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Abstract In this work we study the some general fractal sums of pulses defined in R by:

+o0

F(t)=Y a,G0,'(t = X,))

n=1

where (a,), (A,) two positive scalar sequences such that > a, is divergent, and (%,) is
non-increasing to 0, G is an elementary bump and X, are independent random variables
uniformly distributed on a sufficiently large domain £2. We investigate the Hausdorff dimen-
sion of the graph of G and in particular we answer a question given by Tricot in (Courbes et
dimensions fractales, Springer, Berlin, 1995).
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1 Introduction

Let (I', F, P) be a probability space, we consider random functions of the type

+00
F(t)=)_ a,G(,'(t = X)) ey

n=1
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where (a,), (A,) are two positive scalar sequences such that " a, is divergent, and (1,,) is
non-increasing to 0. The function G : R — R is the elementary bump (i.e an even contin-
uous function supported on [—1, 1], decreasing on [0, 1] and satisfying G(0) = 1) and X,
are continuous independent random variables uniformly distributed on a sufficiently large
domain £2.

In the particular case a, = ni,, He(0,1)and A, = % these functions have been intro-
duced in [9] and [11] to generate measures associated to Poisson processes. In the same
particular case and in higher dimension, the analysis of the fractal sums of pulses has been
treated in [3] and [2]. The existence and regularity of functions defined by (1) have been
studied in [1]. Notice that this kind of functions are important for the purpose of modeling
strange phenomena which are known to exhibit multifractal behaviors. Such behaviors occur
for instance in geophysics [5] when considering the spatial-temporal position and the inten-
sity of seismic events, in telecommunications where the TCP Internet traffic is known to be
multifractal [8], and also when studying financial time series [10]. This work was motivated
by a question given in [13] about the Hausdorff dimension of the graph of functions defined
by (1). In this paper, we investigate the Hausdorff dimension of their graphs which provides
a measure of the irregularity of the process and gives a positive answer to the question of
Tricot. In particular our result is an improvement of the result of [1] who gives only an upper
bound of the upper box dimension of the graph of F.

The paper is organized as follows. In the next section we introduce some basic notions
and properties. In Sect. 3 we state our main result giving the Hausdorff dimension of the
pulse-sum functions. We prove Theorem 1 by using some potential theoretic methods for
calculating the Hausdorff dimensions and some technical lemmas useful for our proof.

2 Preliminaries

Casually, we briefly recall some basic definitions and facts which will be used in subsequent
developments.

Let A be a subset of R?. The s-dimensional Hausdorff measure Hausdorff of A is defined
by

H'(A) = lim H} (4)

where, for € > 0,

o0 o0
H:(A) :inf{Z|E,~|S tEC| JE: and |E| 58},
i=0 i=0

with |A| denoting the diameter of a set A € R2. The Hausdorff dimension of A is given by
dim(A) =inf{s : H*(A) = 0} = sup{s : H*(A) = oo}

(see [4] and [12] for more details). When calculating the Hausdorff dimension of a set A,

in general it is difficult to find a lower estimate of dim(A), and one approach is to relate

Hausdorff dimension to certain energies.

@ Springer



A note on the Hausdorff dimension of general sums of pulses graphs 471

For A C R?, let
M(A) = {u : p is a finite Radon measure supported by A}.

For u € M(A), we define the s-energy of u by

d d
L )_// m(x) /L(y)' @)
lx — y]*

Then

dim(A) = sup{s > 0:3u € M(A) with I;(n) < oo}
(see [4] and [12]). So, if we can construct a measure p supported on A with finite s-energy
then dim(A) > s. For the graph I'r C R2? of a continuous function F : [0, 1] — R, there is a
natural measure p on I as follows. If £! denotes the Lebesgue measure on [0, 1],

wW(E)=LYre[0,1]:(t, F(1)) € E} forall E C R>.

If x = (u, t) € R?, define ||x||> = (u® + t2)!/2. We can rewrite (2) by

() = //0 J((F() = F(3))* +|x = y[») ™" dxdy. 3
(0,11

3 Results

The existence and regularity of bumps sums functions defined by (1) have been studied
in [1]. In particular Abid proved the following results. We denote by

Aj={n:27 <, <270y

and

1
H =liminf ( inf —2& 4)
n—00 neA; logk

Theorem (Ben Abid) 1 Assume that A\, = %, a>0and G e C'(R). Then if H € (0, 1]
we have, almost surely, for every s € (0, H), F € CI~¢(R).

Denote by I'r := {(¢, F(t)) : t € [0, 1]} the graph of the random function F. The Holder
estimates on £ immediately give an upper bound for the upper box-counting dimension
dimg I'r of the graph (see [4]).

Corollary (Ben Abid) 1 We have
EB I'r <2 — H, almost surely.

From now on A,, = % with @ > 0. Our main result is to calculate the Hausdorff dimension

of the graph of F' which improves the result of Ben Abid and gives an answer to a question

given by Tricot in [13].
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Theorem 1 Assume that there exists a non-empty interval 1 C [0, 1] on which G : [ — J is
a C'-diffeomorphism. Then we have

dimI'r =2 — H, almost surely.

Since the Hausdorff dimension is less then its box dimension, due to Corollary 1, it is
sufficient to prove that dim I'r > 2 — H, almost surely. The proof is based on the potential
theoretic method to calculate the Hausdorff dimension of graphs of many functions, such as
the fractional Brownian motion [7] or the random Weierstrass function [6] and those given
in the particular case a, = ni,, and A, = % H € (0, 1) in [2]. The potential theoretic ideas
are developed in the following section.

In order to prove Theorem 1, we need some intermediate results. We use the following
probability notations.

For each event A € F with P(A) > 0 we write P4 for the probability conditional
on A. We have P4 is absolutely continuous with respect to P with density % = ﬁ XA-
We denote by E# the expectation with respect to P4 to get for all random variables ¥,
EA(Y) = ﬁE(Y xa4). Further, we write Py for the law of ¥ as a random variable on
r,F,P.

For x, y € [0, 1] we define

o0
Z=Fx)=F(y)=) Z,
n=1
where
Zy=a, (GO (x = X,)) =GO (y — X)) -
For this fixed x, we write A, for the event (x € C,) where
C,={teR:|t—X,|r," eI},

The results of the following lemmas are similar to Lemma 3.1, Corollary 3.2 and Corol-
lary 3.3 established in [2].

Lemma 1 Let x, y € [0, 1] be fixed. For all p > 1 such that |x — y| > 2A,, the random
variable Z, has a density conditional on A, given by

(&)

Now denote by S, =3, , Z, so that Z =S, + Z,,. We condition on S, and we regard
Z as random variable on (I, F, PA7).

( )_)‘71’
fr@) = a,P(A,)

XJ <i> forall z e R,
a

p

where h : J — I is the inverse of G.

Lemma 2 Letx,y €[0, 1] and p > 1 such that |x — y| > 2X,,. Then Z has a density condi-
tional on S, given by

7@ = fz—s) forallzeR, ©)

where f, is as in Lemma 1.
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Lemma3 Vn >m >1,Vx,y € [0, 1] such that |x — y| > 2A,, and r > 0, we have

P((F(x) = F(y)| <r) N (A, U---UA,) < C—

n

for some C > 0.

Lemmad Lets > 1. For 1 <m <n,let V=C,U---UC,. For x,y € [0, 1] such that
|x — y| > 2A\,,, we have

E(((F() — FOI? + 1x = Y™ xery) < Clx — y|' =~ ©)
for some C > 0.
Proof of Lemma 4 Denote h = |x — y|, for r > 0 due to Lemma 3 we have
P =B((Z| <r)N(xeV) =C—.

So,

EC (2 + )™ = / (1) PP (1Z) < r))

s/2
IP’(er)/ ( + 1) dp(r).

As a consequence,
o0
EC“"((1ZP +h) ) xwev) = / (r* +h*) " dp(r).
0
Integrating by parts we get,
[e'9) h [e's]
f (r* +h*) " dp(r) < f h™*dp(r) + / r~dp(r)
0 0 h
o0
<hph) +Irp(N]2, + Sf r " p(rydr

h

h < C )
<Ch™—+ Cs/ r Tt gy < =gt
h a

[ an
and (6) yields.
Next we want to prove that for given x, y, the quantity | F(x) — F(y)| is of high proba-
bility of being suitably large, for x in a large random subset of [0, 1]. O

Remark 1 Recall that H is defined by (4) so for all € € (0, H), there exists k. > 1 such that
for all k > k., for all n € Ay, a, > 2 kH1+e/2)

The following result is a straightforward consequence of Lemma 4 by considering the
random set V; = C;,kz C/ ] withn; € A; for (k+1)? — 1< j <k>
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Corollary 1 Lets > 1,¢ > 0and x,y €0, 1] such that |x — y| <2 t,_1. Let k > 1 be the
unique integer satisfying 2 ; < |x — y| <2Ax_y. Then

E((F(x) = FO))? +1x — v xxev) < Clax — y|! s HAHe/2)

for some C > 0.
Further we will estimate the measure of V.

Lemma S There exists a constant § > 0 such that for all 1 <m < n, we have

E (El ([0, 1]\£Jmc,,>> < (%)5

For the proof of this lemma see Lemma 3.6 in [2].
3.1 Proof of Theorem 1

Let 1 <5 <2 — H. Choose ¢ > 0 such that (1 +¢/2)H <2 — s < 1 with k, > 1 the
associated integer. Fix kg > k., we define W = [0, 1] N (ﬂ,fiko Vi). The proof of Theo-
rem 1 splits in two steps. Denote by L'y the restriction of Lebesgue measure to W and
R ={(x,y) € [0, 1] x [0, 1]: 24 < [x — y| = 241 }.

Step 1. From the definition of W and due to Corollary 1 we have

E ( / / (F(x) = F(9)? + |x — y)~"d L y (x)dL! W(y>>
{(x,yel0, 1] |x—y[<2hxy}

(F(x) = F(y)* +|x — y|2)_5/2dxdy>

{vew YelO. 1 x—y| <23y}

( // (F(x) = F))* + |x — y[»)~*dxdy
RyNW x[0,1]

<E Z f / (F) = FO)? + Ix = )™ xevpdxdy

k=ko

= Z <// E(((F('x) - F(y))z + |)C - )’|2)_S/2X(xevk))dXdy>
=ko Ry
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since | —s — H(1 +¢) > —1, this last integral converges, therefore the integral
/[ ((F) = FOD + e = yP)2d Ly (0d Ly (7)
{x.yel0.1]:1x—y <22k}
is finite almost surely and so
[ = F =y s e () < 00
[0,11x[0,1]

almost surely.

Step 2. Let uy be the finite Borel measure on R? defined by uw(E) = L'{t € W :
(t, F(t)) € E} for all E C R?. Notice that uy is supported on I'r and of finite s-energy.
Hence, to conclude that dim I'r > s it is sufficient to prove that py is positive which is
equivalent to show that £' (W) > 0.

n —1
We have [0, 11\ W = U, ([0. 11\ U,%!% Ci) so by Lemma 5

[} )
E(C([0. 11\ W) < > (L) .

imry M2~ 1
Since n;2 € Aj2 then a2kl < ne < a2k,
Hence
o 2—2/{06
E(L'([0, 1\ W) = Y 27 = ———.
k=ko

Using Markov’s inequality we have,

—2kod

P(LY (W) <1/2) =P(L'([0, 11\ W) > 1/2) < 2

Let 0 < n < 1 and choose k( large enough such that ?1:2—232 <7, so LY(W) > 1/2 with
probability greater than 1 — 5. From the previous two steps we conclude that dim Iy > s
with probability at least 1 — 7. The arbitrariness on s and n implies that dim 'y >2 — H
almost surely.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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