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Abstract In this work we study the some general fractal sums of pulses defined in R by:

F(t) =
+∞∑

n=1

anG(λ−1
n (t − Xn))

where (an), (λn) two positive scalar sequences such that
∑

an is divergent, and (λn) is
non-increasing to 0, G is an elementary bump and Xn are independent random variables
uniformly distributed on a sufficiently large domain Ω . We investigate the Hausdorff dimen-
sion of the graph of G and in particular we answer a question given by Tricot in (Courbes et
dimensions fractales, Springer, Berlin, 1995).
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1 Introduction

Let (Γ, F ,P) be a probability space, we consider random functions of the type

F(t) =
+∞∑

n=1

anG(λ−1
n (t − Xn)) (1)
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where (an), (λn) are two positive scalar sequences such that
∑

an is divergent, and (λn) is
non-increasing to 0. The function G : R → R is the elementary bump (i.e an even contin-
uous function supported on [−1,1], decreasing on [0,1] and satisfying G(0) = 1) and Xn

are continuous independent random variables uniformly distributed on a sufficiently large
domain Ω .

In the particular case an = 1
nH , H ∈ (0,1) and λn = 1

n
, these functions have been intro-

duced in [9] and [11] to generate measures associated to Poisson processes. In the same
particular case and in higher dimension, the analysis of the fractal sums of pulses has been
treated in [3] and [2]. The existence and regularity of functions defined by (1) have been
studied in [1]. Notice that this kind of functions are important for the purpose of modeling
strange phenomena which are known to exhibit multifractal behaviors. Such behaviors occur
for instance in geophysics [5] when considering the spatial-temporal position and the inten-
sity of seismic events, in telecommunications where the TCP Internet traffic is known to be
multifractal [8], and also when studying financial time series [10]. This work was motivated
by a question given in [13] about the Hausdorff dimension of the graph of functions defined
by (1). In this paper, we investigate the Hausdorff dimension of their graphs which provides
a measure of the irregularity of the process and gives a positive answer to the question of
Tricot. In particular our result is an improvement of the result of [1] who gives only an upper
bound of the upper box dimension of the graph of F .

The paper is organized as follows. In the next section we introduce some basic notions
and properties. In Sect. 3 we state our main result giving the Hausdorff dimension of the
pulse-sum functions. We prove Theorem 1 by using some potential theoretic methods for
calculating the Hausdorff dimensions and some technical lemmas useful for our proof.

2 Preliminaries

Casually, we briefly recall some basic definitions and facts which will be used in subsequent
developments.

Let A be a subset of R
2. The s-dimensional Hausdorff measure Hausdorff of A is defined

by

Hs(A) = lim
ε→0

Hs
ε(A)

where, for ε > 0,

Hs
ε(A) = inf

{ ∞∑

i=0

|Ei |s : E ⊂
∞⋃

i=0

Ei and |Ei | ≤ ε

}
,

with |A| denoting the diameter of a set A ∈ R
2. The Hausdorff dimension of A is given by

dim(A) = inf{s : Hs(A) = 0} = sup{s : Hs(A) = ∞}

(see [4] and [12] for more details). When calculating the Hausdorff dimension of a set A,
in general it is difficult to find a lower estimate of dim(A), and one approach is to relate
Hausdorff dimension to certain energies.
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For A ⊂ R
2, let

M(A) = {μ : μ is a finite Radon measure supported by A}.

For μ ∈ M(A), we define the s-energy of μ by

Is(μ) =
∫ ∫

dμ(x)dμ(y)

|x − y|s . (2)

Then

dim(A) = sup{s ≥ 0 : ∃μ ∈ M(A) with Is(μ) < ∞}
(see [4] and [12]). So, if we can construct a measure μ supported on A with finite s-energy
then dim(A) ≥ s. For the graph ΓF ⊂ R

2 of a continuous function F : [0,1] → R, there is a
natural measure μ on ΓF as follows. If L1 denotes the Lebesgue measure on [0,1],

μ(E) = L1{t ∈ [0,1] : (t,F (t)) ∈ E} for all E ⊂ R
2.

If x = (u, t) ∈ R
2, define ‖x‖2 = (u2 + t2)1/2. We can rewrite (2) by

Is(μ) =
∫ ∫

[0,1]2
((F (x) − F(y))2 + |x − y|2)−s/2dxdy. (3)

3 Results

The existence and regularity of bumps sums functions defined by (1) have been studied
in [1]. In particular Abid proved the following results. We denote by

Λj = {n : 2−j ≤ λn < 2−(j−1)},

and

H = lim inf
n→∞

(
inf

n∈Λj

logan

logλn

)
. (4)

Theorem (Ben Abid) 1 Assume that λn = α
n

, α > 0 and G ∈ C1(R). Then if H ∈ (0,1]
we have, almost surely, for every ε ∈ (0,H), F ∈ CH−ε(R).

Denote by ΓF := {(t,F (t)) : t ∈ [0,1]} the graph of the random function F . The Hölder
estimates on F immediately give an upper bound for the upper box-counting dimension
dimBΓF of the graph (see [4]).

Corollary (Ben Abid) 1 We have

dimBΓF ≤ 2 − H, almost surely.

From now on λn = α
n

with α > 0. Our main result is to calculate the Hausdorff dimension
of the graph of F which improves the result of Ben Abid and gives an answer to a question
given by Tricot in [13].
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Theorem 1 Assume that there exists a non-empty interval I ⊂ [0,1] on which G : I → J is
a C1-diffeomorphism. Then we have

dimΓF = 2 − H, almost surely.

Since the Hausdorff dimension is less then its box dimension, due to Corollary 1, it is
sufficient to prove that dimΓF ≥ 2 − H , almost surely. The proof is based on the potential
theoretic method to calculate the Hausdorff dimension of graphs of many functions, such as
the fractional Brownian motion [7] or the random Weierstrass function [6] and those given
in the particular case an = 1

nH and λn = 1
n

, H ∈ (0,1) in [2]. The potential theoretic ideas
are developed in the following section.

In order to prove Theorem 1, we need some intermediate results. We use the following
probability notations.

For each event A ∈ F with P(A) > 0 we write P
A for the probability conditional

on A. We have P
A is absolutely continuous with respect to P with density dP

A

dP
= 1

P(A)
χA.

We denote by E
A the expectation with respect to P

A to get for all random variables Y ,
E

A(Y ) = 1
P(A)

E(YχA). Further, we write PY for the law of Y as a random variable on
(Γ, F ,P).

For x, y ∈ [0,1] we define

Z = F(x) − F(y) =
∞∑

n=1

Zn

where

Zn = an

(
G(λ−1

n (x − Xn)) − G(λ−1
n (y − Xn))

)
.

For this fixed x, we write An for the event (x ∈ C ′
n) where

C ′
n = {

t ∈ R : |t − Xn|λ−1
n ∈ I

}
.

The results of the following lemmas are similar to Lemma 3.1, Corollary 3.2 and Corol-
lary 3.3 established in [2].

Lemma 1 Let x, y ∈ [0,1] be fixed. For all p ≥ 1 such that |x − y| > 2λp , the random
variable Zp has a density conditional on Ap given by

fp(z) = λp

apP(Ap)

∣∣∣∣h
′
(

z

ap

)∣∣∣∣χJ

(
z

ap

)
for all z ∈ R,

where h : J → I is the inverse of G.

Now denote by Sp = ∑
n�=p Zn so that Z = Sp + Zp . We condition on Sp and we regard

Z as random variable on (Γ, F ,P
Ap ).

Lemma 2 Let x, y ∈ [0,1] and p ≥ 1 such that |x − y| > 2λp . Then Z has a density condi-
tional on Sp given by

f
Sp=s
z (z) = fp(z − s) for all z ∈ R, (5)

where fp is as in Lemma 1.
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Lemma 3 ∀n > m ≥ 1, ∀x, y ∈ [0,1] such that |x − y| > 2λm and r > 0, we have

P((|F(x) − F(y)| < r) ∩ (Am ∪ · · · ∪ An)) ≤ C
r

an

for some C > 0.

Lemma 4 Let s > 1. For 1 ≤ m < n, let V = Cm ∪ · · · ∪ Cn. For x, y ∈ [0,1] such that
|x − y| > 2λm, we have

E(((F (x) − F(y))2 + |x − y|2)−s/2χ(x∈V )) ≤ C|x − y|1−s 1

an

(6)

for some C > 0.

Proof of Lemma 4 Denote h = |x − y|, for r > 0 due to Lemma 3 we have

p(r) := P((|Z| < r) ∩ (x ∈ V )) ≤ C
r

an

.

So,

E
(x∈V )((|Z|2 + h2)−s/2) =

∫ ∞

0
(r2 + h2)−s/2d(P(x∈V )(|Z| < r))

= 1

P(x ∈ V )

∫ ∞

0
(r2 + h2)−s/2dp(r).

As a consequence,

E
(x∈V )((|Z|2 + h2)−s/2)χ(x∈V ) =

∫ ∞

0
(r2 + h2)−s/2dp(r).

Integrating by parts we get,

∫ ∞

0
(r2 + h2)−s/2dp(r) ≤

∫ h

0
h−sdp(r) +

∫ ∞

h

r−sdp(r)

≤ h−sp(h) + [r−sp(r)]∞r=h + s

∫ ∞

h

r−s−1p(r)dr

≤ Ch−s h

an

+ Cs

∫ ∞

h

r−s−1 r

an

dr ≤ C

an

h1−s

and (6) yields.
Next we want to prove that for given x, y, the quantity |F(x) − F(y)| is of high proba-

bility of being suitably large, for x in a large random subset of [0,1]. �

Remark 1 Recall that H is defined by (4) so for all ε ∈ (0,H), there exists kε ≥ 1 such that
for all k ≥ kε , for all n ∈ Λk , an ≥ 2−kH(1+ε/2).

The following result is a straightforward consequence of Lemma 4 by considering the
random set Vk = C ′

n
k2

∪ · · · ∪ C ′
n
(k+1)2 −1 with nj ∈ Λj for (k + 1)2 − 1 ≤ j ≤ k2.
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Corollary 1 Let s > 1, ε > 0 and x, y ∈ [0,1] such that |x − y| < 2λkε−1. Let k ≥ 1 be the
unique integer satisfying 2λk < |x − y| ≤ 2λk−1. Then

E(((F (x) − F(y))2 + |x − y|2)−s/2χ(x∈Vk)) ≤ C|x − y|1−s−H(1+ε/2)

for some C > 0.

Further we will estimate the measure of Vk .

Lemma 5 There exists a constant δ > 0 such that for all 1 ≤ m < n, we have

E

(
L1

(
[0,1] \

n⋃

p=m

Cp

))
≤

(m

n

)δ

.

For the proof of this lemma see Lemma 3.6 in [2].

3.1 Proof of Theorem 1

Let 1 < s < 2 − H . Choose ε > 0 such that (1 + ε/2)H < 2 − s < 1 with kε ≥ 1 the
associated integer. Fix k0 ≥ kε , we define W = [0,1] ∩ (

⋂∞
k=k0

Vk). The proof of Theo-
rem 1 splits in two steps. Denote by L1

W the restriction of Lebesgue measure to W and
Rk = {(x, y) ∈ [0,1] × [0,1] : 2λk < |x − y| ≤ 2λk−1}.

Step 1. From the definition of W and due to Corollary 1 we have

E

(∫ ∫

{x,y∈[0,1]: |x−y|≤2λk0 }
((F (x) − F(y))2 + |x − y|2)−s/2dL1

W(x)dL1
W(y)

)

≤ E

(∫ ∫

{x∈W, y∈[0,1]:|x−y|≤2λk0 }
((F (x) − F(y))2 + |x − y|2)−s/2dxdy

)

≤ E

⎛

⎝
∞∑

k=k0

∫ ∫

Rk∩W×[0,1]
((F (x) − F(y))2 + |x − y|2)−s/2dxdy

⎞

⎠

≤ E

⎛

⎝
∞∑

k=k0

∫ ∫

Rk

((F (x) − F(y))2 + |x − y|2)−s/2χ(x∈Vk)dxdy

⎞

⎠

≤
∞∑

k=k0

(∫ ∫

Rk

E(((F (x) − F(y))2 + |x − y|2)−s/2χ(x∈Vk))dxdy

)

≤ C

∞∑

k=k0

(∫ ∫

Rk

|x − y|1−s−H(1+ε/2)dxdy

)

≤ C

∫ ∫

{x∈W, y∈[0,1]:|x−y|≤2λk0 }
|x − y|1−s−H(1+ε/2)dxdy,
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since 1 − s − H(1 + ε) > −1, this last integral converges, therefore the integral

∫ ∫

{x,y∈[0,1]:|x−y|≤2λk0 }
((F (x) − F(y))2 + |x − y|2)−s/2dL1

W(x)dL1
W(y)

is finite almost surely and so

∫ ∫

[0,1]×[0,1]
((F (x) − F(y))2 + |x − y|2)−s/2dL1

W(x)dL1
W(y) < ∞

almost surely.
Step 2. Let μW be the finite Borel measure on R

2 defined by μW(E) = L1{t ∈ W :
(t,F (t)) ∈ E} for all E ⊂ R

2. Notice that μW is supported on ΓF and of finite s-energy.
Hence, to conclude that dimΓF ≥ s it is sufficient to prove that μW is positive which is
equivalent to show that L1(W) > 0.

We have [0,1] \ W = ⋃∞
k=k0

([0,1] \ ⋃n
(k+1)2 −1

p=n
k2 Ck) so by Lemma 5

E(L1([0,1] \ W)) ≤
∞∑

k=k0

(
nk2

n(k+1)2 − 1

)δ

.

Since nk2 ∈ Λk2 then α2k2−1 ≤ nk2 < α2k2
.

Hence

E(L1([0,1] \ W)) ≤
∞∑

k=k0

2−2kδ = 2−2k0δ

1 − 2−2δ
.

Using Markov’s inequality we have,

P(L1(W) < 1/2) = P(L1([0,1] \ W) ≥ 1/2) ≤ 2
2−2k0δ

1 − 2−2δ
.

Let 0 < η < 1 and choose k0 large enough such that 21−2k0δ

1−2−2δ < η, so L1(W) ≥ 1/2 with
probability greater than 1 − η. From the previous two steps we conclude that dimΓF ≥ s

with probability at least 1 − η. The arbitrariness on s and η implies that dimΓF ≥ 2 − H

almost surely.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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