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Abstract We study a class of singular functions via a generalized dyadic system and Haus-
dorff dimensions are calculated for several sets related with these functions. Furthermore,
we introduce a class of monotonic type on no-interval and almost everywhere differen-
tiable functions that includes—as an exceptional case—the continuous nowhere differen-
tiable Takagi function (multiplied by 2) among them.

Keywords Singular function · Generalized dyadic system · Schauder basis · (Simply)
normal number · Hausdorff (fractal) dimension · MTNI function

1 Introduction

The first example of a continuous nowhere differentiable function was published by du Bois-
Reymond in 1875. This example, given by the formula

Wa,b(x) :=
+∞∑

k=0

ak cos
(
bkπx

)
, 0 < a < 1, ab > 1 + 3

2
π,b + 1 ∈ 2Z,

was due to Weierstrass. Afterwards, Hardy proved that it is still a continuous nowhere dif-
ferentiable function if 0 < a < 1, ab > 1.
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Later, in 1903, Takagi gave another example of a continuous nowhere differentiable func-
tion as follows:

T (x) :=
+∞∑

k=0

d(2kx)

2k
, ∀x ∈ R, (1)

where d(x) denotes the distance of x from the nearest integer.
Several properties of this function have been studied in depth, for example one-side

derivatives, maxima, level sets, etc. as can be seen in [5, 6, 13, 24].
The first example of a singular function (i.e. a monotone increasing and continuous func-

tion whose derivatives vanish a.e.) was independently published by Cantor and Scheefer
twelve years after the functions Wa,b were introduced. In 1904, Minkowski gave an example
that allowed him to enumerate the quadratic irrational numbers. Moreover, he established a
bijection between rationals and numbers in the unit interval I := [0,1] whose dyadic repre-
sentation is finite via Farey’s sequence. Denjoy showed the relation between Minkowski’s
representation system for real numbers and the representation by simple continuous frac-
tions. More recently, Viader et al. in [30], showed this function as the asymptotic distribution
function of an enumeration of the rationals in I.

The family of functions {Sa} we are going to study were introduced, simultaneously,
by Césaro in 1906 and Hellinger in 1907. They have been studied from a wide variety of
viewpoints (for example, geometric, arithmetic, probabilistic, or as functional equations),
as can be seen in [3, 7, 10, 20, 27–29, 31]. One application for plastic deformation can be
found in [8]. Other related references with respect to these functions can be found in [21].

In 1984, Hata and Yamaguti [19] showed that functions Sa and Takagi function T are
related through the formula ∂Sa

∂a
(x) = 2T (x).

In Fig. 1, from left to right, and from top to bottom, we show the graphs of W.3,5, T ,C

and S.15:
Singular functions come up in a wide variety of contexts. We mention here three topics

where these functions appear, and seem to be far from each other.
We find these functions to relate representation number systems, in a similar way to the

Minkowski function in [9, 25].
Under certain conditions, the Riesz products in the Theory of Trigonometric Series are

singular functions (see [32, p. 208]).
On the other hand, the natural need to analyze transient data has led researchers to look

for new tools that could provide some information about the change of scale when they
observed decomposable events in nature, such as fingerprints or self-similar behavior in
iterated processes. This leads to a special class of functions, called wavelets (that can be
traced back to Haar in the early 20th century as particular examples), which provides a
satisfactory answer to the scale problem (see [14]).

Much of the enthusiasm for wavelets comes from their potential applications. Among
other fields, wavelets have found use in image processing, in restoration of recordings, and
in seismology. In the context of wavelets in fractals, singular functions appear for example
as conjugating homeomorphisms (see [11, Example 4.6]) or Perron-Frobenius measures
(see [15]).

An overview of singular functions can be found, for example, in [21].
Our main purpose is to study the class of singular functions {Sa : a �= 1/2} with the aid of

a generalized dyadic system, analyzing, among other properties, the Hausdorff dimensions
of a certain set related with them. We also work on the path traced by Hata and Yamaguti,
and we show how generalized Takagi functions can be obtained.
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Singular Functions with Applications to Fractal Dimensions

Fig. 1 W.3,5, Takagi, Cantor and S.15’s graphs

The organization of the paper is as follows. In Sect. 2, we describe the family of singular
functions Sa (parameterized by a ∈ ]0,1[), and we also calculate the coefficients of Sa for the
Schauder’s basis S. We prove that if a �= 1/2, then Sa does not admit a non-zero derivative
at any x ∈ I.

In Sect. 3, the Hausdorff dimensions for some subsets in I are calculated, using two
number representation systems to express Sa .

In Sect. 4, we introduce a number representation system and a system of functional equa-
tions. Afterwards, we study the quasi-inverse function of the unique bounded solution of that
system of functional equations, that is a Cantor-type function.

The last section concerns the study of the function Ta (a generalized Takagi function)
given by the derivative of Sa with respect to the variable a, and we establish that if a �= 1/2,
the function Ta is of monotonic type on no interval and T ′

a(x) = 0 a.e.
In a series of papers several notions are considered that measure some degrees of pathol-

ogy in the class of continuous nowhere monotone functions (see, for example, [12] and
the references therein). We will study two of these notions for the functions Ta and other
functions related with them.
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For our further consideration, we now introduce some preliminary notation. As usual,
C(I) denotes the collection of functions f : I → R that are continuous. We say that f is of
monotonic type on an interval J ⊂ I if the function fm(x) = f (x) + mx is monotone on
J for some m ∈ R. Let us denote by MNI those functions in C(I) that are monotone on no
interval (or nowhere monotone) and by MTNI those functions in C(I) that are of monotonic
type on no interval. In [12], the relationships between these notions are given. In particular,
MTNI implies MNI.

We use standard terms of Measure and Fractal Geometry whose definitions may be found
in [16].

2 The Family {Sa : a ∈ ]0,1[} of Singular Functions

The functions Sa we will study in this section are, together with the Cantor function, the
best known examples of singular functions. In [20, 28], a class of functions ha is studied as
the limit of a sequence of functions with polygonal graphs. For their definition, the authors
use an operator πa on segments AB of coordinates A = (x, y) and B = (x + 	x, y + 	y),
being πa(AB) the polygonal ACB, the union of the segments AC and CB, with C = (x +
	x/2, y + a	y). The graph of f0 is the segment joining (0,0) with (1,1); the graph of f1

is obtained when πa is applied to the previous segment. Afterwards, the graph of f2 follows
from the action of πa on the two segments obtained in the graph of f1; and applying πa over
the 22 segments of the graph of f2, we obtain f3. Thus, the function ha is defined by

ha(x) := lim
n→∞fn(x).

We will study ha from a different point of view with respect to the references cited above.
The study follows as a relationship between the dyadic and the generalized dyadic systems
introduced in [4, Sect. 3]. This is a representation system for numbers in ]0,1], generalizing
the dyadic (or binary) one.

As it is known, the dyadic system permits the expression of any real number in ]0,1]
through a series in the form x = ∑+∞

n=1
1

2mn , where (mn) is a strictly increasing sequence
of positive integers. In order to generalize this representation, we introduce two numbers k

and 1 − k (with k ∈ ]0,1[), and we obtain expansions in the form x = ∑+∞
n=1(1 − k)nkrn ,

with rn ∈ Z
+ and rn ≤ rn+1. The coefficients rn depending on x, sometimes will be written

as rn(x). Properties of this system of representation of numbers in I are similar to those
of the dyadic representation system. The representation is unique except for a denumerable
set of numbers x for which there are exactly two, one of which is finite. We call the new
representation the generalized dyadic representation number system.

Note that in the case k = 1 − k = 1/2, both representations are the same for numbers in
]0,1]. We recall the following result.

Proposition 1 ([4, Prop. 3]) Let k ∈ ]0,1[. If x ∈]0,1], then there exists a unique increasing
sequence of positive integers 1 ≤ r0 ≤ r1 ≤ · · · ≤ rn ≤ · · · , such that

x =
+∞∑

n=0

(1 − k)n krn .
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The expansion x = ∑+∞
n=0(1 − k)nkrn is unique, but in the stationary case (i.e. rj > rj−1

and rn = rj , if n ≥ j ), we have the equality

x =
+∞∑

n=0

(1 − k)n krn =
j−1∑

n=0

(1 − k)n krn + (1 − k)j krj −1.

This finite expression can be considered as a second expansion in this system for the num-
ber x.

An outstanding property for the dyadic representation is the following result that gener-
alizes the Borel Theorem of Normal Numbers (see [18, p. 125]). As usual, λ denotes the
Lebesgue measure on the reals.

Theorem 1 ([4, Th. 13]) The set Na of points satisfying

lim
n→∞

rn(x)

n
= k

1 − k
,

is a set of λ-measure 1.

Definition 1 The elements of Na are called normal numbers in the generalized dyadic sys-
tem. If a = 1/2, we denote Na by N , and its elements are called the normal numbers in the
base-2.

Definition 2 Let x ∈ I, and
∑+∞

n=0
1

2mn be its dyadic expansion. For each a ∈ ]0,1[, we set

Sa (x) :=
+∞∑

n=0

amn−n (1 − a)n .

Let us observe that 0 < a,1 − a < 1 and mn ≥ n, ensure the convergence for the series.
This definition is implicit in some papers (see for instance [27–29]).

We can prove with a small amount of calculus that this family of functions satisfies the
following properties.

Proposition 2 For Sa , with a ∈ ]0,1[, we have:

i. Sa is well defined.
ii. Sa is an increasing function.

iii. Sa is continuous.
iv. If a �= 1/2, then Sa is a singular function.
v. Sa is the unique bounded solution for the system of functional equations

{
f

(
x
2

) = af (x)

f
(

1+x
2

) = a + (1 − a)f (x)
(2)

We remark that Sa and ha satisfy the system (2); therefore, they coincide.
A sequence (yn) in a normed space (Y,‖ ◦ ‖) is a basis of Schauder if, for every y in Y ,

there is a unique sequence of scalars (αn) such that y = ∑+∞
j=0 αjyj . That is,

lim
n→∞

∥∥∥∥∥∥
y −

n∑

j=0

αjyj

∥∥∥∥∥∥
= 0.
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We use the basis of Schauder in the linear space C(I) endowed with the sup-norm, which has
the following description: B0(x) := x, B1(x) := 1−x, and Bn,k are functions that vanish out
of [ n

2k , n+1
2k ], and whose graph, when x runs on it, is given by the equal sides of the isosceles

triangle determined by ( n

2k ,0), ( n+1
2k ,0), and ( 2n+1

2k+1 ,1). They can be expressed as:

Bn,k(x) := 2k

(∣∣∣∣x − n

2k

∣∣∣∣ +
∣∣∣∣x − n + 1

2k

∣∣∣∣ −
∣∣∣∣2x − 2n + 1

2k

∣∣∣∣

)
,

with 0 ≤ n ≤ 2k − 1, k ≥ 1.
This basis will be denoted by S. We have that B0 = y0, B1 = y1 and Bn,k = y2k+n+1, in S.

For the sake of clarity, we use the notation α0, α1 and αn,k , for the coefficients in the series
expansion.

If f ∈ C(I), its coefficients can be calculated as:

α0 = f (1), α1 = f (0), αn,k = f

(
2n + 1

2k+1

)
− 1

2

(
f

(
n

2k

)
+ f

(
n+1

2k

))
(3)

In particular, the expression for the Takagi function given in (1) shows that the corresponding
coefficients in the basis S are

α0 = α1 = 0 and αn,k = 1

2k
, (4)

not depending on n.
The reader can find either the proof that S is a basis, or the validity of the relations (3)

in [26, Chp. 6].

Proposition 3 Schauder’s basis for Sa functions yields coefficients in the form of

α0 = 1, α1 = 0 and αk,j = am (1 − a)n

(
a − 1

2

)
,

where n is the number of terms in the binary expansion of j , and m = k − n.

Proof Let us consider n even:

n

2k
=

t∑

j=0

1

2mj
; n+1

2k
=

t∑

j=0

1

2mj
+ 1

2k
; 2n + 1

2k+1
=

t∑

j=0

1

2mj
+ 1

2k+1

and then,

Sa

( n

2k

)
=

t∑

j=0

amj −j (1 − a)j ;

Sa

(
n+1

2k

)
=

t∑

j=0

amj −j (1 − a)j + ak−t−1 (1 − a)t+1 ;

Sa

(
2n + 1

2k+1

)
=

t∑

j=0

amj −j (1 − a)j + ak−t (1 − a)t+1 .
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Then, the coefficients are:

αk,n = f

(
2n + 1

2k+1

)
− 1

2

(
f

(
n

2k

)
+ f

(
n+1

2k

))

= ak−t (1 − a)t+1 − 1

2
ak−t−1 (1 − a)t+1

=
(

a − 1

2

)
ak−t−1 (1 − a)t+1 .

If n

2k = ∑t

j=0
1

2mj , then n = ∑t

j=0 2k−mj ; that is, the binary expansion for n needs t + 1
terms.

We proceed in a similar way if n is odd, and the proof is complete. �

Theorem 2 If a ∈ ]0,1[\{1/2}, then Sa does not admit a non-zero derivative.

Proof The proof rests on a geometric argument. To be specific, the idea is that the iterative
application of the operator πa has Sa(

1
2 ), Sa(

1
22 ) and Sa(

1
2 + 1

22 ); and Sa(
1

23 ), Sa(
1

22 + 1
22 ),

Sa(
1
2 + 1

23 ) and Sa(
1
2 + 1

22 + 1
23 ) as fixed points. And so on, with respective applications.

For each iteration, we find divisions on the X and Y axes. We denote by un and vn the
extremes for the interval including x in the n-th application of πa . The corresponding Y -
interval is [Sa(un), Sa(vn)], which includes the point Sa(x). If S ′

a(x) = α �= 0 exists, then,
for n large enough:

Sa(vn) − Sa(un)

vn − un

= ak(1 − a)n−k

1
2n

� α;

and wherever the n + 1-th interval is:

Sa(vn+1) − Sa(un+1)

vn+1 − un+1
=

⎧
⎪⎨

⎪⎩

ak+1(1−a)n−k

1
2n+1

� 2aα

ak(1−a)n+1−k

1
2n+1

� 2(1 − a)α

Therefore, the limit can only exists if a = 1/2. �

3 Application to Fractal Dimension

This section is devoted to describing several sets related to the function Sa and to compute
their Hausdorff dimensions. If f : I → I is a continuous bijection, then it is known that the
following statements are equivalent (see for instance [20, pp. 288–290]):

a. f is a singular function.
b. f maps a set of λ-measure one onto a set of λ-measure zero.
c. f maps a set of λ-measure zero onto a set of λ-measure one.

For Sa , we will find examples of sets satisfying b. and c. above. Let us recall that N

denotes the set of normal numbers in the base-2.

Theorem 3 If a �= 1/2, then Sa(N) is a set of λ-measure zero.

Author's personal copy
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Proof If x ∈ N , then mn = 2n + o(n). Applying Sa :

Sa(x) =
+∞∑

n=0

amn−n (1 − a)n .

For Sa(x), we have rn = mn − n, and thus rn
n

→ 1. But, for the generalized dyadic system,
this limit must be equal to a

1−a
at points in a set of λ-measure 1.

Consequently, if a �= 1
2 , the set N (which is Lebesgue-measurable of λ-measure 1) is

mapped by Sa on a set of λ-measure zero; to be specific, the set of points where rn
n

→ 1. �

Lemma 1 If x ∈ Na , then its image under S−1
a satisfies that, in its binary expansion, among

the first k digits, the number of 0s is approximately ak, and the number of 1s is approxi-
mately (1 − a)k.

Proof If S−1
a (x) = ∑+∞

n=0
1

2mn , we have

mn

n
= rn + n

n
→ a

1 − a
+ 1 = 1

1 − a
,

because there are exactly n + 1 digits equal to 1 among the first mn digits of S−1
a (x). Now,

for k, with mn ≤ k ≤ mn+1, it follows that

n

mn+1
≤ n

k
≤ n

mn

,

and the Sandwich rule (or the squeeze theorem) ensures the result. �

Corollary 1 If a �= 1/2, then Sa maps

Aa =
{

x =
+∞∑

n=0

1

2mn
: lim

n→∞
n

mn

= 1 − a

}

of λ-measure zero onto a set of λ-measure one.

Proof If a �= 1/2, then λ(Aa) = 0, because they are not normal numbers, and Sa(A) is a set
of λ-measure 1, because Sa(Aa) = Na . �

The following result concerning Hausdorff dimensions is a consequence of a theorem by
Besicovitch (see [16, Prop. 10.1]).

Theorem 4 Sa maps a set of λ-measure zero onto a set of λ-measure one. The Hausdorff
dimension of the first set is log2[ 1

aa
1

(1−a)1−a ].

Proof The Hausdorff dimension of Aa is log2[ 1
aa

1
(1−a)1−a ] (see [16, Prop. 10.1]). �

As Fig. 2 shows, the Hausdorff dimension of Aa tends to 0 on 0 and 1, and is 1 if a = 1/2,
as can be expected, because the function S1/2 is the identity.

We require the following useful Frostman-type lemma (see [16, pp. 60–61]). Here Br(x)

denotes the closed ball with centre x and radius r .
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Fig. 2 Graph of the Hausdorff
dimensions

Lemma 2 Let F be a Borel set in R, and let μ be a probability measure on R such that
μ(F) = 1. Under these assumptions,

i. If the upper limit lim supr→0
μ(Br (x))

rs is bounded on F , then dimH(F ) ≤ s.
ii. If there exists a positive real c such that lim infr→0

μ(Br (x))

rs > c > 0 on F , then
dimH(F ) ≥ s.

We use this lemma but with cylinders of the generalized dyadic representation number
system in [4] instead of balls.

Theorem 5 Sa maps N onto a set of λ-measure zero and with Hausdorff dimension − ln 4
lna(1−a)

.

Proof We here use the function S−1
a . If

y =
+∞∑

n=0

arn (1 − a)n ,

we then consider the interval
[

n∑

k=0

ark (1 − a)k ,

n∑

k=0

ark (1 − a)k + arn−1 (1 − a)n+1

]
,

and the corresponding image under S−1
a is another interval, specifically:

[
n∑

k=0

1

2rk+k
,

n∑

k=0

1

2rk+k
+ 1

2rn+n

]
.

Note that the respective lengths of both intervals are given by the numbers arn−1(1 − a)n+1

and 1
2rn+n .

Therefore, the Hausdorff dimension is given by the number

sup

{
β > 0 : lim

n→∞

1
2rn+n

[arn−1(1 − a)n+1]β < +∞
}
.
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Fig. 3 Comparison of the
Hausdorff dimensions

Taking logarithms:

lim
n→∞

− (rn + n) ln 2 − β (rn − 1) lna − β (n + 1) ln (1 − a)

n
n < +∞,

and since rn
n

→ 1, this gives β = − ln 4
lna(1−a)

, which is the Hausdorff dimension. �

Figure 3 shows Hausdorff dimensions of sets we have considered in Theorems 4 and 5.
The graph of the Hausdorff dimension of functions Sa(N), as shown by Fig. 3, is very

similar to that one given in Fig. 2: this is not smaller than that and both coincide if and only
if a = 1/2.

This function is a particular case in a wider class of functions that we find in the Har-
monic Analysis of Fractals (see for example [23]). It is clear that the unit interval I is a post
critically finite set for the pair of functions given by F1(x) = x/2 and F2(x) = x/2 + 1/2.
Following the ideas in [23, examp. 3.1.4], the associated harmonic functions related with
the harmonic framework in this example are, precisely, the functions Sa .

In the case where the pair of similarities is F1(x) = ax and F2(x) = (1 − a)x + a, a ∈
]0,1[, the harmonic functions are a generalization of the previous ones. They are in the form
Sa,b := Sb ◦ S−1

a (see [7]), and apply x = ∑+∞
n=0 arn(1 − a)n on Sa,b(x) = ∑+∞

n=0 brn(1 − b)n.
The use of these representations in two generalized dyadic systems provides the following
result.

Theorem 6 If a �= b, then Sa,b maps a set of λ-measure zero onto a set of λ-measure one.
The Hausdorff dimension of the first set is

b lnb + (1 − b) ln (1 − b)

b lna + (1 − b) ln (1 − a)
.

Proof The set of λ-measure 0 is that of the points with limit b
1−b

for their corresponding

sequences of ratios rn
n

. To obtain its Hausdorff dimension, if x = ∑+∞
n=0 arn(1 − a)n, then we

consider the interval
[

n∑

k=0

ark (1 − a)k ,

n∑

k=0

ark (1 − a)k + arn−1 (1 − a)n+1

]
.
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The image of this interval under Sa,b is the interval

[
n∑

k=0

brk (1 − b)k ,

n∑

k=0

brk (1 − b)k + brn−1 (1 − b)n+1

]
.

The respective lengths of these intervals are

arn−1 (1 − a)n+1 and (1 − b)rn−1 (1 − b)n+1 .

Therefore, its Hausdorff dimension is given by

sup

{
β > 0 : lim

n→∞
brn−1(1 − b)n+1

[arn−1(1 − a)n+1]β < +∞
}
.

If we proceed as before, then the limit

lim
n→∞

(rn − 1) lnb + (n + 1) ln (1 − b) − β [(rn − 1) lna + (n + 1) ln (1 − a)]

n
n

is finite. Finally, rn
n

→ b
1−b

gives

dimH (A) = b lnb + (1 − b) ln (1 − b)

b lna + (1 − b) ln (1 − a)
.

�

4 Relationship Between Cantor and Sa Functions

The study of the system (2) in Proposition 2 is generalized in [7] to a system in the form

{
f

(
x
2

) = af (x)

f
(

1+x
2

) = b + cf (x)
(5)

with positive real parameters a, b, c satisfying relations 0 < a < b < 1, and b + c = 1.
In this section, we study the more general system

{
f (αx) = af (x)

f (α + (1 − α)x) = b + cf (x)
(6)

with α ∈ ]0,1[. We introduce a number representation system which generalizes another
system of representation B used by the authors in [2]. The new system is also denoted by B,
and it is defined as follows:

Every number x ∈ I can be written in the form:

β0 + δ1β1 + δ2β2 + · · · + δiβi + · · · ,

where βi ∈ {0, a, b} and δ0 = 1,

δi =
⎧
⎨

⎩

aδi−1, if βi−1 = 0,

(b − a)δi−1, if βi−1 = a,

cδi−1, if βi−1 = b.
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This representation is unique except for a denumerable set where there are two expres-
sions. A property of this system is that the set of points in the unit interval satisfying the
existence of the limits

lim
n→∞

Card {i ≤ n : βi = 0}
n

= a

lim
n→∞

Card {i ≤ n : βi = a}
n

= b − a

lim
n→∞

Card {i ≤ n : βi = b}
n

= c

is of λ-measure 1.

Proposition 4 The system of functional equations (6) has one and only one bounded solu-
tion in ]0,1]. We denote it by fa,c;α . Furthermore, if

x =
+∞∑

n=0

arn (1 − a)n ,

then

fa,c;α(x) = β0 + δ1β1 + δ2β2 + · · · + δiβi + · · ·
with

βi =
{

b, if i + 1 ∈ {rn + n}n≥0 ,

0, otherwise

taking m−1 = 0 and fa,c;α(0) = 0.

Proof It is based upon the Contraction Mapping Theorem and a direct checking that the
equations are satisfied. �

These functions map a set of λ-measure 1 onto another denoted by Nua,c;α , of λ-measure
zero. To study the Hausdorff dimension of Nua,c;α we introduce the quasi-inverse function
of a monotone function; that is: if g : I → I is a monotone function, its quasi-inverse is
defined by g(−1)(x) = sup{t : g(t) ≤ x}.

Let us note that f
(−1)

a,c;α is a generalized Cantor-type function. As an example, Fig. 4 shows

the graph of the function f
(−1)

.2,.5;.4.

In the particular case of the Cantor function, c satisfies c(x) = f
(−1)

1/3,1/3;.5(x), for all x ∈ I.

The moments of functions f
(−1)

t,t;τ , are studied in [17, (2.11)]. These functions are called
the Cantor-Riesz-Nágy functions.

Theorem 7 f
(−1)

a,c;α is the unique bounded solution for the system of functional equations

f (x) =
⎧
⎨

⎩

αf ( x
a
), if 0 ≤ x ≤ a,

α, if a < x < b,

α + (1 − α)f ( x−b
c

) if b ≤ x ≤ 1.

(7)

For x = β0 + δ1β1 + δ2β2 + · · · + δiβi + · · · with βi ∈ {0, b}, the corresponding series
expansion for f

(−1)

a,c;α(x) is
∑+∞

n=0 αrn(1 − α)n, with rn = j − n − 1 where j satisfies that
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Fig. 4 Graph of f
(−1)
.2,.5;.4

n = Card{i ≤ j : βi = b}. If x has a coefficient βi = a, then f
(−1)

a,c;α(x) = f
(−1)

a,c;α(sx), where sx

denotes the greatest point with all its coefficients in {0, b} and sx < x.
Moreover, f

(−1)

a,c;α maps a set of λ-measure zero with a Hausdorff dimension

α lnα + (1 − α) ln (1 − α)

α lna + (1 − α) ln c

onto a set of λ-measure one.

Proof Direct calculations show that f
(−1)

a,c;α satisfies (7). Uniqueness follows from the defini-
tion of a functional that is a contraction.

We are considering the subset whose elements in the B system satisfy that δi ∈ {0, b} and
the limits

lim
n→∞

Card {i ≤ n : βi = 0}
n

= α,

lim
n→∞

Card {i ≤ n : βi = b}
n

= 1 − α,

exist with these values.
The calculation of the Hausdorff dimension follows, such as in the above theorems, ap-

plying the Frostman lemma to cylinders in the representation system B. In this case, they
are in the form

[
β0 + δ1β1 + δ2β2 + · · · + δiβi, β0 + δ1β1 + δ2β2 + · · · + δiβi + δiγi

]

with

γi =
{

a, if βi = 0,

c, if βi = b.
�
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Corollary 2 Nua,c;.5 has Hausdorff dimension −2 ln 2
lna+ln(c)

, and the Hausdorff dimension of

Nut,t;τ is τ ln τ+(1−τ) ln(1−τ)

ln t
.

We recall that the Cantor ternary set C is the subset of elements
∑+∞

k=0
uk

3k in the unit
interval I with uk ∈ {0,2} for all k. Therefore, as a consequence of the above theorem, we
have the following result.

Corollary 3 Let us consider the elements in the Cantor set satisfying the following relations:

lim
n→∞

Card {k ≤ n : uk = 0}
n

= α,

lim
n→∞

Card {k ≤ n : uk = 2}
n

= 1 − α.

Then, this subset has Hausdorff dimension

−α lnα + (1 − α) ln (1 − α)

ln 3
.

Using similar techniques it is possible to obtain a result for a more general class of
Cantor-type sets.

Theorem 8 If m is an integer greater than 2, and CA denotes the set of points in I such
that their base-m expansion

∑+∞
k=0

uk

mk has all its digits in the set A = {a1, . . . , an}, then the

Hausdorff dimension of the set of points in CA such that limn→∞ Card{k≤n:uk=0}
n

= αi is equal
to

−
∑n

i=1 αi lnαi

lnm
.

5 A Generalized Takagi Function

Up to this point, we have considered the functions Sa as depending on x:

x =
+∞∑

n=0

1

2mn
−→ Sa(x) :=

+∞∑

n=0

amn−n (1 − a)n

They are functions in the two variables x and a. Interchanging their roles, we now consider
these functions depending on the parameter a, and we study their derivatives with respect
to this variable. Several properties of these functions, e.g. their maxima and their relations
with binary digital sums have been studied in [1, 22].

Definition 3 Let Ta : I −→ R be given as

Ta (x) := ∂Sa

∂a
(x) =

+∞∑

n=0

[
(mn − n)amn−n−1 (1 − a)n − namn−n (1 − a)n−1

]
.

Through calculations it is possible to check that this formula for Ta(x) is also valid for x

with double representation. Figure 5 shows the graph of T.35.
The next result generalizes the equalities given in (4).
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Fig. 5 Graph of T.35

Proposition 5 (Identities for Ta) Let k ∈ Z
+,0 ≤ n ≤ 2k − 1, and set n

2k = bk

2k + bk−1
2k−1 +· · ·+

b1
21 , aj ∈ {0,1}. If d is the number of 0s among the values bj , and r denotes the corresponding
number of 1s, then

Ta

(
2n + 1

2k+1

)
−

(
(1 − a)Ta

(
n

2k

)
+ aTa

(
n + 1

2k

))
= ar(1 − a)d .

Proof We distinguish four cases:
Case I: n is even. Let us consider n = 2cα with odd α,1 ≤ c, and 0 < n < 2k − 1. Its

expression in the base-2 is n

2k = ∑d−1
j=0

1
2mj , with md−1 = k − c. Hence, n+1

2k = ∑d−1
j=0

1
2mj +

1
2md−1+c ; and 2n+1

2k = ∑d−1
j=0

1
2mj + 1

2md−1+c+1 .
Taking the two expressions above into account, and applying the definition of Ta , we

have

Ta

(
2n + 1

2k+1

)
−

(
(1 − a)Ta

(
n

2k

)
+ aTa

(
n+1

2k

))

= amd−1+c−d(1 − a)d = ak−d(1 − a)d = ar(1 − a)d .

Similar calculations give the result in the other three cases.
Case II: n is odd with n < 2k − 1.
Case III: n = 0.
Case IV: n = 2k − 1. �

This result together with (4), allow us to relate the Takagi function with Ta . To be specific,
the equality 2T = T 1

2
is valid.
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Theorem 9 The family given by

g1(x) := Sa(x)

g2(x) := 1 − Sa(x)

gk,j (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

Sa

(
2k+1

(
x − j/2k

))
, x ∈

[
j

2k ,
2j+1
2k+1

]

1 − Sa

(
2k+1

(
x − 2j+1

2k+1

))
, x ∈

[
2j+1
2k+1

,
j+1
2k

]

0, otherwise

for k = 0,1,2, . . . ; j = 0,1,2, . . . ,2k − 1

provides a Schauder’s basis for the space C(I) of continuous functions in I. We denote this
basis by aS.

The proof follows in a similar way to that given for S in [26, Ch. 6].

Theorem 10 Ta is the unique bounded function satisfying
{

G(x/2) = aG(x) + Sa (x)

G
(

1+x
2

) = (1 − a)G(x) + 1 − Sa (x) .

Proof It is a direct consequence of the Contraction Mapping Theorem or, on the other hand,
as an application of the system of (2) to Sa . �

These functional equations give the following result by induction.

Theorem 11 The coefficients in the series expansion for Ta in the basis aS are given by

α0 = 0, α1 = 0, αk,j = ak−n (1 − a)n ,

where n denotes the number of 1s in the binary expansion for j .

Theorem 12 If a �= 1
2 , then there exists the derivative T ′

a(x) and it is zero a.e. x in I.

Proof Given x ∈ N , with representation x = ∑n

i=1
1

2mi
+ ∑∞

j=n+1
1

2mj , we consider xn =∑n

i=1
1

2mi
+ ∑∞

j=n+1
1

2
m′

j
, with mn+1 �= m′

n+1. At these points, we have:

|Ta(x) − Ta(xn)| ≤ amn−n−1 (1 − a)n

× (∣∣(mn+1 − (n + 1)) amn+1−mn−1 (1 − a) − (n + 1) amn+1−mn + · · ·∣∣

+
∣∣∣
(
m′

n+1 − (n + 1)
)
am′

n+1−mn−1 (1 − a) − (n + 1) am′
n+1−mn+· · ·

∣∣∣
)

.

We want to find an upper bound for the ending terms:
∣∣(mn+1 − (n + 1)) amn+1−mn−1 (1 − a) − (n + 1) amn+1−mn

+ (mn+2 − (n + 2)) amn+2−mn−2 (1 − a)2 − (n + 2) amn+2−mn−1 + · · ·∣∣

= O

( ∞∑

j=1

mn+j a
mn+j −mn−j (1 − a)

j +
∞∑

j=1

(n + j)amn+j −mn−j (1 − a)
j

)
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= O

( ∞∑

j=1

(
mn+j − m

n
− j

)
amn+j −mn−j (1 − a)

j

+
∞∑

j=1

(mn+n + 2j)amn+j −mn−j (1 − a)
j

)
.

Because mn+j − mn − j ≥ mn+1 − mn − 1 and mn ≥ n, it follows that

∞∑

j=1

(mn+n + 2j)amn+j −mn−j (1 − a)
j = O

(
mn+1a

mn+1−mn
)
,

since xax is bounded and decreasing for suitable conditions, and thus

∞∑

j=1

(
mn+j − m

n
− j + 1

)
amn+j −mn−j+1 (1 − a)

j = O
(
mn+1a

mn+1−mn
)
.

Therefore,

|Ta(x) − Ta(xn)| = O
(
amn−n (1 − a)n

(
mn+1a

mn+1−mn
))

= O
(
amn+1−n (1 − a)n mn+1

) = O
(
amn−n (1 − a)n mn

)
,

because x ∈ N . The constant involved in O depends on a. Again, taking into account that
x ∈ N , then

|Ta(x) − Ta(xn)| = O
(
amn−n (1 − a)n mn

)

= O
(
(a(1 − a))

mn
2 a

mn
2 −n(1 − a)n− mn

2 mn

)

= O

(
(a(1 − a))

mn
2

(
a

1 − a

)mn
2 −n

mn

)
.

Finally, we have:

∣∣∣∣
Ta(x) − Ta(xn)

x − xn

∣∣∣∣ = O

⎛

⎝ [a(1 − a)]
mn
2

(
a

1−a

)mn
2 −n

mn

1
2mn+o(n)

⎞

⎠

= O

(
2mn+o(n) [a(1 − a)]

mn
2

(
a

1 − a

)o(n)

mn

)

= O

((
[4a(1 − a)] 1+o(1)

(
a

1 − a

)o(1)

2o(1)

)n

(2n + o(n))

)
.

Since 4a(1 − a) < 1 if a �= 1/2, for n large enough, it follows that

[4a(1 − a)] 1+o(1)

(
a

1 − a

)o(1)

2o(1) < α < 1.

Hence, if xn → x, the quotient converges to zero. Therefore, T ′
a(x) exists and is zero. �

Author's personal copy



E. de Amo et al.

Proposition 6 If a �= 1
2 , then Ta is an MTNI function.

Proof It is sufficient to consider open intervals. Let us consider an arbitrary open interval
J ⊂ I, α = ∑n

j=0
1

2mj
∈ J and k such that β = ∑n

j=0
1

2mj
+ 1

2mn+k ∈ J . Then,

Ta (β) − Ta (α) + p(β − α) = (mn + k − n − 1)amn+k−n−2 (1 − a)n+1

− (n + 1) amn+k−n−1 (1 − a)n + p
1

2mn+k

= (1 − a)n amn+k−n−2[(mn + k − n − 1) (1 − a)

− (n + 1) a] + p
1

2mn+k
.

For each p we can find a k such that Ta(β) − Ta(α) + p(β − α) > 0.
We can also choose α such that γ = α + ∑k

j=1
1

2mn+j and δ = γ + 1
2mn+k+1 , belong to J

for all k ∈ Z
+. Under these conditions, we have

Ta (δ) − Ta (γ ) + p(γ − δ) = amn−n−1 (1 − a)n+k · [(mn − n) (1 − a)

− (n + k + 1) a] + p
1

2mn+k+1
.

For each p, it is possible to find k such that the last term is negative. Therefore, Ta is an
MTNI function. �

Corollary 4 If a �= 1
2 , then Ta is an MNI function.

Definition 4 For all positive integer k, let be kTa(x) := ∂kSa

∂ak (x) for a ∈ ]0,1[\1/2, and
x ∈ ]0,1[.

In a similar way to that in Theorem 12, we obtain the following result.

Theorem 13 kT
′
a(x) = 0 a.e. x ∈ I.

Theorem 14 If k is odd, then kTa is an MTNI function.

Finally, with the aid of the functions Sa,b , we give a last generalization obtaining a bi-
parametric family of nowhere differentiable functions.

Definition 5 For parameters a, b ∈ ]0,1[, set Ta,b := ∂Sa,b

∂b
.

Theorem 15 Ta,b is the unique bounded function satisfying

{
G(ax) = bG(x) + Sa,b (x) ,

G(a + (1 − a)x) = (1 − b)G(x) + 1 − Sa,b (x) .

Theorem 16 Ta,a is a nowhere differentiable function.
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Proof On the one hand, if x has a finite expansion of n terms, we consider yk := x + ak(1 −
a)n+1. Then,

Taa (yk) − Taa(x)

yk − x
−→ ∞

if k → +∞.
On the other hand, if x has no a finite expansion, then we consider n such that rn+1 > rn.

Let us consider the truncated expansion for x

x1 := ar0 + · · · + arn (1 − a)n ,

and

x1 := x1 + arn (1 − a)n+1 .

Then x1 < x < x1, and the derivative T ′
aa(x) does not exist, because

lim
n→∞

Taa (x1) − Taa(x1)

x1 − x1
= ∞,

and the proof is complete for x ∈ ]0,1[.
Finally, for x ∈ {0,1}, the one side derivatives complete the result. �

Remark 1 The above property is true for a wider class of functions:

kTa,a := ∂kSa,b

∂bk

∣∣∣∣
b=a

.

Applying the same approaches as those of the previous results, we obtain:

Theorem 17 If a �= b, then Ta,b is an MTNI function.

Theorem 18 If a �= b, then there exists a set of λ-measure 1 such that Ta,b has derivatives
at any point x with T ′

a,b(x) = 0.

Function Ta is a strange one: it is a function without monotonicity on any subinterval
whose derivative vanishes on a set of λ-measure 1.
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