Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Characterization of all copulas associated with non-continuous random variables

E. de Amo ${ }^{\text {a,* }}$, M. Díaz Carrillo ${ }^{\text {b }}$, J. Fernández-Sánchez ${ }^{\text {a }}$
a University of Almería, Campus de La Cañada, 04120-Almería, Spain
${ }^{\text {b }}$ University of Granada, Campus Fuentenueva, 18071-Granada, Spain

Received 15 June 2011; received in revised form 8 September 2011; accepted 4 October 2011
Available online 12 October 2011

Abstract

We introduce a constructive method, by means of a doubly stochastic measure, to describe all the copulas that, in view of Sklar's Theorem, are able to connect a bivariate distribution to its marginals. We use this to give the lower and upper optimal bounds for all the copulas that extend a given subcopula. © 2011 Elsevier B.V. All rights reserved.

Keywords: Copula; Subcopula

1. Introduction

For any integer $n \geq 2$, a multivariate (or n-dimensional) copula is the restriction to the unit n-cube $[0,1]^{n}$ of a multivariate cumulative distribution function whose marginals are uniform on [0, 1]. Copulas were introduced by Sklar in 1959 (see [1]), as the answer to a question posed by Fréchet, and they allow us to represent a joint distribution of random variables as a function of its marginal distributions. In fact, Sklar enunciated that if H is the joint distribution function of n random variables X_{1}, \ldots, X_{n}, and F_{1}, \ldots, F_{n} are the distribution functions of X_{1}, \ldots, X_{n}, respectively, then there exists a multivariate copula C such that

$$
H\left(x_{1}, \ldots, x_{n}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right)
$$

for all $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$. This C is uniquely determined on $\operatorname{Ran}\left(F_{1}\right) \times \cdots \times \operatorname{Ran}\left(F_{n}\right)$.
Nowadays, this result is known as Sklar's Theorem, and it has been one of the main tools in promoting the Theory of Copulas as one of the most up-to-date areas in Mathematics. The first proof of this theorem (in the bivariate case) was published in 1974 by Schweizer and Sklar [2]. (See [3], as well.) New proofs have been given since: [4-8], among others.

[^0]The wide variety of different proofs of Sklar's Theorem are based on techniques that range from those which are purely probabilistic to others which are more analytic. In [2] the proof consists of a construction of the copula with the desired properties, and the method used is the extension from a subcopula. However, in the other cited papers, the authors only show the existence of, at least, one copula satisfying Sklar's Theorem.

In this paper we consider the bivariate case and, following the way of [2], we describe a method for finding all the copulas C that can be associated with a pair of random variables (Theorems 4 and 8).

The method we use, which we name the E-process, consists of finding suitable doubly stochastic measures in order to obtain these copulas C (Proposition 5). The procedure to obtain C is constructive and it is based on patchwork techniques. Several examples illustrate how our results can be applied to building copulas. To be specific, we obtain, as an application, the lower and upper bounds of copulas that extend a given subcopula, and that are copulas, as well (Theorems 11 and 12).

2. Preliminaries

Let $\mathbb{\square}:=[0,1]$ be the closed unit interval and let $\square^{2}:=[0,1]^{2}$ be the unit square. We use \bar{A} to denote the closure of $A \subset \square$. For given sets A and B, we denote by A^{B} the Cartesian product of elements of A indexed in B, that is, the set of maps from B to A.

First, we give the definitions of subcopula and copula, and some of their elementary properties. For an overview, see for instance [3] or [9].

Definition 1. A bivariate subcopula (or a subcopula, for brevity) is a function $C^{*}: S_{1} \times S_{2} \longrightarrow \mathbb{\square}$, where S_{1} and S_{2} are subsets of $\mathbb{\square}$ containing 0 and 1 , which satisfies the following:

1. $C^{*}(u, 0)=0=C^{*}(0, v)$, for all $u \in S_{1}, v \in S_{2}$;
2. C^{*} has uniform marginals, i.e. $C^{*}(u, 1)=u, C^{*}(1, v)=v$, for all $u \in S_{1}, v \in S_{2}$;
3. C^{*} is 2-increasing, i.e. C^{*}-volume $V_{C^{*}}$ satisfies $V_{C^{*}}\left(\left[u_{1}, u_{2}\right] \times\left[v_{1}, v_{2}\right]\right)=C^{*}\left(u_{2}, v_{2}\right)-C^{*}\left(u_{2}, v_{1}\right)-C^{*}\left(u_{1}, v_{2}\right)+$ $C^{*}\left(u_{1}, v_{1}\right) \geq 0$, for all $u_{1}, u_{2} \in S_{1}, v_{1}, v_{2} \in S_{2}$.

A bivariate copula (or a copula, for brevity) is a subcopula C whose domain is \square^{2}. We denote by \mathcal{C} the class of all copulas.

Well-known examples of copulas are the Fréchet-Hoeffding bounds $M(x, y)=\min \{x, y\}, W(x, y)=\max \{0, x+$ $y-1\}$, and the independence copula $\Pi(x, y)=x y$.

Each copula C induces a probability measure μ_{C} on \rrbracket^{2} via the formula:

$$
\mu_{C}([a, b] \times[c, d])=V_{C}([a, b] \times[c, d])=C(b, d)-C(b, c)-C(a, d)+C(a, c)
$$

and, through standard measure-theoretic techniques, μ_{C} can be extended from the semi-ring of rectangles in \rrbracket^{2} to the σ-algebra $\mathcal{B}\left(\square^{2}\right)$ of the Borel sets.
Therefore, we remark that there is a one-to-one correspondence between copulas and doubly stochastic measures defined in \rrbracket^{2}, that is, probability measures μ, such that for any measurable subset A of \rrbracket :

$$
\mu(A \times \mathbb{\square})=\mu(\mathbb{\square} \times A)=\lambda(A),
$$

where λ denotes the standard Lebesgue measure on $\mathcal{B}(\mathbb{\square})$.
Note that any distribution function H has an associated probability that we will denote by μ_{H}.
Finally, if C is a copula and $a \in \mathbb{\square}$, then the functions $t \rightarrow C(t, a)$ (the horizontal section of C at a), and $t \rightarrow C(a, t)$ (the vertical section of C at a) are nondecreasing and 1-Lipschitz on $\mathbb{1}$, i.e. $\left|C\left(t_{1}, a\right)-C\left(t_{2}, a\right)\right| \leq\left|t_{1}-t_{2}\right|$, for all $t_{1}, t_{2} \in \mathbb{\square}$.

Let us recall that Sklar's Theorem represents a bivariate distribution function H by means of the marginal distribution functions F and G, and the copula C. Both of them are connected by Eq. (1) below. Formally, we have the following:

If H is a joint distribution function in $[-\infty,+\infty]^{2}$ with marginals F and G in $[-\infty,+\infty]$, then there exists a copula C such that the following equation holds:

$$
\begin{equation*}
H(x, y)=C(F(x), G(y)), \quad \text { for all } x, y \in[-\infty,+\infty] \tag{1}
\end{equation*}
$$

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on $\operatorname{Ran}(F) \times \operatorname{Ran}(G)$.
As can be seen in [10], the existing relation between C and H can corresponds to a wide variety of cases depending on the marginals F and G.

Besides, the reverse of (1) can be easily verified, that is:
Lemma 2. If C is a copula and F and G are distribution functions, then the function H defined by (1), is a joint distribution function with marginals F and G.

To prove Sklar's Theorem, one may define a subcopula in $\operatorname{Ran}(F) \times \operatorname{Ran}(G)$ by the equation given in (1) and, afterwards, extend it to its closure. For further considerations, it is convenient to rewrite this in the following way (see for example [3, Lemma 2.3.4]):

Lemma 3. Let H be a joint distribution function with marginals F and G. Then, there exists a unique function:

$$
C^{*}: \overline{\operatorname{Ran}(F)} \times \overline{\operatorname{Ran}(G)} \longrightarrow \mathbb{\square},
$$

such that $C^{*}(F(x), G(y))=H(x, y)$, for all x, y.
It is easy to verify that, when the restriction of a copula C_{1} to $\overline{\operatorname{Ran}}(F) \times \overline{\operatorname{Ran}}(G)$ coincides with C^{*}, then $C_{1}(F(x), G(y))$ $=H(x, y)$, for all x, y.

3. The main result

The main result presented in this paper (Theorem 4) allows us to express all the copulas that extend a given subcopula. Equivalently, if X_{1} and X_{2} are random variables (non-necessarily continuous), with a joint distribution function H and marginals F and G, this result describes all the copulas that can represent H as a function of F and G. First, in order to make this statement, we introduce some notation.

Here and in what follows, we consider a bivariate joint distribution function $H:[-\infty,+\infty]^{2} \longrightarrow \llbracket$, with univariate marginals F and G.

For the distribution function $F:[-\infty,+\infty] \longrightarrow$, there exists an associated family S_{1} of closed subintervals in \rrbracket, such that their pairwise intersections are empty. To check this, observe that the elements A of the projection of the graph of F on \rrbracket are either an interval or a singleton. Let S_{1} be the family constituted by the closures \bar{A}.

Now, we consider the class P_{1} of elements in S_{1} which are singletons, and set $D_{1}:=S_{1} \backslash P_{1}$.
The complement in \rrbracket of the union of elements of S_{1} is a family of open intervals. We will denote by O_{1} the class of all the closures of these (open) intervals. Finally, with \mathcal{T} a index set, write $T:=\left\{T_{t}=\left[a_{t}, b_{t}\right] ; T_{t} \in D_{1} \cup O_{1}\right\}_{t \in \mathcal{T}}$.

Similarly, for the distribution function G, there exist the corresponding sets $S_{2}, P_{2}, D_{2}, O_{2}$, and $J:=\left\{J_{j}=\right.$ $\left.\left[c_{j}, d_{j}\right] ; J_{j} \in D_{2} \cup O_{2}\right\}_{j \in \mathcal{J}}$, with \mathcal{J} an index set.

Next, let us define auxiliary functions associated to the elements in the class O_{1}. In fact, for any $T_{t} \in O_{1}$ we select a family of distribution functions whose restriction to $\mathbb{\square}, F_{t j}: \rrbracket \rightarrow \llbracket$, satisfies

$$
\begin{equation*}
x=\frac{1}{b_{t}-a_{t}} \sum_{j} \beta_{t j} F_{t j}(x), \quad \forall x \in \mathbb{\mathbb { C }} \tag{2}
\end{equation*}
$$

where

$$
\beta_{t j}=C^{*}\left(b_{t}, d_{j}\right)+C^{*}\left(a_{t}, c_{j}\right)-C^{*}\left(b_{t}, c_{j}\right)-C^{*}\left(a_{t}, d_{j}\right)
$$

Because $\sum_{j} \beta_{t j}=b_{t}-a_{t}$, let us note that it is possible to find functions $F_{t j}$ satisfying (2). The easiest way to obtain this is setting $F_{t j}(x)=x$.

We proceed in a similar way to obtain functions $G_{t j}: \rrbracket \rightarrow \rrbracket$ that are associated to sets $J_{j} \in O_{2}$; here

$$
\begin{equation*}
x=\frac{1}{d_{j}-c_{j}} \sum_{t} \beta_{t j} G_{t j}(x) \tag{3}
\end{equation*}
$$

There exist other auxiliary functions that are associated to rectangles in the form $T_{t} \times J_{j} \in D_{1} \times O_{2}$ or $T_{t} \times J_{j} \in$ $O_{1} \times D_{2}$ if $\beta_{t j} \neq 0$.

In the case of $T_{t} \times J_{j} \in D_{1} \times O_{2}$, we consider the distribution functions in the following way:

$$
\begin{equation*}
F_{t j}(x)=\frac{1}{\beta_{t j}}\left(C^{*}\left(\left(b_{t}-a_{t}\right) x+a_{t}, d_{j}\right)+C^{*}\left(a_{t}, c_{j}\right)-\left(C^{*}\left(a_{t}, d_{j}\right)+C^{*}\left(\left(b_{t}-a_{t}\right) x+a_{t}, c_{j}\right)\right)\right) \tag{4}
\end{equation*}
$$

If $T_{t} \times J_{j} \in O_{1} \times D_{2}$, then we consider:

$$
\begin{equation*}
G_{t j}(x)=\frac{1}{\beta_{t j}}\left(C^{*}\left(b_{t},\left(d_{j}-c_{j}\right) y+c_{j}\right)+C^{*}\left(a_{t}, c_{j}\right)-\left(C^{*}\left(a_{t},\left(d_{j}-c_{j}\right) y+c_{j}\right)+C^{*}\left(b_{t}, c_{j}\right)\right)\right) \tag{5}
\end{equation*}
$$

With the above notations the main result of this paper can be presented as follows.
Theorem 4. Let H be a bivariate distribution function in $[-\infty,+\infty]^{2}$, with given marginals F and G. Then, C is a copula satisfying the equation:

$$
C(F(x), G(y))=H(x, y)
$$

if and only if C can be expressed in the form:

$$
C(x, y)=C^{*}(x, y), \quad \text { if }(x, y) \in \overline{\operatorname{Ran}}(F) \times \overline{\operatorname{Ran}}(G)
$$

and

$$
\begin{align*}
C(x, y)= & C^{*}\left(a_{t}, c_{j}\right)+\beta_{t j} C_{t j}\left(F_{t j}\left(\frac{x-a_{t}}{b_{t}-a_{t}}\right), G_{t j}\left(\frac{y-c_{j}}{d_{j}-c_{j}}\right)\right) \\
& +\sum_{t^{\prime} \in S_{t}} \beta_{t^{\prime} j} G_{t^{\prime} j}\left(\frac{y-c_{j}}{d_{j}-c_{j}}\right)+\sum_{j^{\prime} \in Z_{j}} \beta_{t j^{\prime}} F_{t j^{\prime}}\left(\frac{x-a_{t}}{b_{t}-a_{t}}\right) \tag{6}
\end{align*}
$$

if $(x, y) \notin \overline{\operatorname{Ran}}(F) \times \overline{\operatorname{Ran}}(G)$ and $(x, y) \in T_{t} \times J_{j}$, where $C_{t j} \in \mathcal{C}, F_{t j}$ and $G_{t j}$ are distribution functions satisfying (2)-(5), with $S_{t}=\left\{t^{\prime}: a_{t^{\prime}}<a_{t}\right\}$ and $Z_{j}=\left\{j^{\prime}: c_{j^{\prime}}<c_{j}\right\}$.

3.1. The E-process

To show Theorem 4 we construct a measure μ on rectangles $T_{t} \times J_{j},(t, j) \in \mathcal{T} \times \mathcal{J}$, and we prove that it is a doubly stochastic measure. This extension method will be called extension process (for short E-process).

We remark that, by Lemma 3, if H is a joint distribution function with marginals F and G, then there exists a unique function $C^{*}: \overline{\operatorname{Ran}}(F) \times \overline{\operatorname{Ran}}(G) \longrightarrow \mathbb{\square}$, such that $C^{*}(F(x), G(y))=H(x, y)$, for all $x, y \in[-\infty,+\infty]$.

Proposition 5. Let H be a joint distribution function with marginals F and G. Then, there exists a doubly stochastic measure μ such that the restriction of its associated copula C_{1} to $\overline{\operatorname{Ran}}(F) \times \overline{\operatorname{Ran}}(G)$ coincides with C^{*}.

Proof. The method to produce the measure μ will be developed in three steps:

1. The construction of the continuous functions $F_{t j}$ (resp. $G_{t j}$) associated to sets $T_{t} \in O_{1}$ (resp. O_{2}): If $T_{t} \in O_{1}$, then it is possible to choose a family of functions $F_{t j}$ that satisfies (2), and functions $G_{t j}$ associated to sets $J_{j} \in O_{2}$ satisfying (3).
2. Measure allocation using the joint distribution function with marginals $F_{t j}$ and $G_{t j}$.

There are four cases to consider:
(a) $T_{t} \times J_{j} \in D_{1} \times D_{2}$. If $[a, b] \times[c, d] \subseteq T_{t} \times J_{j}$, then

$$
\mu([a, b] \times[c, d])=C^{*}(b, d)+C^{*}(a, c)-C^{*}(b, c)-C^{*}(a, d)
$$

And, the extension theorem allows us to extend the measure μ to every Borel set in the rectangle $D_{1} \times D_{2}$.
(b) $T_{t} \times J_{j} \in D_{1} \times O_{2}$. If $\beta_{t j}=0$, then the measure of every Borel set in the rectangle is zero. On the other hand, if $\beta_{t j} \neq 0$, we consider the distribution function $F_{i j}$ given by (4) and $G_{t j}$ satisfying (3). It follows (from Lemma 2) that for $F_{t j}$ and $G_{t j}$, and for any copula (which we denote by $C_{t j}$), a distribution function

$$
H_{t j}(x, y)=C_{t j}\left(F_{t j}(x), G_{t j}(x)\right)
$$

exists. Now, the map $Q_{t j}: \mathbb{\square}^{2} \longrightarrow T_{t} \times J_{j}$ given by

$$
Q_{t j}((x, y))=\left(\left(b_{t}-a_{t}\right) x+a_{t},\left(d_{j}-c_{j}\right) y+c_{j}\right)
$$

allows us to move the mass distribution determined by $H_{t j}$, from \rrbracket^{2} to $T_{t} \times J_{j}$. Hence, for each Borel set $A \subset T_{t} \times J_{j}$, the value of $\mu(A)$ is $\beta_{i j} \mu_{H_{t j}}\left(Q_{t j}^{-1}(A)\right)$.
(c) $T_{t} \times J_{j} \in O_{1} \times D_{2}$. It is analogous to (b).
(d) $T_{t} \times J_{j} \in O_{1} \times O_{2}$. We proceed in a similar way as we did in (b).

Here, the functions $F_{t j}$ and $G_{t j}$ were previously fixed (see (2) and (3)).
3. The probability measure μ is doubly stochastic:

We will restrict our attention to checking that $\mu([a, b] \times \mathbb{\square})=b-a$ in the case when $[a, b] \subset T_{t}$, for some $t \in \mathcal{T}$.
We need to consider two subcases here.
If $T_{t} \in D_{1}$, then

$$
\begin{aligned}
\mu([a, b] \times \mathbb{\square}) & =\sum_{j} C^{*}\left(b, d_{j}\right)-C^{*}\left(a, d_{j}\right)-C^{*}\left(b, c_{j}\right)+C^{*}\left(a, c_{j}\right) \\
& =C^{*}(b, 1)-C^{*}(a, 1)=b-a
\end{aligned}
$$

If $T_{t} \in O_{1}$, then

$$
\mu([a, b] \times \mathbb{\square})=\frac{1}{b_{t}-a_{t}} \sum_{j} \beta_{t j}\left(F_{t j}(b)-F_{t j}(a)\right)=b-a .
$$

Similar arguments apply to the case $\mathbb{\square} \times[a, b]$.
Finally, this measure μ has an associated copula C_{1}. Let us note that, by construction, the restriction of C_{1} to $\overline{\operatorname{Ran}}(F) \times \overline{\operatorname{Ran}}(G)$ coincides with C^{*}. Moreover, by Lemma 3, it follows that $C_{1}(F(x), G(y))=H(x, y)$, which fulfils the statement.

Note that, for a given distribution function H, the method in the Proposition 6 is associated with the copulas $C_{t j}$ and the distribution functions $F_{t j}$ and $G_{t j}$.

We conclude this subsection with three remarks.

1. If we set $C_{t j}=\Pi$ (that is, the independence or product copula), and $F_{t j}(x)=G_{t j}(x)=x$ in (2) and (3), then this is precisely the particular case given by Sklar and Schweizer in [2] for the proof of Sklar's Theorem.
2. Let us consider a copula C and a family $\left\{S_{i}\right\}_{i \in \Im}$ of closed and connected subsets of $\mathbb{\square}^{2}$, with boundaries ∂S_{i} such that $S_{i} \cap S_{j} \subseteq \partial S_{i} \cap \partial S_{j}$ whenever $i \neq j$. Moreover, for every $i \in \mathfrak{I}$, let us consider an increasing continuous mapping $L_{i}: S_{i} \longrightarrow \mathbb{\square}$, such that $C=L_{i}$ on ∂S_{i}. Then, the function $L: \rrbracket^{2} \longrightarrow \rrbracket$ defined by

$$
L(x, y)= \begin{cases}L_{i}(x, y), & (x, y) \in S_{i} \\ C(x, y) & \text { otherwise }\end{cases}
$$

it said to be the patchwork (of $\left\{S_{i}\right\}_{i \in \mathfrak{F}}$) into the copula C. When sets S_{i} are rectangles, it is called a rectangular patchwork (see [11]).
According to the above definition, we can check the following result:
Proposition 6. Let us denote by C_{1} and C_{2} two copulas obtained by two respective E-processes where the same distribution functions $F_{t j}$ and $G_{t j}$ have been considered. Then C_{1} is a rectangular patchwork into C_{2} (and vice versa).
3. Following [12, Theorem 2], let ($] u_{z}, u_{z}^{\prime}[)_{z \in Z}$ and ($] v_{k}, v_{k}^{\prime}[)_{k \in K}$ be two families of nonempty, pairwise disjoint open subintervals of $] 0,1\left[\right.$. Consider a copula C^{b}, called the background copula, a family $\left(C_{z, k}^{f}\right)_{z \in Z, k \in K}$ of copulas,
called foreground copulas, and a family $\left(\lambda\left(u_{z}, u_{z}^{\prime}, v_{k}, v_{k}^{\prime}\right)\right)_{z \in Z, k \in K}$ of positive multipliers. For any $z \in Z$ and $k \in K$, define the mapping $P_{z, k}^{b}:\left[u_{z}, u_{z}^{\prime}\right] \times\left[v_{k}, v_{k}^{\prime}\right] \rightarrow \mathbb{R}$ by

$$
P_{z, k}^{b}(x, y)=C^{b}(x, y)-\lambda\left(u_{z}, u_{z}^{\prime}, v_{k}, v_{k}^{\prime}\right) C^{b}\left(\frac{x-u_{z}}{u_{z}^{\prime}-u_{z}}, \frac{y-v_{k}}{v_{k}^{\prime}-v_{k}}\right)
$$

and the binary operation Q by

$$
Q(x, y)= \begin{cases}P_{z, k}^{b}(x, y)+\lambda\left(u_{z}, u_{z}^{\prime}, v_{k}, v_{k}^{\prime}\right) C_{z, k}^{f}\left(\frac{x-u_{z}}{u_{z}^{\prime}-u_{z}}, \frac{y-v_{k}}{v_{k}^{\prime}-v_{k}}\right) & \text { if }(x, y) \in\left[u_{z}, u_{z}^{\prime}\right] \times\left[v_{k}, v_{k}^{\prime}\right], \\ C^{b}(x, y) & \text { otherwise } .\end{cases}
$$

If for all $z \in Z$ and $k \in K$ it holds that $P_{z, k}^{b}$ is 2 -increasing on $\left[u_{z}, u_{z}^{\prime}\right] \times\left[v_{k}, v_{k}^{\prime}\right]$, then Q is a copula.
Now, according to the above result, we can check the following result:
Proposition 7. Let $C=C^{b}$ be a copula extending a subcopula C^{*}. If we choose the intervals $\left[u_{z}, u_{z}^{\prime}\right]$ as elements in $O_{1} \cup D_{1}$, intervals $\left[v_{k}, v_{k}^{\prime}\right]$ as elements in $O_{2} \cup D_{2}$, and multipliers $\lambda\left(u_{z}, u_{z}^{\prime}, v_{k}, v_{k}^{\prime}\right)$ such that $\lambda\left(u_{z}, u_{z}^{\prime}, v_{k}, v_{k}^{\prime}\right)=0$ when $\left[u_{z}, u_{z}^{\prime}\right] \in D_{1}$ and $\left[v_{k}, v_{k}^{\prime}\right] \in D_{2}$, and such that $P_{z, k}^{b}$ is 2-increasing on $\left[u_{z}, u_{z}^{\prime}\right] \times\left[v_{k}, v_{k}^{\prime}\right]$, then Q is another copula that extends C^{*}.

3.2. Description of all copulas associated with a pair of random variables

As we already mentioned in Introduction, the E-process given in this paper allows us to describe all the copulas that can be associated with a given distribution function H. In order to attain this goal, it is appropriate to introduce additional notation.
Let D_{1}^{\prime} denote the set of indices $t \in \mathcal{T}$ such that $T_{t} \in D_{1}$, and, in a similar way, we introduce the sets $D_{2}^{\prime}, O_{1}^{\prime}$ and O_{2}^{\prime}. Let us denote by K the subset in $D_{1}^{\prime} \times O_{2}^{\prime} \cup O_{1}^{\prime} \times D_{2}^{\prime} \cup O_{1}^{\prime} \times O_{2}^{\prime}$ of all indices such that $\beta_{t j} \neq 0$. We shall denote by Δ the class of all distribution functions, and let Δ_{1} denote the subclass in $\Delta^{O_{1}^{\prime} \times \mathcal{J} \cap K}$ such that $x=$ $\left(1 /\left(b_{t}-a_{t}\right)\right) \sum_{j,(t, j) \in O_{1}^{\prime} \times \mathcal{J}} \beta_{t j} F_{t j}(x)$. The subclass Δ_{2} is defined analogously.

If we analyze the proof of Proposition 5, then we observe that, in fact, we have proved more than it is said in the statement. Precisely, for each element in $\mathcal{C}^{K} \times \Delta_{1} \times \Delta_{2}$, its associated E-process gives rise a copula C such that $C(F(x), G(y))=H(x, y)$.

On the other hand, for any copula C that extends a subcopula C^{*}, we can check that, if $\beta_{t j} \neq 0$ and we set

$$
F_{t j}(x)=\frac{1}{\beta_{t j}}\left(C\left(\left(b_{t}-a_{t}\right) x+a_{t}, d_{j}\right)+C\left(a_{t}, c_{j}\right)-\left(C\left(a_{t}, d_{j}\right)+C\left(\left(b_{t}-a_{t}\right) x+a_{t}, c_{j}\right)\right)\right)
$$

and

$$
G_{t j}(y)=\frac{1}{\beta_{t j}}\left(C\left(\left(d_{j}-c_{j}\right) y+c_{j}, b_{t}\right)+C\left(a_{t}, c_{j}\right)-\left(C\left(\left(d_{j}-c_{j}\right) y+c_{j}, a_{t}\right)+C\left(b_{t}, c_{j}\right)\right)\right),
$$

then the copula C is obtained as an E-process.
We are now in a position to prove our main result concerning the representation of copulas.
Theorem 8. Let H be a bivariate distribution function with marginals F and G, and a subcopula C^{*} defined in $\overline{\operatorname{Ran}}(F) \times \overline{\operatorname{Ran}}(G)$ satisfying that $C^{*}(F(x), G(y))=H(x, y)$. Then, the following statements hold:
(a) For each element in class $\mathcal{C}^{K} \times \Delta_{1} \times \Delta_{2}$, the associated E-process gives rise to a copula C satisfying that $C(F(x), G(y))=H(x, y)$. Moreover, the E-process is injective in the sense that for different elements in $\mathcal{C}^{K} \times$ $\Delta_{1} \times \Delta_{2}$, the corresponding copulas are different.
(b) Every copula C satisfying the equation $C(F(x), G(y))=H(x, y)$, is generated by an E-process.

We can now prove Theorem 4 as follows.

Proof of Theorem 4. By Theorem 8, because the copulas satisfying $C(F(x), G(y))=H(x, y)=C^{*}(F(x), G(y))$ can be obtained by an E-process, if the copula $C_{t j}$, and the distribution functions $F_{t j}$ and $G_{t j}$ are those used in it, then C is the copula given in (6).

On the other hand, the constructing method and conditions (2)-(5) show that C is a copula.
The two following examples illustrate Theorem 8.
Example 9. If $\operatorname{Ran}(F)=\rrbracket$ and $\operatorname{Ran}(G)=\{0, b, 1\}(0<b<1)$, then the subcopula C^{*} can be essentially identified with the horizontal section $C^{*}(x, b)=h_{b}(x)$, where, the function $h_{b}: \square \longrightarrow[0, b]$ is an increasing bijection satisfying $\left|h_{b}(x)-h_{b}(y) \leq|x-y|\right.$ (that is, it is 1-Lipschitz).

Conversely, if $h_{b}: \rrbracket \longrightarrow[0, b]$ is an increasing 1-Lipschitz bijection, then the map $C^{*}: \rrbracket \times\{0, b, 1\} \longrightarrow \rrbracket$ given by

$$
C^{*}(x, y)= \begin{cases}0 & \text { if } y=0 \\ h_{b}(x) & \text { if } y=b \\ x & \text { if } y=1\end{cases}
$$

is a subcopula.
Here $T=\left\{T_{0}=\square\right\}, J=\left\{J_{0}=[0, b], J_{1}=[b, 1]\right\}$, and $F_{0,0}=h_{b}(x) / b, F_{0,1}=\left(x-h_{b}(x)\right) /(1-b), G_{0,0}(x)=$ $G_{0,1}(x)=x$.
It is of interest to note that the above result shows a general expression for all the copulas with a horizontal section h_{b}. Precisely, it is given by

$$
C(x, y)= \begin{cases}b C_{1}\left(\frac{h_{b}(x)}{b}, \frac{y}{b}\right) & \text { if } x \leq b \\ (1-b) C_{2}\left(\frac{x-h_{b}(x)}{1-b}, \frac{y-b}{1-b}\right)+h_{b}(x) & \text { otherwise }\end{cases}
$$

where C_{1} and C_{2} are copulas.
Note that we prove this fact by a different procedure from that in [11].
Finally, if we consider the Fréchet-Hoeffding boundary copulas in the following cases:
(a) $C_{1}(x, y)=C_{2}(x, y)=M(x, y)=\min \{x, y\}$, or
(b) $C_{1}(x, y)=C_{2}(x, y)=W(x, y)=\max \{0, x+y-1\}$,
then, we obtain the upper and lower copulas of this family, respectively. This result corresponds to Theorems 3.1 and 3.2 in [13].

Example 10. If $\operatorname{Ran}(F)=\{0, a, 1\}$ and $\operatorname{Ran}(G)=\{0, b, 1\}(0<a, b<1)$, then the subcopula C^{*} only takes a non-trivial value $C^{*}(a, b)=\theta$, with θ such that $\max \{0, x+y-1\} \leq \theta \leq \min \{x, y\}$.

A copula C extending C^{*} has the form:

$$
C(x, y)= \begin{cases}\theta C_{00}\left(F_{0}\left(\frac{x}{a}\right), G_{0}\left(\frac{y}{b}\right)\right) & \text { if }(x, y) \in[0, a] \times[0, b] \\ (b-\theta) C_{10}\left(F_{1}\left(\frac{x-a}{1-a}\right), G_{0}^{+}\left(\frac{y}{b}\right)\right)+\theta F_{0}\left(\frac{x}{a}\right) & \text { if }(x, y) \in[a, 1] \times[0, b] \\ (a-\theta) C_{01}\left(F_{0}^{+}\left(\frac{x}{a}\right), G_{1}\left(\frac{y-b}{1-b}\right)\right)+\theta G_{0}\left(\frac{x}{a}\right) & \text { if }(x, y) \in[0, a] \times[b, 1], \\ \theta+(1+\theta-a-b) C_{11}\left(F_{1}^{+}\left(\frac{x-a}{1-a}\right), G_{1}^{+}\left(\frac{y-b}{1-b}\right)\right) \\ +(b-\theta) F_{1}\left(\frac{x-a}{1-a}\right)+(a-\theta) G_{1}\left(\frac{y-b}{1-b}\right) & \text { if }(x, y) \in[a, 1] \times[b, 1]\end{cases}
$$

where F_{0} is an a / θ-Lipschitz distribution function, and F_{1}, G_{0}, and G_{1} are, respectively, as well of parameters $(1-a) /(b-\theta), a / \theta$, and $(1-b) /(a-\theta)$. The function F_{0}^{+}is determined by F_{0} in the form $F_{0}^{+}(x)=\left(a x-\theta F_{0}(x)\right) /$ $(a-\theta)$, and in a similar way F_{1}^{+}, G_{0}^{+}, and G_{1}^{+}.

This example corresponds to the case of two random variables that follow Bernoulli distributions. In the case of independent variables, the expression becomes easier writing $a b$ instead of θ.

4. Upper and lower bounds

For a given subcopula C^{*}, it is interesting to know the functions:

$$
U C^{*}(x, y)=\sup \left\{C(x, y): C \text { is a copula that extends to } C^{*}\right\}
$$

and

$$
L C^{*}(x, y)=\inf \left\{C(x, y): C \text { is a copula that extends to } C^{*}\right\} .
$$

We shall see that they are copulas, and we provide a method to produce them.
In fact, any interval T_{t} is divided into indexed subintervals (in \mathcal{J}) in such a way that the interval $T_{t}^{j}=\left[a_{t}^{j}, b_{t}^{j}\right] \subset T_{t}$ is an interval of length $V_{C^{*}}\left(T_{t} \times J_{j}\right)$, and its lower extreme is given by $a_{t}+\sum_{c_{j^{\prime}<c}} V_{C^{*}}\left(T_{t} \times J_{j^{\prime}}\right)$. In the same manner, we can divide J_{j} into indexed subintervals J_{j}^{t}.

Now, we can define the function $F_{t j}$, as:

$$
F_{t j}(x)= \begin{cases}0 & \text { if } 0 \leq x \leq \frac{a_{t}^{j}-a_{t}}{b_{t}-a_{t}} \tag{7}\\ \frac{b_{t}-a_{t}}{b_{t}^{j}-a_{t}^{j}} x+\frac{a_{t}-a_{t}^{j}}{b_{t}^{j}-a_{t}^{j}} & \text { if } \frac{a_{t}^{j}-a_{t}}{b_{t}-a_{t}} \leq x \leq \frac{b_{t}^{j}-a_{t}}{b_{t}-a_{t}} \\ 1 & \text { if } \frac{b_{t}^{j}-a_{t}}{b_{t}-a_{t}} \leq x \leq 1\end{cases}
$$

and, similarly, for functions $G_{t j}$.
Theorem 11. If we choose the functions $F_{t j}$ and $G_{t j}$ in the E-process as above (7), and the copula $C_{t j}=M$, then the associated copula with respect to the doubly stochastic measure is the copula $U C^{*}$.

Proof. First, we can see that if $T_{t} \times J_{j} \in O_{1} \times O_{2}$, then the mass distribution is uniformly distributed on the diagonal of the square $T_{t}^{j} \times J_{j}^{t}$ in this rectangle. If $T_{t} \times J_{j} \in D_{1} \times O_{2}$, then the mass is distributed in the graph of an increasing bijection from T_{t} to J_{j}^{t}. If $T_{t} \times J_{j} \in O_{1} \times D_{2}$, then the mass is also distributed in the graph of an increasing bijection from T_{t}^{j} to J_{j}.

To show that the copula associated to this measure is $U C^{*}$, three cases have to be considered. Here, the associated copula will be denoted by C^{\prime} :

1. If $(x, y) \in \overline{\operatorname{Ran}}(F) \times \overline{\operatorname{Ran}}(G)$, then it is obvious that C^{\prime} is, in fact, $U C^{*}(x, y)$.
2. If $(x, y) \in T_{t} \times J_{j} \in O_{1} \times O_{2}$, we distinguish some subcases:
(a) If $x \leq a_{t}^{j}, y \leq c_{j}^{t}$, then

$$
C^{\prime}(x, y)=C^{*}\left(a_{t}, c_{j}\right)+\left(x-a_{t}\right)+\left(y-c_{j}\right)
$$

and it is the maximum value obtainable;
(b) If $x \geq b_{t}^{j}, y \geq d_{j}^{t}$, then $C^{\prime}(x, y)=C^{*}\left(b_{t}, d_{j}\right)$, and that it is the maximum value obtainable, as well;
(c) If $a_{t}^{j} \leq x \leq b_{t}^{j}, y \leq c_{j}^{t}$, then $C^{\prime}(x, y)=C^{*}\left(a_{t}, c_{j}\right)+\sum_{j^{\prime}<j} V_{C^{*}}\left(T_{t} \times J_{j^{\prime}}\right)+x-a_{t}$, and that it is newly the maximum value obtainable;
(d) The same conclusion can be drawn to the case $x \leq b_{t}^{j}, c_{j}^{t} \leq y \leq d_{j}^{t}$.

Similar arguments apply to the other cases:
(e) $x \geq b_{t}^{j}, y \leq c_{j}^{t}$;
(f) $x \leq a_{t}^{j}, y \geq d_{j}^{t}$;
(g) $a_{t}^{j} \leq x \leq b_{t}^{j}, y \geq d_{j}^{t}$;
(h) $x \geq b_{t}^{j}, c_{j}^{t} \leq y \leq d_{j}^{t}$; or
(i) $a_{t}^{j} \leq x \leq b_{t}^{j}, c_{j}^{t} \leq y \leq d_{j}^{t}$.
3. If $(x, y) \in T_{t} \times J_{j} \in D_{1} \times O_{2}$ or $(x, y) \in T_{t} \times J_{j} \in O_{1} \times D_{2}$, then the corresponding subcases can be treated as in case 2.

Observe that we obtain the lower bound in a similar way. In fact, the interval $T_{t}^{j} \subset T_{t}$ has length $V_{C^{*}}\left(T_{t} \times J_{j}\right)$, and its upper extreme is $b_{t}-\sum_{j^{\prime}<j} V_{C^{*}}\left(T_{t} \times J_{j^{\prime}}\right)$. The interval J_{j} is divided into subintervals J_{j}^{t}, and the functions $F_{t j}$ and $G_{t j}$ are defined as above.

Theorem 12. If we choose the functions $F_{t j}$ and $G_{t j}$ in the E-process as above (7), and copula $C_{t j}=W$, then the associated copula with respect to the doubly stochastic measure is the copula $L C^{*}$.

Example 13. The last two theorems include, as a particular case, the result due to Carley in [14] (see [15], as well), when the sets $\operatorname{Ran}(F)$ and $\operatorname{Ran}(G)$ are finite.

5. Conclusions

We can describe all the elements of the set of copulas that extend a given subcopula (Theorem 4). We have called this technique we have used E-process. Furthermore, we describe the upper and lower bounds of this set that are copulas, as well.

If we transfer these ideas to the n-dimensional case, then we can obtain n-stochastic measures, but it does not seem easy to give an analogous to Theorem 4. Moreover, if $n \geq 3$, the Fréchet-Hoeffding lower bound is not a copula, and as a consequence it would be impossible to find a lower bound for the copulas that extend a given subcopula.

Acknowledgements

The authors are grateful to the support of the Ministerio de Ciencia e Innovación (Spain) under Research Project MTM2011-22394. They are also grateful to the anonymous referees for their useful suggestions that led to improvement of the paper.

References

[1] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959) 229-231.
[2] B. Schweizer, A. Sklar, Operations on distribution functions not derivable from operations on random variables, Stud. Math. 52 (1974) 43-52.
[3] R.B. Nelsen, An Introduction to Copulas, 2nd ed., Springer Series in Statistics. Springer, New York, 2006.
[4] A. Burchard, H. Hajaiej, Rearrangement inequalities for functionals with monotone integrands, J. Funct. Anal. 233 (2) (2006) 561-582.
[5] H. Carley, M.D. Taylor, A new proof of Sklar's theorem, in: C.M. Cuadras, J. Fostiana, J.A. Rodríguez-Lallena (Eds.), Proceedings of the Conference on Distributions with Given Marginals and Statistical Modelling, Barcelona, 2000, pp. 29-34.
[6] P. Deheuvels, Caractérisation complète des lois extrêmes multivariées et de la convergence des types extrêmes, Publ. Inst. Statist. Univ. Paris 23 (1978) 1-37.
[7] D.S. Moore, M.C. Spruill, Unified large-sample theory of general chi-squared statistics for tests of fit, Ann. Statist. 3 (1975) $599-616$.
[8] L. Rüschendorf, On the distributional transform, Sklar's theorem, and the empirical copula process, J. Statist. Plan. Infer. 139 (11) (2009) 3921-3927.
[9] F. Durante, C. Sempi, Copula theory: an introduction, in: P. Jaworski, F. Durante, W. Härdle, T. Rychlik (Eds.), Workshop on Copula Theory and its Applications, Lecture Notes in Statistics - Proceedings, Springer, Dortrecht (NL), 2010.
[10] A.W. Marshall, Copulas, Marginals, and joint distributions. Distributions with fixed marginals and related topics (Seattle, WA, 1993), IMS Lecture Notes Monograph Series 28, Institute of Mathematical Statistics, Hayward, CA, 1996, pp. 213-222.
[11] F. Durante, S. Saminger-Platz, P. Sarkoci, Rectangular patchwork for bivariate copulas and tail dependence, Commun. Statist. Theory Methods 38 (15) (2009) 2515-2527.
[12] B. De Baets, H. De Meyer, Orthogonal grid constructions of copulas, IEEE Trans. Fuzzy Syst. 15 (6) (2007) 1053-1062.
[13] E.P. Klement, A. Kolesárová, R. Mesiar, C. Sempi, Copulas constructed from the horizontal section, Commun. Statist. Theory Methods 36 (2007) 2901-2911.
[14] H. Carley, Maximum and minimum extensions of finite subcopulas, Com. Statist. Theory Methods 31 (12) (2002) 2151-2166.
[15] C. Genest, J. Nešlehová, A primer on copulas for count data, ASTIN Bull. 37 (2007) 475-515.

[^0]: * Corresponding author. Tel.: +34 950015278; fax: +34 950015480 .

 E-mail addresses: edeamo@ual.es, enrideamo@gmail.com (E. de Amo), madiaz@ugr.es (M. Díaz Carrillo), juanfernandez@ual.es (J. Fernández-Sánchez).

