausdorff dimensions of related sets are calculated. Several examples and graphics
illustrate the main results.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of copulas in Probability Theory and Statistics stems fromSklar’swell-known theorem (see [1–3]), stating
that every joint distribution function can be decomposed into itsmarginals and a copula. In the case of continuousmarginals
the copula is unique. Capturing all scale-invariant dependences of continuous randomvectors copulas also play a crucial role
in many applications. For more information about copulas and some of their applications see [4,2,5].

Working with special iterated function systems (IFS), Fredricks et al. [6] constructed families (Ar)r∈(0,1/2) of two-
dimensional copulaswith fractal supports fulfilling that for every d ∈ (1, 2) there exists rd ∈ (0, 1/2) such that theHausdorff
dimension of the support Srd of Ard is d. Using the fact that the same IFS-construction also works with respect to the strong
metric D1 (a metrization of the strong operator topology of the corresponding Markov operators, see [7]) on the space C
of two-dimensional copulas, Trutschnig and Fernández-Sánchez [8] showed that the same result holds for the subclass of
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idempotent copulas (idempotent with respect to the star-product introduced by Darsow et al., see [9]). Families (Ar)r∈(0,1/2)
of copulas with fractal support were also studied by the first three authors of the present paper in [10] and, more recently,
in [11]. In the latter paper, using techniques from Probability and Ergodic Theory, the authors also discussed properties
of subsets of the corresponding fractal supports and constructed mutually singular copulas having the same fractal set as
support. Moments of these copulas were discussed in [12].

Charpentier and Juri [13, Remark 3.3] employed families (Ar)r∈(0,1/2) of the above-mentioned type to study lower tail-
dependence copulas (LTDC). Given a copula A ∈ C and u, v ∈ (0, 1] the LTCD-copula Φ (A, u, v) relative to A is the copula
relating the conditional distribution function (x, y) →

A(x,y)
A(u,v)

with 0 < x ≤ u ≤ 1 and0 < y ≤ v ≤ 1with the corresponding

marginal conditional distribution functions x →
A(x,v)

A(u,v)
and y →

A(u,y)
A(u,v)

respectively. In case r = 0.1, they showed that

Φ

A0.1, 0.2k, 0.2k

= A0.1

for any k ∈ N, a result easily generalizable to
Φ

Ar , (2r)k, (2r)k


= Ar

for every r ∈ (0, 1/2).
In the current paper we consider similar classes of transformation matrices (Tr)r∈(0,1/2) and the induced families

(Ar)r∈(0,1/2) and (µr)r∈(0,1/2) of copulas and doubly stochastic measures with fractal supports respectively. We study
homeomorphismsHrr ′ between the corresponding supports Sr and Sr ′ (r ≠ r ′) and characterizeHrr ′ by a systemof functional
equations. More importantly, we show that Hrr ′ maps a Borel set Λ ⊂ Sr fulfilling µr(Λ) = 1 to a set of µr ′-measure zero,
implying that µr ′ and the push-forward µ

Hrr′
r of µr under Hrr ′ are singular with respect to each other and that we cannot

find a function ϕ : I2 → R such that the equality

µr ′ (Hrr ′(E)) =


E
ϕdµr

holds for each Borel set E in I2 := [0, 1]2. As a main tool for proving the above-mentioned results the strong interrelation
between attractors of IFSs and Code Spaces (Symbolic Dynamics) established by the well-known address map (and its
inverse in the totally disconnected setting), see [14,15], is used. Hausdorff dimensions of related sets are calculated and
an Eggleston–Besicovitch-type result studying subsets of Sr with prescribed asymptotic frequencies in their ‘addresses’ is
proved.

The rest of the paper is organized as follows. Section 2 gathers some notation and preliminaries that will be used in
the sequel. Section 3 contains the construction of the homeomorphism Hrr ′ mentioned before (both in the case that the
IFS induced by the transformation matrix Tr is just touching and in the case that the IFS is totally disconnected) as well as
the main results concerning singularity of µ

Hrr′
r with respect to µr ′ . Section 4 gathers some calculations of the Hausdorff

dimensions of related sets. Various graphics illustrate the main results.

2. Notation and preliminaries

I will denote the closed unit interval [0, 1], B(I2) the Borel σ -field in I2 and λ2 the Lebesgue measure on B(I2). A two-
dimensional copula (copula, for short) is a function A : I2 → I satisfying (i) A(x, 0) = A(0, x) = 0 and A(x, 1) = A(1, x) = x
for all x ∈ I as well as (ii) A(x2, y2)− A(x1, y2)− A(x2, y1)+ A(x1, y1) ≥ 0 for x1, x2, y1, y2 in I fulfilling x1 ≤ x2 and y1 ≤ y2.
Equivalently, a copula is the restriction to I2 of a bivariate distribution function having uniformly distributed marginals on
I. The family of all copulas will be denoted by C. Π will denote the product copula, M the minimum copula and W the
copula defined by W (x, y) = max{x + y − 1, 0}. Each copula A ∈ C induces a doubly stochastic measure µA by setting
µA(R) = VA(R) := A(x2, y2)−A(x1, y2)−A(x2, y1)+A(x1, y1) for every rectangle R = [x1, x2]× [y1, y2] ⊆ I2 and extending
µA in the standard measure-theoretic way from the semi-ring of all rectangles to full B(I2). Doubly stochastic measures
may be regarded as natural generalization of doubly stochastic matrices. The family of all doubly stochastic measures on I2
will be denoted by PC . The support of A ∈ C is the complement of the union of all open subsets of I2 with µA-measure zero,
i.e. the smallest closed set having full µA-measure. d∞ will denote the uniform distance on C. For further information on
copulas we refer the reader to [16,2,5].

Before sketching the construction of copulas with fractal support via so-called transformation matrices we recall the
definition of an Iterated Function System (IFS) and some main results about IFSs (for more details see [14,17,15]). Suppose
for the following that (Ω, ρ) is a compact metric space, let K(Ω) denote the family of all non-empty compact subsets of
Ω, δH theHausdorffmetric onK(Ω) andP (Ω) the family of all probabilitymeasures on the Borel σ -fieldB(Ω). Amapping
w : Ω → Ω is called contraction if there exists a constant L < 1 such that ρ(w(x), w(y)) ≤ Lρ(x, y) holds for all x, y ∈ Ω .
A family (wl)

n
l=1 of n ≥ 2 contractions on Ω is called Iterated Function System (IFS) and will be denoted by {Ω, (wl)

n
l=1}. An

IFS together with a vector (pl)nl=1 ∈ (0, 1]n fulfilling
n

l=1 pl = 1 is called Iterated Function System with probabilities (IFSP).
We will denote IFSPs by {Ω, (wl)

n
l=1, (pl)

n
l=1}. Every IFSP induces the so-called Hutchinson operator H : K(Ω) → K(Ω),

defined by

H(Z) :=

n
l=1

wi(Z). (1)
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It can be shown (see [14,15]) that H is a contraction on the compact metric space (K(Ω), δH), so Banach’s Fixed
Point theorem implies the existence of a unique, globally attractive fixed point Z⋆ of H . Hence, for every R ∈ K(Ω),
we have

lim
n→∞

δH

Hn(R), Z⋆


= 0.

The attractor Z⋆ will be called self-similar if all contractions in the IFS are similarities. An IFS {Ω, (wl)
n
l=1} is called totally

disconnected (or disjoint) if the setsw1(Z⋆), w2(Z⋆), . . . , wn(Z⋆) are pairwise disjoint. {Ω, (wl)
n
l=1}will be called just touching

if it is not totally disconnected but there exists a non-empty open set U ⊆ Ω such that w1(U), w2(U), . . . , wn(U) are
pairwise disjoint. Additionally to the operator H every IFSP also induces a (Markov) operator V : P (Ω) → P (Ω),
defined by

V(µ) :=

n
i=1

pi µwi . (2)

The so-called Hutchison metric h (sometimes also called Kantorovich or Wasserstein metric) on P (Ω) is defined by

h(µ, ν) := sup


Ω

f dµ −


Ω

f dν : f ∈ Lip1(Ω, R)


. (3)

Hereby Lip1(Ω, R) is the class of all non-expanding functions f : Ω → R, i.e. functions fulfilling |f (x) − f (y)| ≤ ρ(x, y) for
all x, y ∈ Ω . It is not difficult to show that V is a contraction on (P (Ω), h), that h is a metrization of the topology of weak
convergence on P (Ω) and that (P (Ω), h) is a compact metric space (see [14,18]). Consequently, again by Banach’s Fixed
Point theorem, it follows that there is a unique, globally attractive fixed point µ⋆

∈ P (Ω) of V , i.e. for every ν ∈ P (Ω) we
have

lim
n→∞

h

Vn(ν), µ⋆


= 0.

µ⋆ will be called invariant measure—it is well known that the support of µ⋆ is exactly the attractor Z⋆. The measure µ⋆ will
be called self-similar if Z⋆ is self-similar, i.e. if all contractions in the IFSP are similarities.

As mentioned already in the Introduction attractors of IFSs are strongly interrelated with Symbolic Dynamics via the
so-called address map (see [14,15]): for every n ∈ N the code space of n symbols will be denoted by Σn, i.e.

Σn := {1, 2, . . . , n}N
=

(ki)i∈N : 1 ≤ ki ≤ n∀i ∈ N


.

Bold symbols will denote elements of Σn. σ will denote the (left-)shift operator on Σn, i.e. σ((k1, k2, . . .)) = (k2, k3, . . .).
Define a metric ρ on Σn by setting

ρ(k, l) :=


0 if k = l
21−min{i:ki≠li} if k ≠ l,

then it is straightforward to verify that (Σn, ρ) is a compact ultrametric space and that ρ is a metrization of the product
topology. Suppose now that {Ω, (wl)

n
l=1} is an IFS with attractor Z⋆, fix an arbitrary x ∈ Ω and define the address map

G : Σn → Ω by

G(k) := lim
m→∞

wk1 ◦ wk2 ◦ · · · wkm(x), (4)

then (see [15]) G(k) is independent of x, G : Σn → Ω is Lipschitz continuous and G(Σn) = Z⋆. Furthermore G is injective
(and hence a homeomorphism) if and only if the IFS is totally disconnected. Given z ∈ Z⋆ every element of the preimage
G−1({z}) will be called address of z. Considering a IFSP {Ω, (wl)

n
l=1, (pl)

n
l=1} with attractor Z⋆ and invariant measure µ⋆ we

can also define a probability measure P on B(Σn) by setting

P


k ∈ Σn : k1 = i1, k2 = i2, . . . , km = im


=

m
j=1

pij (5)

and extending in the standard way to full B(Σn). According to [15] µ⋆ is the push-forward of P via the address map,
i.e. PG(B) := P(G−1(B)) = µ⋆(B) holds for each B ∈ B(Z⋆).

Throughout the rest of the paper we will consider IFSP induced by so-called transformation matrices, for the original
definition see [6], for the generalization to the multivariate setting we refer the reader to [8].

Definition 1 ([6]). A n × m-matrix T = (tij)i=1...n, j=1...m is called transformation matrix if it fulfills the following four
conditions: (i) max(n,m) ≥ 2, (ii) all entries are non-negative, (iii)


i,j tij = 1, and (iv) no row or column has all

entries 0.
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Given T , we define the vectors (aj)mj=0, (bi)
n
i=0 of cumulative column and row sums by a0 = b0 = 0 and

aj =


j0≤j

n
i=1

tij0 j ∈ {1, . . . ,m}

bi =


i0≤i

m
j=1

ti0j i ∈ {1, . . . , n}.

Since T is a transformation matrix both (aj)mj=0 and (bi)ni=0 are strictly increasing and Rji := [aj−1, aj]× [bi−1, bi] are compact
non-empty rectangles for every j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. SetI := {(i, j) : tij > 0} and consider the IFSP
{I2, (wji)(i,j)∈I , (tij)(i,j)∈I}, whereby the contraction wji : I2 → Rji is defined by

wji(x, y) =

aj−1 + x(aj − aj−1), bi−1 + x(bi − bi−1)


.

The induced operator VT on P (I2) is defined by

VT (µ) :=

m
j=1

n
i=1

tij µwji =


(i,j)∈I tij µ

wji (6)

and it is straightforward to see that VT maps PC into itself so we can view VT also as an operator on C (see [6]). According
to the before-mentioned facts there is exactly one copula A⋆

T ∈ C, to which we will refer to as invariant copula, such that
VT (µA⋆

T
) = µA⋆

T
holds. Considering the conditions:

(i) T contains at least one zero,
(ii) for each non-zero entry of T the row and column sums through for that entry are equal,
(iii) there is at least one row or column of T with two non-zero entries,

the following results hold (again see [6]): if T fulfills Condition (i) then A⋆
T is singular with respect to the Lebesgue measure

λ2. A⋆
T is self-similar if T satisfies Condition (ii). If T satisfies Conditions (i) and (iii) the support of A⋆

T is a fractalwithHausdorff
dimension between 1 and 2. Asmentioned in the Introduction, for each d ∈ (1, 2) there exists a copula A ∈ C whose support
is a fractal with Hausdorff dimension d. We use Mandelbrot’s original definition of a fractal set as a set whose topological
dimension is lower than its Hausdorff dimension (for basic properties concerning Hausdorff dimension and other notions
that are useful to express fractal properties of sets, we refer the reader to [17,19]). For the analogous result on the subclass
of idempotent copulas we refer the reader to [8].

3. Support homeomorphisms

In this section we will mainly work with the following family (Tr)r∈(0,1/2) of transformation matrices already used
in [12,6]:

Tr =

r/2 0 r/2
0 1 − 2r 0

r/2 0 r/2


. (7)

Setting Ar := A⋆
Tr as well as µr = µ⋆

Tr for every r ∈ (0, 1/2) and using the results mentioned in the previous section, it
follows immediately that µr ∈ PC is self-similar and that µr has fractal support. Furthermore (see [6]) for every d ∈ (1, 2)
there exists exactly one rd ∈ (0, 1/2) such that the Hausdorff dimension of the support Srd of Ard is d. We will rename the
contractions induced by Tr as

wr
1 := wr

11, wr
2 := wr

13, wr
3 := wr

31, wr
4 := wr

33, wr
5 := wr

22

and set Q r
i = wr

i (I
2) as well as S ir = Q i

r ∩ Sr for every i ∈ {1, . . . , 5}. In the sequel we will also write wi instead of wr
i etc.,

if no confusion can arise which r is meant. Fig. 1 depicts the densities of V 5
Tr (Π) for the cases r = 1/4 and r = 1/3, Fig. 2

the copula V 5
Tr (Π) and its density for r = 1/3. Due to the fact that the IFS induced by Tr is just-touching there cannot be

many points with more than one address—the following result holds (by a slight misuse of notation we will write G−1
r (x, y)

instead of G−1
r ({(x, y)}) in the sequel).

Lemma 2. Consider the family (Tr)r∈(0,1/2) defined according to (7) and fix r ∈ (0, 1/2). Then all but countable many points in Sr
have a unique Gr -address. For every point (x, y) without unique Gr -address there exists a natural number n and k1, k2, . . . , kn ∈

{1, 2, . . . , 5} such that exactly one of the following four situations holds:

(S1) G−1
r (x, y) =


(k1, . . . , kn, 5, 1, 1, 1, . . .), (k1, . . . , kn, 1, 4, 4, 4, . . .)


(S2) G−1

r (x, y) =

(k1, . . . , kn, 5, 4, 4, 4, . . .), (k1, . . . , kn, 4, 1, 1, 1, . . .)


(S3) G−1

r (x, y) =

(k1, . . . , kn, 5, 2, 2, 2, . . .), (k1, . . . , kn, 2, 3, 3, 3, . . .)


(8)

(S4) G−1
r (x, y) =


(k1, . . . , kn, 5, 3, 3, 3, . . .), (k1, . . . , kn, 3, 2, 2, 2, . . .)


.
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Fig. 1. Image plot of the (natural) logarithm of the density of V5
Tr (Π) for r = 1/4 (left) and r = 1/3 (right).

Fig. 2. Image plot of the (natural) logarithm of the density ofV5
Tr (Π) (left) and image plot of the copulaV5

Tr (Π) (right) for r = 1/3 (white/gray lines depict
contours).

Proof. Note that for every k ∈ Σ5 we have

Gr(k) = wk1(Gr(σk)). (9)

Since (0, 0) is a fixed point of w1 and (0, 0) ∉ ∪
5
i=2 S

i
r we directly get that (1, 1, . . .) is the unique Gr -address of (0, 0).

G−1
r (0, 1) = {(2, 2, . . .)} as well as G−1

r (1, 0) = {(3, 3, . . .)} and G−1
r (1, 1) = {(4, 4, . . .)} follows analogously.

(r, r) = w1(1, 1) = w5(0, 0) implies G−1
r (r, r) ⊆


(5, 1, 1, 1, . . .), (1, 4, 4, 4, . . .)


from which, applying (9) together

with the fact that (0, 0) and (1, 1) have unique addresses

G−1
r (r, r) =


(5, 1, 1, 1, . . .), (1, 4, 4, 4, . . .)


follows. Proceeding in the same manner we get

G−1
r (1 − r, 1 − r) =


(5, 4, 4, 4, . . .), (4, 1, 1, 1, . . .)


G−1
r (r, 1 − r) =


(5, 2, 2, 2, . . .), (2, 3, 3, 3, . . .)


G−1
r (1 − r, r) =


(5, 3, 3, 3, . . .), (3, 2, 2, 2, . . .)


.
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Having this, again using (9) and the fact that (0, 0) and (1, 1) have unique addresses yields, first,

Gr ((k1, . . . , kn, 5, 1, 1, 1, . . .)) =

wk1 ◦ · · · ◦ wkn ◦ w5


(0, 0)

=

wk1 ◦ · · · ◦ wkn ◦ w1


(1, 1)

= Gr ((k1, . . . , kn, 1, 4, 4, 4, . . .))

implying that (x, y) = Gr((k1, . . . , kn, 5, 1, 1, 1, . . .)) has at least two addresses and, second, that there cannot be more
than two. The other three situations (S2)–(S4) in (8) follow in the same manner.

Finally suppose that a point (x, y) ∈ Sr has two addresses k, l ∈ Σ5. Setting j := min{i ∈ N : ki ≠ li} and once more
using (9) it follows that

Gr

(kj, kj+1, . . .)


= Gr


(lj, lj+1, . . .)


∈

(r, r), (1 − r, 1 − r), (r, 1 − r), (1 − r, r)


,

which completes the proof. �

Consider now r, r ′
∈ (0, 1/2) with r ≠ r ′. For every (x, y) ∈ Sr the address map Gr ′ : Σ5 → Sr ′ maps all possible

Gr -addresses G−1
r (x, y) of (x, y) to the same point Sr ′ . Hence assigning

(x, y) → Hrr ′(x, y) := Gr ′(G−1
r (x, y)) (10)

defines a mapping Hrr ′ : Sr → Sr ′ easily seen to be bijective. Hrr ′ is also continuous—the following theorem holds.

Theorem 3. Consider the family (Tr)r∈(0,1/2) defined according to (7). Then for every pair r, r ′
∈ (0, 1/2) the mapping Hrr ′

defined according to (10) is a homeomorphism.

Proof. We will show that Hrr ′ is continuous at every point (x, y) of Sr . Suppose that (kn)n∈N is a sequence in Σ5 such that
(xn, yn) → (x, y) for (xn, yn) = Gr(kn). Consider the following two cases: (a) if (x, y) has a unique Gr -address k then
(x, y) ∈ Sk1r \ ∪j≠k1 S

j
r and it follows immediately that there exists an index n1 such that kn1 = k1 for all n ≥ n1. Obviously

Gr(σ
jk) has a unique address for every j ∈ N too, so, usingGr(k) = wk1 ◦· · · wki(Gr(σ

ik)), we can find another index n2 > n1
such that kn2 = k2 for all n ≥ n2. Proceeding in the samemanner shows ρ(kn, k) → 0 for n → ∞which, using continuity of
Gr ′ , in turn implies limn→∞ Hrr ′(xn, yn) = Hrr ′(x, y). (b) Suppose that (x, y) has two addresses (k1, . . . , kl, 5, 1, 1, 1, . . .) and
(k1, . . . , kl, 1, 4, 4, 4, . . .). Applying similar arguments we can show that there exists an index n0 such that for each n > n0
the address kn is of the form (k1, . . . , kl, 5, ∗, ∗, ∗ . . .) or (k1, . . . , kl, 1, ∗, ∗, ∗, . . .). Hence, using the fact that all corners
of the unit square have unique addresses and proceed like in case (a), it follows that Hrr ′ is continuous at (x, y). Completely
the same line of argumentation shows that Hrr ′ is also continuous in all points falling in categories (S2)–(S4) of Lemma 2. As
continuous bijection on the compact metric space Sr Hrr ′ is a homeomorphism, which completes the proof. �

Remark 4. An alternative way for proving that Hrr ′ : Sr → Sr ′ is a homeomorphism without thinking much about possible
double address would be the following: define an equivalence relation ∼ on Σ2

5 by setting σ ∼ ϑ :⇔ Gr(k) = Gr(l) and
consider the quotient space Σ5 /∼ with the quotient topology. π will denote the projection from Σ5 to Σ5 /∼. According
to [20] the quotient topology O∼ is metrizable and the resulting quotient space (Σ5 /∼, ρ∼) is compact again. Furthermore
the new mapping G∼

r : Σ5 /∼ → Sr , defined via G∼
r ([σ ]) := Gr(π

−1([σ ])), is a bijection and continuous; hence a
homeomorphism.

(Σ5, ρ)

Gr

$$IIIIIIIIII

π

��
(Σ5/∼, ρ∼)

G∼
r

// Sr

Since ∼ does not depend on the concrete choice of r we directly get that Sr and Sr ′ are homeomorphic, which, considering
Hrr ′ = G∼

r ′ ◦ (G∼
r )−1, completes the proof.

The homeomorphism Hrr ′ can also be characterized through a system of functional equations—the following result holds.

Theorem 5. Consider the family (Tr)r∈(0,1/2) in (7). Then, for every pair r, r ′
∈ (0, 1/2),Hrr ′ defined according to (10) is the

unique bounded function h : Sr → R2 satisfying

h ◦ wr
i (x, y) = wr ′

i ◦ h(x, y) (11)

for all i ∈ {1, . . . , 5}.
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Proof. Note that (11) is equivalent to
h(rx, ry) = r ′h(x, y)
h(rx, 1 − r + ry) = (0, 1 − r ′) + r ′h(x, y)
h(1 − r + rx, ry) = (1 − r ′, 0) + r ′h(x, y)
h(1 − r + rx, 1 − r + ry) = (1 − r ′, 1 − r ′) + r ′h(x, y)
h(r + (1 − 2r)x, r + (1 − 2r)y) = (r, r) + (1 − 2r ′)h(x, y).

Direct calculations show thatHrr ′ satisfies the above equalities. To prove thatHrr ′ is the only solution we proceed as follows:
consider the Banach space (B(Sr), ∥ · ∥∞) of all R2-valued bounded functions on Sr with ∥f ∥∞ = supz∈Sr ∥f (z)∥2 (∥ · ∥2
denoting the Euclidean norm) and apply the Contraction Mapping Theorem to Φ : B(Sr) → B(Sr), defined by

Φ(h)(x, y) = r ′h
x
r
,
y
r


if (x, y) ∈ S1r

Φ(h)(x, y) = (0, 1 − r ′) + r ′h

x
r
,
y + r − 1

r


if (x, y) ∈ S2r

Φ(h)(x, y) = (1 − r ′, 0) + r ′h

x + r − 1

r
,
y
r


if (x, y) ∈ S3r

Φ(h)(x, y) = (1 − r ′, 1 − r ′) + r ′h

x + r − 1

r
,
y + r − 1

r


if (x, y) ∈ S4r

Φ(h)(x, y) = (r, r) + (1 − 2r ′)h


x − r
1 − 2r

,
y − r
1 − 2r


if (x, y) ∈ S5r . �

Although being a homeomorphism the push-forward µ
Hrr′
r of µr via Hrr ′ is very different from µr ′ .

Theorem 6. Consider the family (Tr)r∈(0,1/2) defined according to (7) and fix r, r ′
∈ (0, 1/2) with r ≠ r ′. Then the measures

µ
Hrr′
r and µr ′ on B(Sr ′) are singular with respect to each other.

Proof. According to [11, Corollary 3.8] the setMr ′ ∈ B(Sr ′) of points (x, y) ∈ Sr ′ whose Gr ′-address k ∈ Σ5 fulfills

lim
n→∞

Card{i ≤ n : ki = 1}
n

= r ′/2

lim
n→∞

Card{i ≤ n : ki = 2}
n

= r ′/2

lim
n→∞

Card{i ≤ n : ki = 3}
n

= r ′/2

lim
n→∞

Card{i ≤ n : ki = 4}
n

= r ′/2

lim
n→∞

Card{i ≤ n : ki = 5}
n

= 1 − 2r ′

(12)

has fullµr ′-measure. Considering both the fact that the setNr ∈ B(Sr) of all (x, y) ∈ Sr for which (12) holds hasµr -measure
zero and the fact that Hrr ′(Nr) = Mr ′ completes the proof. �

Remark 7. It is straightforward to construct copulas A, B ∈ C, A ≠ B, with a support having λ2-measure zero for which
there exists a homeomorphism H : SA → SB between their supports which is at the same time an isomorphism of the
corresponding doubly stochastic measure spaces (SA, B(SA), µA) and (SB, B(SB), µB). In fact, setting A = M and B = W
yields a very simple example. For the copulas (Ar)r∈(0,1/2), however, Theorem 6 shows that the situation is completely
different.

Remark 8. The function Hr,r ′ could alternatively have been constructed on full [0, 1]2 as follows: let vr
1, v

r
4, v

r
5 denote the

first coordinates of the functions wr
1, w

r
4, w

r
5 for every r ∈ (0, 1/2). Set g0(x) = x for every x ∈ [0, 1] and define a sequence

(gn)n∈N of functions on [0, 1] recursively by

gn+1 ◦ vr
i (x) := vr ′

i ◦ gn(x)

for every i ∈ {1, 4, 5}. It is straightforward to verify that (gn)n∈N converges uniformly to a homeomorphism g :

[0, 1] → [0, 1], fulfilling Hrr ′(x, y) = (g(x), g(y)) for all x, y ∈ Sr . Setting Grr ′(x, y) := (g(x), g(y)) therefore defines a
homeomorphism Grr ′ on [0, 1]2 which is an extension ofHrr ′ . According to [10,21] we can find λ-preserving transformations
f r1 , f r2 : [0, 1] → [0, 1] such that Ar(x, y) = λ({z ∈ [0, 1] : f r1 (z) ≤ x, f r2 (z) ≤ y}) for all x, y ∈ [0, 1], so the push-forward
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of µM via (f r1 , f r2 ) coincides with µr . The probability measure µ
G◦(f r1 ,f r2 )

M is an extension of µ
Hrr′
r to B(I2) assigning mass zero

to all Borel sets U ∈ B(I2) with U ∩ Sr ′ = ∅. Taking into account that g is not λ-preserving, µ
G◦(f r1 ,f r2 )

M (Sr ′) is not doubly
stochastic.

As the next step we will take a closer look to Hrr ′ from the viewpoint of differentiable transformations of measure spaces.
We start with the subsequent definitions containing the relevant ideas in the general setting; for more details see [22,23].

Definition 9. A collection U of open sets in a metric space (Ω, ρ) is called a substantial family for a measure µ on B(Ω) if
the following conditions hold.

(a) There exists a constant β > 0 such that for each U ∈ U there is an open ball B containing U and satisfying 0 <
µ(B) < βµ(U).

(b) For each x ∈ Ω and for each δ > 0, there is a set U = U(x, δ) ∈ U satisfying diam(U) < δ as well as x ∈ U .

Definition 10. Let (Ω, Λ, µ) and

Ω ′, Λ′, µ′


be measure spaces, f : Ω → Ω ′ a function with f (A) ∈ Λ′ for all A ∈ Λ, and

U a family of subsets in Λ. We say that f is U-differentiable with respect to µ and µ′ at x ∈ Ω if there exists a real number
α satisfying

α = lim
γ→0


sup


µ′ (f (U))

µ(U)
: x ∈ U ∈ U and diam(U) < γ


= lim

γ→0


inf


µ′ (f (U))

µ(U)
: x ∈ U ∈ U and diam(U) < γ


.

If such an α exists it is called the U-derivative of f at x (with respect to µ and µ′).

For each r ∈ (0, 1/2) let S∗
r denote the set of all points in Sr with unique Gr -address. The proof of the following lemma is

straightforward.

Lemma 11. Consider the family (Tr)r∈(0,1/2) defined according to (7). For every r ∈ (0, 1/2) the family U∗
r consisting of all sets

of the form

wr
k1 ◦ · · · ◦ wr

kn


(0, 1)2 ∩ S∗

r


: n ∈ N and ki ∈ {1, 2, 3, 4, 5}

is substantial for µr on B(S∗
r ).

Being doubly stochastic µr has no point masses; hence µr(S∗
r ) = 1 holds and we can also work with the class Ur consisting

of all sets of the form

wr
k1 ◦ · · · ◦ wr

kn


(0, 1)2 ∩ Sr


: n ∈ N and ki ∈ {1, 2, 3, 4, 5} .

Theorem 12. Consider the family (Tr)r∈(0,1/2) according to (7) and fix r, r ′
∈ (0, 1/2) with r ≠ r ′. Then there exists a set

Mr ⊆ Sr with µr -measure one such that Hrr ′ : Sr −→ Sr ′ is Ur -differentiable with respect to µr and µr ′ at every (x, y) ∈ Mr . At
every (x, y) ∈ Mr the value of the Ur derivative is zero.

Proof. Again applying Corollary 3.8 in [11] it follows that the setMr ∈ B(Sr) of points (x, y) ∈ Sr whose Gr -address k ∈ Σ5
fulfills

lim
n→∞

Card{i ≤ n : ki = 1}
n

= r/2

lim
n→∞

Card{i ≤ n : ki = 2}
n

= r/2

lim
n→∞

Card{i ≤ n : ki = 3}
n

= r/2

lim
n→∞

Card{i ≤ n : ki = 4}
n

= r/2

lim
n→∞

Card{i ≤ n : ki = 5}
n

= 1 − 2r

(13)

has full µr -measure. Suppose now that (x, y) ∈ Mr , that Gr(k) = (x, y) and define f 5m(k) = Card{i ≤ m : ki = 5}/m for
everym ∈ N. The function

g : z →


r ′

r

1−z 1 − 2r ′

1 − 2r

z
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is continuous in z0 = (1 − 2r) ∈ (0, 1) and fulfills g(z0) < 1. Hence, for every ε > 0 we can find a constant a < 1 and an
index m0 = m0(ε) such that for all m ≥ m0 we have g(f 5m(k)) < a < 1 as well as am < ε. Set γ := g(f 5m0

(k))m0 , then every
U ∈ Ur with (x, y) ∈ U and diam(U) < γ is of the form

Um := wr
k1 ◦ · · · ◦ wr

km


(0, 1)2 ∩ Sr


withm ≥ m0. For each such Um we get

µr ′

Hrr ′(wk1 ◦ · · · ◦ wkm(Sr))


µr(wk1 ◦ · · · ◦ wkm(Sr))

=


r ′
2

m(1−f 5m(k)) 
1 − 2r ′

mf 5m(k)

 r
2

m(1−f 5m(k))
(1 − 2r)mf 5m(k)

= g(f 5m(k))m < ε.

This completes the proof since (x, y) ∈ Mr was arbitrary. �

So far in this paper we have only considered elements of the family (Tr)r∈(0,1/2) defined according to (7) which all
induce just-touching IFSP. To simplify matters we could also have started with transformation matrices that induce totally
disconnected IFSP. The reasons for choosing (Tr)r∈(0,1/2) according to (7) were that (i) the family induces IFSPs that consist
of only five transformations (which is impossible for the totally disconnected setting), (ii) the chosen approach shows that
double addresses do not cause toomuch technical problems and, (iii) the family has already been discussed in various papers
(see [12,13,6–8]). Wewill, however, close this section by taking a look to the totally disconnected setting andmention some
alternative simple proofs valid in this situation. Note that the copulas we will consider are generalized shuffles of Min
(see [24,25]).

Consider the transformation matrices (Mr)r∈(0,1/2), defined by

Mr =



r
2

0 0 0 0
r
2

0 0
1 − 2r

4
0 0 0

0 0 0 0
1 − 2r

4
0

0
1 − 2r

4
0 0 0 0

0 0 0
1 − 2r

4
0 0

r
2

0 0 0 0
r
2


(14)

and, as before, let wr
1, . . . , w

r
8 : I2 → I2 denote the corresponding similarities of the IFSP, whereby the contraction factor of

wr
1, w

r
2, w

r
3, w

r
4 is r and that of wr

5, w
r
6, w

r
7, w

r
8 is (1 − 2r)/4. Define the remaining quantities µ⋆

r , A
⋆
r , S

r
i ,Q

r
i , etc. analogous

to before. Fig. 3 depicts the densities of V 3
Mr

(Π) for the cases r = 1/4 and 1/3, and Fig. 4 the copula V 3
Mr

(Π) and its density
for r = 1/4. The IFSP induced by Mr is totally disconnected, so the address map Gr : Σ8 → Sr , defined according to (4), is
a homeomorphism for every r ∈ (0, 1/2). Define the function Fr : Sr → Sr (see [11] for the analogous construction in the
just touching case) by

Fr(x, y) :=

8
i=1

(wr
i )

−1(x, y) 1wr
i (Sr )

(x, y).

Then it follows immediately that the dynamical systems (Σ8, σ ) and (Sr , Fr) are topologically equivalent (see [26]), i.e. the
following diagram is commutative:

Σ8
Gr //

σ

��

Sr

Fr
��

Σ8 Gr
// Sr

As a direct consequencewe get that (Sr , Fr) is chaotic in the sense of Barnsley (see [14, p. 168]), so Fr is topologically transitive
and the set of period points in Sr with respect to Fr is dense. Additionally, for every pair r, r ′

∈ (0, 1/2) the dynamical systems
(Sr , Fr) and (Sr ′ , Fr ′) are topologically equivalent and

Hrr ′ := Gr ′ ◦ G−1
r
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Fig. 3. Image plot of the (natural) logarithm of the density of V3
Mr

(Π) for r = 1/4 (left) and r = 1/3 (right), Mr according to Eq. (14).

Fig. 4. Image plot of the (natural) logarithm of the density of V3
Mr

(Π) (left) and image plot of the copula V3
Mr

(Π) (right) for r = 1/4 (white/gray lines
depict contours).

is a homeomorphism between Sr and Sr ′ . For every r ∈ (0, 1/2) define the probabilitymeasure Pr onB(Σ8) according to (5),
whereby

pj :=


r
2

if j ∈ {1, 2, 3, 4}

1 − 2r
4

if j ∈ {5, 6, 7, 8}.

Then the dynamical systems (Σ8, Pr , σ ) and (Sr , µr , Fr) are isomorphic, i.e. the following diagram is commutative and the
homeomorphism Gr is measure-preserving.

(Σ8, Pr)
Gr //

σ

��

(Sr , µr)

Fr
��

(Σ8, Pr) Gr
// (Sr , µr)
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Since the shift operator σ on (Σ8, Pr) is strongly mixing (see [26]) it follows that Fr is strongly mixing too. Moreover,
considering r, r ′

∈ (0, 1/2) with r ≠ r ′, Birkhoff’s Ergodic theorem implies that Pr and Pr ′ are singular with respect to
each other, from which in turn it follows immediately that µ

Hrr′
r and µr ′ are singular with respect to each other.

4. Hausdorff dimensions of related sets

As mentioned before in this section we will consider some sets related to the function Hrr ′ and calculate their Hausdorff
dimensions. As a straightforward consequence of the result [27] proved by Banach in 1925 characterizing monotone
functions that are absolutely continuous, one has the following property (see [28,22]): f transforms a set of measure zero
onto a set of measure one if and only if f is a non-constant singular function. The results in Section 3 imply that we are in a
similar situation here —the function Hrr ′ maps a set of µr -measure zero onto a set of µr ′-measure one and, additionally, is
Ur -differentiable µr -almost everywhere (with derivative equal to zero).

Wenow return to the family (Tr)r∈(0,1/2) defined according to (7) and calculate theHausdorff dimension of the setMr ⊆ Sr
fulfilling (13). Doing so we will apply the following Frostman-type lemma (for a proof see [19, pp. 60–61]) and consider
(open) squares of the form Q = wk1 ◦ · · · ◦ wkm((0, 1)2) form sufficiently big instead of open balls Bγ (x) of radius γ around
x ∈ Rd (the proof can easily be adjusted accordingly).

Lemma 13 ([19]). Consider M ∈ B(Rd) and a finite Borel measure µ on M. Then the following assertions hold for the Hausdorff
dimension dimH(M) of M.

1. If lim supγ→0
µ(Bγ (x))

γ s is bounded on M then dimH(M) ≤ s.

2. If there exists a constant a > 0 such that lim infγ→0
µ(Bγ (x))

γ s > a > 0 on M then dimH(M) ≥ s.

Theorem 14. Consider the family (Tr)r∈(0,1/2) defined according to (7) and fix r, r ′
∈ (0, 1/2) with r ≠ r ′. Then there exists a

set Λr,r ′ ⊆ Sr with µr(Λr,r ′) = 0, Hausdorff dimension

dim
H

(Λr,r ′) =
2r ′ ln r ′

+

1 − 2r ′


ln

1 − 2r ′


− 2r ′ ln 2

2r ′ ln r + (1 − 2r ′) ln (1 − 2r)
, (15)

and µr ′(Hrr ′(Λr,r ′)) = 1.

Proof. We consider the set Λr,r ′ ⊆ Sr of all points (x, y) whose Gr -address fulfills (12). Obviously µr(Λr,r ′) = 0 and
µr ′(Hrr ′(Λr,r ′)) = 1 hold, so the theorem is proved if we can show that dimH(Λr,r ′) fulfills (15). Let s denote the right-
hand-side of (15) and set µ(A) := µr ′(Hrr ′(A)) for every A ∈ B(Sr). Then we have to show that for each (x, y) ∈ Λr,r ′ with
Gr -address k ∈ Σ5

lim
n→∞

µ

wk1 ◦ · · · ◦ wkn((0, 1)

2)


|wk1 ◦ · · · ◦ wkn((0, 1)2)|s
= 1

holds, whereby |Q | denotes the side length of the square Q . Setting f 5n (k) = Card{i ≤ n : ki = 5}/n for every n ∈ N it
follows that

µ

wk1 ◦ · · · ◦ wkn((0, 1)

2)


|wk1 ◦ · · · ◦ wkn((0, 1)2)|s
=


r ′
2

1−f 5n (k)

(1 − 2r ′)f
5
n (k)

n


r1−f 5n (k) (1 − 2r)f 5n (k)

ns .

Using limn→∞ f 5n (k) = (1 − 2r ′) it is straightforward to verify that the right-hand-side converges to 1 for n → ∞. �

Slightly modifying the proof of Theorem 14 and starting with the set Λr,r ′ ⊆ Sr of all points (x, y) ∈ Sr such that (13)
instead of (12) holds, yields the following result.

Corollary 15. Consider the family (Tr)r∈(0,1/2) defined according to (7) and fix r, r ′
∈ (0, 1/2) with r ≠ r ′. Then there exists a

set Λr,r ′ ⊆ Sr with µr(Λr,r ′) = 1, Hausdorff dimension

dim
H

(Λr,r ′) =
2r ln r + (1 − 2r) ln (1 − 2r) − 2r ln 2

2r ln r ′ + (1 − 2r) ln (1 − 2r ′)
, (16)

and µr ′(Hrr ′(Λr,r ′)) = 0.
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Obviously the strong interrelation between Σ5 and Sr established by the address map Gr is closely related with the N-adic
representation

x =

∞
i=1

ci(x)
Nk

, ci(x) ∈ {0, 1, . . . ,N − 1} ∀i ∈ N

of points x in the unit interval I. Pursuing the work started by Besicovitch [29], Eggleston [30] proved that the set Γ of points
x ∈ I satisfying

lim
n→∞

Card{i ≤ n : ci(x) = j}
n

= dj,

for every j ∈ {0, . . . ,N − 1} (dj ≥ 0 and
N−1

j=0 dj = 1) has Hausdorff dimension

dim
H

(Γ ) = −

N−1
i=0

di ln di

lnN
.

Taking this fact into account, we can prove the following Eggleston–Besicovitch-type result for subsets of Sr , that generalizes
Theorem 14 and Corollary 15.

Theorem 16. Consider the family (Tr)r∈(0,1/2) defined according to (7) and fix r ∈ (0, 1/2) as well as five numbers d1, . . . , d5
> 0 fulfilling

5
j=1 dj = 1. Then the set Γ ⊆ Sr consisting of all points (x, y) ∈ Sr whose address k ∈ Σ5 fulfills

lim
n→∞

Card{i ≤ n : ki = j}
n

= dj

for every j ∈ {1, . . . , 5} has Hausdorff dimension

dim
H

(Γ ) =

5
i=1

di ln di

(d1 + d2 + d3 + d4) ln r + d5 ln (1 − 2r)
.

Proof. The result can be proved in the same manner as Theorem 14 by defining the only self-similar measure µ satisfying
µ

wj (Sr)


= dj for every j ∈ {1, . . . , 5} (also see [31]). �
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