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Abstract

In this paper we study a class of duality functions given by the solution of a system of functional equations related to the De Rham
system. With the aid of a generalized dyadic representation system in the unit interval, we study a negation N which is a duality
function for pairs of operators satisfying certain boundary conditions. New properties of N are investigated, including its singularity
and fractal dimensions for several related sets. As an application we obtain an explicit expression for k-negations.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

In [18], a duality relation is studied for pairs of binary operations on the unit interval I = [0, 1], involving members
of a class of aggregation operators which satisfy certain boundary conditions. More precisely, from the solution of a
system of functional equations related to the De Rham system, it is established that for any F in the above class, there
exist exactly two functions G and N such that the pair (F, G) is N-dual.

In this paper we seek an explicit description of N, and we study new properties for this function. Specifically, N is a
singular function, i.e. it is a decreasing function whose derivative vanishes almost everywhere. As a consequence, new
properties of k-negations can be described by N.

In this section we briefly introduce the general background.
Aggregation operators are mathematical objects that have the goal of reducing a set of numbers into a unique

representative (or meaningful) number. Let I2 be the unit square. An aggregation operator is defined as a function
F : I2 → I that satisfies:

(i) F(0, 0) = 0 and F(1, 1) = 1 (boundary conditions); and
(ii) F(x1, y1) � F(x2, y2) if x1 � x2 and y1 � y2 (non-decreasing monotonicity).
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One of the most common aggregation operators are t-norms. A t-norm (or triangular norm) T is defined as an
associative (i.e. T (x, T (y, z)) = T (T (x, y), z)) and commutative aggregation operator T : I2 → I satisfying T (1, x) =
x for all x ∈ I (with neutral element 1). A t-conorm S is defined as an associative and commutative aggregation operator
S : I2 → I satisfying S(0, x) = x for all x ∈ I (with neutral element 0).

A negation N is defined as a non-increasing function N : I → I with boundary conditions N (0) = 1, N (1) = 0.
If N is involutive, i.e. if N (N (x)) = x holds for all x ∈ I, we say that N is a strong negation.

For any given t-conorm S and any strong negation N, the function

(x, y) −→ N (S(N (x), N (y))), ∀(x, y) ∈ I2

is a t-norm.
It is well known that t-norms and t-conorms have been used to define the intersection and union of fuzzy sets, and to

model the logic “and” and “or” in fuzzy logic as a generalization of the Boolean logic connectives to multi-valued logic
(see for example [10]). In [25, Theorem 2.1] strong negations are characterized in the context of the theory of fuzzy
sets by means of some I-automorphism (order-preserving bijection). In [15], a general framework for characterizing
self-dual aggregation operators has been presented. Another interesting development in aggregation operator theory
is copulas. For instance, commutative and associative copulas are t-norms, and the 1-Lipschitz (binary) aggregation
operator with neutral element 1, is a quasi-copula (see [1,9,20]). For an overview of results in the field of aggregation
operators we refer the reader to [5].

We will denote by � the subclass of commutative aggregation operators F that satisfy the relations:

F(x, 0) = F(1, 0)x and F(x, 1) = (1 − F(1, 0))x + F(1, 0)

for all x ∈ I, with F(1, 0) ∈]0, 1[. Let us observe that t-norms and t-conorms are in �. The convex linear hull of
elements in � remains in �.

Let T, S be in � and let N be a negation function. N is said to be a duality function for the pair (T, S) (or that
the pair (T,S) is N-dual), if N (T (x, y) = S(N (x), N (y)) for all x, y in I.

For a deeper discussion on duality, negations and automorphisms, see [11–15], and the references therein.
The following result is proved in [18]. We state it with the notation we will use in this paper.

Theorem 1.1 (Mayor and Torrens [18, Theorem 2]). Let F be in �. Given k, k′, 0 < k, k′ < 1, there exists a unique
G F,k′ in �, with G F,k′ (1, 0) = k′, and a unique negation function Nk,k′ : I → I such that the pair (F, G F,k′ ) is
Nk,k′ -dual.

Moreover, it is possible to give expressions for Nk,k′ and G F,k′ . They are related to the solution of the following
system of functional equations (known as the De Rham system):{

R
( x

2

) = k R(x)

R
( x+1

2

) = (1 − k)R(x) + k

This system just admits only one bounded solution; it is, in fact, a strictly increasing continuous bijection Rk : I → I.
Other properties of Rk can be found in [3,4,6,21–24]. The graph of R.3 is illustrated in Fig. 1.

We can use the following equalities involving functions Rk , G F,k′ and Nk,k′ :

Nk,k′ = Rk′ (1 − R−1
k ) (1)

and

G F,k′ (x, y) = Nk,k′ F(N−1
k,k′ (x), N−1

k,k′(y))

where Rk and Rk′ are the solutions of respective De Rham’s systems for k and k′ in ]0, 1[.
As well as the above, function Nk,k′ is characterized as the only solution in the unit interval I of a new system of

functional equations that is closely related to De Rham’s system:{
f (kx) = k′ + (1 − k′) f (x)

f (k + (1 − k)x) = k′ f (x)
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Fig. 1. The graph of R.3.
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Fig. 2. The graphs of N.3,.4 and N.4,.9.

More details can be found in [6,16–19]. The graphs corresponding to N.3,.4 (the lower) and N.4,.9 (the upper) are shown
in Fig. 2.

We have seen above that the two-parameter functions Nk,k′ defined on I, can be used in order to consider duality
relations for a class of binary operations on I. Although an explicit expression for Rk(x) is known when we consider
the dyadic representation for x , an explicit expression for Nk,k′ (x) is still unknown. The best result we know in this
direction is shown in [18, Theorem 3], where such expression is given for a denumerable set of points in I. Moreover,
since Rk is an increasing continuous bijection on I, (1) shows that Nk,k′ is a continuous and decreasing bijection on I

but any other properties have not been studied.
In this paper, we deal with duality functions for pairs of aggregation operators on I, and we give a description and

new properties of Nk,k′ which complete some previous studies on this topic.
This paper is structured as follows: in Section 2 we present a brief overview of a generalized dyadic number system

that will be used later.
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Section 3 is devoted to the study of two-parameter functions defined on I. With the aid of such a generalized dyadic
representation system for real numbers in ]0, 1], an explicit expression of Nk,k′ is given. After this, if k � 1 − k′,
we prove that the function Nk,k′ is not only strictly increasing and continuous, but also singular. If k � 1 − k′, then
there exists a set of �-measure one in which the derivative of Nk,k′ vanishes (with � the standard Lebesgue measure).
We also show additional properties for this function: Nk,k′ maps a set of �-measure 0 onto a set of �-measure 1, and
vice versa. The Hausdorff dimensions of these sets are computed. Moreover, functions Nk,k′ are characterized as the
unique solution of a system of functional equations.

In Section 4, the above results are applied to k-negations which are special types of strong negations.
We use standard terms of measure theory and fractal geometry whose definitions and properties may be found,

for example, in the classic of Falconer [7].

2. Generalized dyadic number system

In this section, the reader is referred to [2, Section 3] for a wider and more detailed study. Actually, a representation
system for numbers in ]0, 1] is introduced in [2, Section 3]. This system generalizes the dyadic (or binary) one.
As it is known, the dyadic system permits the expression of any real number in ]0, 1] through a series in the form
x = ∑+∞

n=1 1/2�n , where (�n) is a strictly increasing sequence of positive integers. For this new representation, we
introduce two numbers k and 1− k (with k ∈]0, 1[), and we obtain expansions in the form x = ∑+∞

n=1(1− k)nkmn , with
mn � mn+1. These series expansions are similar to those of dyadic representation. The expansion is unique except for
a denumerable set of numbers x for which there are exactly two representations, one of which is finite. We call the new
representation the generalized dyadic number system (of k parameter).

Note that in the case k = 1 − k = 1/2, both representations are the same for numbers in ]0, 1]. We recall the
following result.

Proposition 2.1 (de Amo and Fernández-Sánchez [2, Proposition 3]). Let k ∈]0, 1[. If x ∈]0, 1], then there exists a
unique increasing sequence of positive integers 1 � m0 � m1 � · · · � md � · · ·, such that x = ∑+∞

d=0(1 − k)dkmd .

The expansion x = ∑+∞
d=0(1 − k)dkmd is unique, but in the stationary case (i.e. m j > m j−1 and md = m j , if d � j),

we have the equality x = ∑+∞
d=0(1 − k)dkmd = ∑ j−1

d=0(1 − k)dkmd + (1 − k) j km j −1. This finite expression can be
considered as a second expansion in this system for x .

3. Functions Nk,k′

We introduce a class of two-parameter functions defined on I in order to consider some fundamental properties of
the duality function Nk,k′ .

Definition 3.1. For each pair k, k′ ∈]0, 1[, let us consider the function fk,k′ : I → I, given as follows:

(i) If x has a non-stationary infinite expansion, i.e. there exist 1 � t0 < t1 < · · · < td < · · ·, such that

x = kt0 + · · · + kt0 (1 − k)s0 + kt1 (1 − k)s0+1 + · · · + kt1 (1 − k)s1 + · · ·
+ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd + · · ·

then

fk,k′ (x) = k′ + k′(1 − k′) + · · · + k′(1 − k′)t0−2 + k′s0+2(1 − k′)t0−1 + · · · + k′s0+2(1 − k′)t1−2

+k′s1+2(1 − k′)t1−1 + · · · + k′s1+2(1 − k′)t2−2

+ · · · k′sd−1+2(1 − k′)td−1−1 + · · · + k′sd−1+2(1 − k′)td−2 + · · ·
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If t0 = 1, then

fk,k′(x) = k′s0+2 + k′s0+2(1 − k′) + · · · + k′s0+2(1 − k′)t1−2

+k′s1+2(1 − k′)t1−1 + · · · + k′s1+2(1 − k′)t2−2

+ · · · k′sd−1+2(1 − k′)td−1−1 + · · · + k′sd−1+2(1 − k′)td−2 + · · ·
(ii) If x has a finite expansion, that is, in the stationary case,

x = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd

then

fk,k′(x) = k′ + k′(1 − k′) + · · · + k′(1 − k′)t0−2

+ · · · k′sd−1+2(1 − k′)td−1−1 + · · · + k′sd−1+2(1 − k′)td−2k′sd+1(1 − k′)td−1

Several examples are included below illustrating how Definition 3.1 works.

Example 3.2. In case of a non-stationary infinite expansion, let

x = k2 + k2(1 − k) + · · · + k2(1 − k)5 + k4(1 − k)6 + · · · + k4(1 − k)11

+k7(1 − k)12 + · · · + k7(1 − k)16 + k11(1 − k)17 + · · · + k11(1 − k)22

+k25(1 − k)23 + · · · + k25(1 − k)30 + · · ·
Then the values for ti and si are given by

t0 = 2 s0 = 5

t1 = 4 s1 = 11

t2 = 7 s2 = 16

t3 = 11 s3 = 22

t4 = 25 s4 = 30

· · · · · ·
and the first terms for the series expansion of fk,k′ (x) are

fk,k′(x) = k′ + k′7(1 − k′) + k′7(1 − k′)2 + k′13(1 − k′)3 + k′13(1 − k′)4 + k′13(1 − k′)5

+k′18(1 − k′)6 + · · · + k′18(1 − k′)9

+k′24(1 − k′)10 + · · · + k′24(1 − k′)23+ + · · ·

Example 3.3. The case

x = k1 + k1(1 − k) + · · · + k1(1 − k)7 + k5(1 − k)8 + · · · + k5(1 − k)13

+k6(1 − k)14 + · · · + k6(1 − k)19 + k17(1 − k)20 + · · · + k17(1 − k)26

+k28(1 − k)27 + k28(1 − k)28 + · · ·
has these corresponding values for ti and si :

t0 = 1 s0 = 7

t1 = 5 s1 = 13

t2 = 6 s2 = 19

t3 = 17 s3 = 26

t4 = 28 s4 = 28

· · · · · ·
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Then t0 = 1, and the first terms in the series expansion for fk,k′(x) are given by

fk,k′ (x) = k′9 + k′9(1 − k′) + k′9(1 − k′)2 + k′9(1 − k′)3 + k′15(1 − k′)4

+k′21(1 − k′)5 + · · · + k′21(1 − k′)15

+k′28(1 − k′)16 + · · · + k′28(1 − k′)26 + · · ·

Example 3.4. In the finite case,

x = k2 + k2(1 − k) + · · · + k2(1 − k)5 + k4(1 − k)6 + · · · + k4(1 − k)11

+k7(1 − k)12 + · · · + k7(1 − k)16 + k11(1 − k)17 + · · · + k11(1 − k)22

+k25(1 − k)23 + · · · + k23(1 − k)30

the values for ti and si are

t0 = 2 s0 = 5

t1 = 4 s1 = 11

t2 = 7 s2 = 16

t3 = 11 s3 = 22

t4 = 25 s4 = 30

and fk,k′ (x) has this expansion:

fk,k′ (x) = k′ + k′7(1 − k′) + k′7(1 − k′)2 + k′13(1 − k′)3 + k′13(1 − k′)4 + k′13(1 − k′)5

+k′18(1 − k′)6 + · · · + k′18(1 − k′)9 + k′24(1 − k′)10 + · · · + k′24(1 − k′)23 + k′31(1 − k′)24

We will prove that this new fk,k′ family consists of functions which are singular and that verify a theorem similar to
Theorem 1 in [18].

Proposition 3.5. fk,k′ is strictly decreasing and continuous.

Proof. Strict monotonicity is proved by considering four cases. In fact, given any x, y in I, y < x , we have:
Case a: x and y have both a non-stationary infinite expansions that coincide for the first d values of ti and si . For the

(d+1)th value, we have two possibilities:
(a.i)

x = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd + ktd+1 (1 − k)sd+1 + · · · + ktd+1 (1 − k)sd+1 + · · ·
and

y = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd + ktd+1 (1 − k)sd+1 + · · · + ktd+1 (1 − k)s′
d+1 + · · ·

(Note that s′
d+1 < sd+1).

Applying fk,k′ :

fk,k′ (x) = k′ + k′(1 − k′) + · · · + k′(1 − k′)t0−2 + · · ·
+k′sd−1+2(1 − k′)td−1−1 + · · · + k′sd−1+2(1 − k′)td−2

+k′sd+2(1 − k′)td−1 + · · · + k′sd+2(1 − k′)td+1−2 + k′sd+1+2(1 − k′)td+1−1 + · · ·
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and

fk,k′(y) = k′ + k′(1 − k′) + · · · + k′(1 − k′)t0−2 + · · ·

+k′sd−1+2(1 − k′)td−1−1 + · · · + k′sd−1+2(1 − k′)td−2

+k′sd+2(1 − k′)td−1 + · · · + k′sd+2(1 − k′)td+1−2 + k′s′
d+1+2(1 − k′)td+1−1 + · · ·

which yields to fk,k′ (x) < fk,k′ (y).
(a.ii)

x = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd + ktd+1 (1 − k)sd+1 + · · · + ktd+1 (1 − k)sd+1 + · · · +
and

y = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd + kt ′d+1 (1 − k)sd+1 + · · · + ktd+1 (1 − k)s′
d+1 + · · ·

(Note that td+1 < t ′d+1.)
Writing fk,k′(x) and fk,k′(y) as in (a.i), we have fk,k′(x) < fk,k′(y).
Similar reasoning applies to the following cases.
Case b: x has a non-stationary infinite expansion and y has finite expansion.
Case c: x has a finite expansion and y has a non-stationary infinite expansion.
Case d: x and y have both finite expansions.
Next, in order to prove the continuity, given any x ∈ I we need to consider two cases:
(a′) x has a non-stationary infinite expansion, i.e.:

x = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd + · · ·
Here, for any sequence (xn) converging to x there exists a positive integer m such that if n � m, then

xn = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd

+kt ′d+1 (1 − k)sd+1 + · · · + kt ′d+1 (1 − k)s′
d+1 + · · ·

that is, xn and x coincide on the first d +1 values of ti and si , if n � m. Therefore, fk,k′(x) and fk,k′(xn) have coinciding
expansions of the form

k′ + k′(1 − k′) + · · · + k′(1 − k′)t0−2 + · · ·
+k′sd−1+2(1 − k′)td−1−1 + · · · + k′sd−1+2(1 − k′)td−2 + k′sd+2(1 − k′)td−1 + · · ·

which implies that

| fk,k′(x) − fk,k′(xn)| � 2k′sd+2[(1 − k′)td−1 + (1 − k′)td + · · ·]
= 2k′sd+1(1 − k′)td−1

Now, if n → +∞ then d, td , sd → +∞. Hence, fk,k′(xn) → fk,k′ (x).
(b′) x has finite expansion. In this case, we consider sequences (xn) one-side converging to x.
If xn ↘ x , since

x = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd

as we have seen above, the sequence can be given by

xn = kt0 + · · · + kt0 (1 − k)s0 + · · · ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd + kt ′d+1 (1 − k)sd+1 + · · ·
where t ′d+ j = t ′d+ j (n) for all j, and t ′d+1 → +∞, if n does.
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Next, applying fk,k′ :

fk,k′ (x) = k′ + k′(1 − k′) + · · · + k′(1 − k′)t0−2 + · · ·
+k′sd−1+2(1 − k′)td−1−1 + · · · + k′sd−1+2(1 − k′)td−2 + k′sd+1(1 − k′)td−1

and

fk,k′ (xn) = k′ + k′(1 − k′) + · · · + k′(1 − k′)t0−2 + · · ·
+k′sd−1+2(1 − k′)td−1−1 + · · · + k′sd−1+2(1 − k′)td−2

+k′sd+2(1 − k′)td−1 + · · · + k′sd+2(1 − k′)t ′d+1−2 + · · ·
Finally, note that if t ′d+1 → +∞, then

k′sd+2(1 − k′)td−1 + · · · + k′sd+2(1 − k′)t ′d+1−2 + · · · → k′sd+1(1 − k′)td−1

Then, it follows that fk,k′(xn) → fk,k′(x).
If xn ↗ x the proof is similar to (a′).
Whether xn → x , both cases (a′) and (b′) together give the convergence fk,k′ (xn) → fk,k′ (x) as n → +∞; so that

fk,k′ is continuous on I. �

The next lemma is useful in what follows.

Lemma 3.6 (de Amo and Fernández-Sánchez [2, Theorem 13]). The set{
x =

+∞∑
n=1

(1 − k)nkmn : ∃ lim
n→∞

mn

n
= k

1 − k

}

is a set of �-measure 1.

Definition 3.7. A point x = ∑+∞
n=1(1 − k)nkmn is said to be normal in the generalized dyadic representation system

(of k parameter) if limn→∞ mn/n = k/(1 − k).

Let us now prove the singularity of these functions seeing that for all normal numbers where fk,k′(x) exists, it has
to vanish necessarily.

Theorem 3.8. If k � 1 − k′, then there exists a set of measure 1 in which the derivative of fk,k′ vanishes.

Proof. Let us consider x a normal number. Observe first that x can be represented uniquely by a non-stationary infinite
expansion

x = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd + · · ·
Now, we consider two sequences (xd ) and (yd ):

xd = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd (2)

and

yd = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd + ktd (1 − k)sd+1 (3)

satisfying xd � x � yd , for all d ∈ Z+.
Applying fk,k′ :

fk,k′ (xd ) = k′ + k′(1 − k′) + · · · + k′(1 − k′)t0−2 + · · ·
+k′sd−1+2(1 − k′)td−1−1 + · · · + k′sd−1+2(1 − k′)td−2 + k′sd+1(1 − k′)td−1
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and

fk,k′(yd ) = k′ + k′(1 − k′) + · · · + k′(1 − k′)t0−2 + · · ·
+k′sd−1+2(1 − k′)td−1−1 + · · · + k′sd−1+2(1 − k′)td−2 + k′sd+2(1 − k′)td−1

Next, using “big O and little o notation” (Landau notation), and taking into account that the relation limd→∞ td/sd =
k/(1 − k) is valid for normal numbers, the expression

fk,k′(yd ) − fk,k′(xd )

yd − xd

can be written under the form

k′sd+2(1 − k′)td−1 − k′sd+1(1 − k′)td−1

ktd (1 − k)sd+1

= −k′sd+1(1 − k′)td

ktd (1 − k)sd+1 = O

((−k′(1 − k′)k/(1−k)+o(1)

kk/(1−k)+o(1)(1 − k)

)sd+1
)

Now, using the fact that k′(1 − k′)k/(1−k)/kk/(1−k)(1 − k) attains its maximum 1 whenever k′ = 1− k, it follows that

lim
d→∞

fk,k′ (yd ) − fk,k′(xd )

yd − xd
= 0

Therefore, derivative f ′
k,k′(x) vanishes for all x normal.

But function fk,k′ is monotonically decreasing, whence it is differentiable almost everywhere. Accordingly, there
exists a set A of the Lebesgue measure 1 such that f ′

k,k′(x) exists for all x in A (see [22, p. 5]). Hence, f ′
k,k′ must vanish

in a set of measure 1. �

Proposition 3.9. If k � 1 − k′, then fk,k′ does not admit a non-zero derivative at any x ∈ I.

Proof. We distinguish the following two cases:
If x has a finite expansion:

x = kt0 + · · · + ktd (1 − k)sd

we define the sequence

x∗
n = kt0 + · · · + ktd (1 − k)sd + kn(1 − k)sd+1

For each n:

fk,k′(x∗
n ) − fk,k′(x)

x∗
n − x

= −k′sd+1(1 − k′)n

kn(1 − k)sd+1

= −
(

k′

1 − k

)sd+1 (1 − k′

k

)n

and when n → +∞, this sequence tends to 0 or to −∞, depending on the value of (1 − k′)/k. Hence, if the limit
exists, it must be zero.

If x has a non-stationary infinite expansion, then let us consider sequences (xd ) and (yd ), as in the above theorem.
In addition to

y′
d = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd

+ktd (1 − k)sd+1 + ktd (1 − k)sd+2
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Applying fk,k′ , we have the following formulas:

fk,k′ (yd ) − fk,k′(xd )

yd − xd
= −k′sd+1(1 − k′)td

ktd (1 − k)sd+1

and

fk,k′ (y′
d ) − fk,k′(xd )

y′
d − xd

= 1 + k′

2 − k

−k′sd+1(1 − k′)td

ktd (1 − k)sd+1

Finally, if the derivative exists, the quotient of the limits of the above formulas (1 + k′)/(2 − k) must be equal to 1;
but this is not the case when k � 1 − k′. Consequently, if the derivative exists, it must be equal to zero. �

Theorem 3.10. fk,k′ is the unique bounded solution of the system of functional equations{
f (kx) = k′ + (1 − k′) f (x)

f (k + (1 − k)x) = k′ f (x)

Proof. First, we show that fk,k′ satisfies this system of functional equations. Let us consider the case when x has a
non-stationary infinite expansion. The finite case is similar. Let us consider

x = kt0 + · · · + kt0 (1 − k)s0 + kt1 (1 − k)s0+1 + · · · + ktd (1 − k)sd + · · ·
then

fk,k′ (x) = k′ + k′(1 − k′) + · · · + k′(1 − k′)t0−2

+k′s0+2(1 − k′)t0−1 + · · · + k′s0+2(1 − k′)t1−2

+k′s1+2(1 − k′)t1−1 + · · · + k′s1+2(1 − k′)t2−2 + · · ·
For these formulas, writing kx and fk,k′(kx), the first equation follows by direct verification.

For the second equation the reasoning is as follows: if t0 � 1, then

k + (1 − k)x = k + kt0 (1 − k) + · · · + kt0 (1 − k)s0+1 + kt1 (1 − k)s0+2 + · · · + kt1 (1 − k)s1+1 + · · ·
and

fk,k′ (k + (1 − k)x) = k′2 + k′2(1 − k′) + · · · + k′2(1 − k′)t0−2

+k′s0+3(1 − k′)t0−1 + · · · + k′s0+3(1 − k′)t1−2 + · · ·
When t0 = 1,

fk,k′ (x) = k′s0+2 + · · · + k′s0+2(1 − k′)t1−2 + · · ·
and

fk,k′ (k + (1 − k)x) = k′s0+3 + · · · + k′s0+3(1 − k′)t1−2 + · · ·
For both cases, the second of the equations is fulfilled.

Now, let us prove the uniqueness of fk,k′ . Let us consider B(I) the Banach space of real bounded functions defined
on I endowed with the sup-norm, and the functional operator introduced by the formula

F : B(I) −→ B(I), g → F(g)

where F(g) acts in the following way:

F(g)(y) :=
⎧⎨
⎩

k′ + (1 − k′)g
( y

k

)
. . ., 0 � y � k

k′g
(

y−k
1−k

)
. . ., k � y � 1
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Hence, F is a contraction of ratio b := max{k′, 1 − k′}. In fact, if we denote hi := F(gi ) for given gi ∈ B(I), i = 1, 2,
then, an easy computation shows that

h2(y) − h1(y) =
⎧⎨
⎩

(1 − k′)
[
g2
( y

k

)− g1
( y

k

)]
. . ., 0 � y � k

k′
[
g2

(
y−k
1−k

)
− g1

(
y−k
1−k

)]
. . ., k � y � 1

and we conclude that ‖h2 − h1‖ � b‖g2 − g1‖.
Finally, the contraction mapping theorem of the Banach ensures the existence of one (and only one) fixed point for

F. Hence, we have the uniqueness of fk,k′ , and the proof is finished. �

Corollary 3.11. Nk,k′ and fk,k′ coincide.

Corollary 3.12. Nk′,k is the inverse function of Nk,k′ .

The following result is a Frostman-type lemma, which is useful for our purposes (see [7, pp. 60–61]).

Lemma 3.13. Let F be a Borel set in R, and let � be a finite measure on F. Let Br (x) denote the ball with center x and
radius r. Under these assumptions,

(i) If the upper limit lim sup �(Br (x))/rs is bounded on F, then dimH F � s.
(ii) If there is a positive real c such that lim inf �(Br (x))/rs > c > 0 on F, then dimH F � s.

We shall now use cylinders (of the generalized dyadic system in [2]) instead of balls.
We need a refinement of Lemma 3.6. Its proof follows in a similar way to that given in [2, Theorem 13].

Lemma 3.14. The set{
x = kt0 + · · · + ktd (1 − k)sd + · · · : ∃ lim

d→∞
td
sd

= k

1 − k
and lim

d→∞
td

td−1
= 1

}

is a set of �-measure 1.

Theorem 3.15. If k′ � 1 − k, then the function Nk,k′ applies a set of �-measure 0 onto a set of �-measure 1.
The Hausdorff dimension of the first set is ln[k′k′

(1 − k′)1−k′
]/ln[k1−k′

(1 − k)k′
].

Proof. The set {x = kt0 +· · ·+ ktd (1− k)sd +· · · : ∃ limd→∞ td/sd = (1 − k′)/k′} is �-null (by applying Lemma 3.6),
therefore{

x = kt0 + · · · + ktd (1 − k)sd + · · · : ∃ lim
d→∞

td
sd

= 1 − k′

k′ and lim
d→∞

sd

sd−1
= 1

}

is also �-null. This set is applied by Nk,k′ onto{
x = k′t0 + · · · + k′td (1 − k′)sd + · · · : ∃ lim

d→∞
td
sd

= k′

1 − k′ and lim
d→∞

td
td−1

= 1

}

whose �-measure is 1. To obtain the Hausdorff dimension of the former set, note that the explicit expression of Nk,k′
leads to the fact that the interval [xd , yd ], with xd and yd given by (2) and (3), is mapped onto another interval of length
(1 − k′)td (k′)sd . Specifically, it is the interval

[Nk,k′(yd ), Nk,k′(xd )]

since Nk,k′ is a bijective decreasing function.
Therefore, the Hausdorff dimension is given by the number

sup

{
� > 0 :

(1 − k′)td (k′)sd+1

[ktd (1 − k)sd+1]�
< +∞

}
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Taking logarithms

lim
d→∞

ln(1 − k′)td + ln(k′)sd+1 − ln k�td − ln(1 − k)�(sd+1)

sd
sd < +∞

and since td/sd → (1 − k′)/k′ as d → +∞, this gives � = ln[k′k′
(1 − k′)1−k′

]/ln[k1−k′
(1 − k)k′

], which is the desired
Hausdorff dimension. �

Because Nk,k′ is the inverse function of Nk′,k , we have the following result:

Theorem 3.16. If k′ � 1 − k, then Nk,k′ applies a set of �-measure 1 onto a set of �-measure 0 whose Hausdorff
dimension is ln[kk(1 − k)1−k]/ln[k′1−k(1 − k′)k].

4. k-Negations

The class of strictly continuous Archimedean t-norms (and t-conorms) is of particular interest because its elements
can be represented by means of a single function t . We call them the additive generators. It can be shown that T is a
strictly continuous Archimedean t-norm if and only if there is a continuous and strictly decreasing function t such that

T (x, y) = t [−1](t(x) + t(y))

with t : I → [0, +∞], satisfying t(1) = 0, where t [−1] is the pseudo-inverse of t, that is, it is defined by t [−1](x) =
t−1(x) if x ∈ [0, t(0)] and t [−1](x) = 0 if x ∈]t(0), +∞]. An equivalent theorem exists for t-conorms (see for
example [1]).

The associated negation to T is the function NT : I → I given by

NT (x) = t [−1](t(0) − t(x))

and the t-conorm T ∗(x, y) = NT (T (NT (x), NT (y))) is called the dual t-conorm of T .
Clearly, F = (1−k)T +kT ∗ ∈ �. Moreover, F is idempotent (i.e. F(x, x) = x , ∀x ∈ I) if and only if the normalized

additive generator (t(0) = 1) is t = 1 − R−1
k . Therefore, NT is among the Nk,k′ functions. Actually, with k′ = 1 − k,

they are the so-called k-negations, and they are noted by Nk .
Function Nk is characterized as the unique bounded function in I satisfying the system of functional equations:{

g(kx) = k + (1 − k)g(x)

g2(x) = x

For more details on negations and k-negations, see [1,8,19].
The results in Section 3 are directly applied to the k-negation Nk . An explicit expression of this function can be seen

below:

Theorem 4.1. For each k ∈]0, 1[, let us consider the k-negation function Nk : I → I. Then, Nk is given by
(i) If x has a non-stationary infinite expansion, i.e. there exist 1 � t0 < t1 < · · · < td < · · ·, such that

x = kt0 + · · · + kt0 (1 − k)s0 + kt1 (1 − k)s0+1 + · · · + kt1 (1 − k)s1 + · · ·
+ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd + · · ·

then

Nk(x) = k + k(1 − k) + · · · + k(1 − k)t0−2 + ks0+2(1 − k)t0−1 + · · · + ks0+2(1 − k)t1−2

+ks1+2(1 − k)t1−1 + · · · + ks1+2(1 − k)t2−2 + · · ·
+ksd−1+2(1 − k)td−1−1 + · · · + ksd−1+2(1 − k)td−2 + · · ·
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If t0 = 1, then

Nk(x) = ks0+2 + ks0+2(1 − k) + · · · + ks0+2(1 − k)t1−2

+ks1+2(1 − k)t1−1 + · · · + ks1+2(1 − k)t2−2 + · · ·
+ksd−1+2(1 − k)td−1−1 + · · · + ksd−1+2(1 − k)td−2 + · · ·

(ii) In the stationary case, that is, when x has a finite expansion

x = kt0 + · · · + kt0 (1 − k)s0 + · · · + ktd (1 − k)sd−1+1 + · · · + ktd (1 − k)sd

then

Nk(x) = k + k(1 − k) + · · · + k(1 − k)t0−2 + · · ·
+ksd−1+2(1 − k)td−1−1 + · · · + ksd−1+2(1 − k)td−2 + ksd+1(1 − k)td−1

By applying the above theorem, we have the following properties for the k-negation Nk .

Theorem 4.2. For each k ∈]0, 1[, let us consider the k-negation function Nk : I → I (under the above expression).
Then,

(i) Nk is continuous.
(ii) For each k ∈]0, 1[\1/2, there is a set of �-measure 1 in which Nk vanishes.

(iii) For each k ∈]0, 1[\1/2, Nk does not admit non-zero derivatives.
(iv) Nk is the unique solution for the system of functional equations given by{

f (kx) = k + (1 − k) f (x)

f (k + (1 − k)x) = k f (x)

(v) Nk maps a set of �-measure 0 with Hausdorff dimension ln[kk(1 − k)1−k]/ln[k1−k(1 − k)k], onto a set of
�-measure 1.

(vi) Nk maps a set of �-measure 1 onto a set of �-measure 0 with the Hausdorff dimension ln[kk(1 − k)1−k]/
ln[k1−k(1 − k)k].

5. Conclusions

We have given several new results in the theory of aggregation operators completing previous studies on this domain.
From a new representation system for the real numbers in ]0, 1], that generalizes the dyadic one, we obtain an explicit
expression of duality functions for a class of binary operations on the unit interval I. Observe that our method of
representation can be used to prove singularity for duality functions and to analyze fractal dimensions for some
distinguished sets. The particular case of k-negations is specially studied.

References

[1] C. Alsina, M.J. Frank, B. Schweizer, Associative Functions: Triangular Norms and Copulas, World Scientific, Singapur, 2006.
[2] E. de Amo, J. Fernández-Sánchez, A generalised dyadic representation system, Int. J. Pure Appl. Math. 52 (1) (2009) 49–66.
[3] L. Berg, M. Krüppel, De Rham’s singular function and related functions, Z. Anal. Anwend. 19 (1) (2000) 227–237.
[4] B. Bernstein, T. Erber, M. Karamolengos, Sneaky plasticity and mesoscopic fractals, Chaos Solitons Fractals 3 (1993) 269–277.
[5] T. Calvo, G. Mayor, R. Mesiar (Eds.), Aggregation Operators. New Trends and Applications, Physica-Verlag, Heidelberg, 2002.
[6] G. De Rham, Sur quelques courbes definies par des equations fonctionnelles, Rend. Semin. Mat. Univ. Politec. Torino 16 (1956) 101–113.
[7] K.J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, second ed., John Wiley, 2003.
[8] A. Fraile, G. Mayor, M. Monserrat, k-Negacions, Actes del IV Congrés Català de Lògica, Barcelona, 1985 pp. 67–68.
[9] P. Hájek, Mathematical of Fuzzy Logic, Kluwer, Dordrecht, 1998.

[10] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer, Dordrecht, 2000.
[11] K.C. Maes, B. De Baets, Negation and affirmation: the role of involutive negators, Soft Comput. 11 (2007) 647–654.
[12] K.C. Maes, B. De Baets, Orthosymmetrical monotone functions, Bull. Belg. Math. Soc. Simon Stevin 14 (2007) 99–116.
[13] K.C. Maes, B. De Baets, Commutativity and self-duality: two tales of one equation, Int. J. Approx. Reasoning 50 (2009) 189–199.

Please cite this article as: E. de Amo, et al., On the duality of aggregation operators and k-negations, Fuzzy Sets and Systems (2011), doi:
10.1016/j.fss.2011.05.021

http://dx.doi.org/10.1016/j.fss.2011.05.021


14 E. de Amo et al. / Fuzzy Sets and Systems ( ) –

[14] K.C. Maes, B. De Baets, Divisible, reciprocal automorphisms of the unit interval, Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 17
(2009) 221–235.

[15] K.C. Maes, S. Saminger, B. De Baets, Representation and construction of self-dual aggregation operators, Eur. J. Oper. Res. 177 (2007)
472–487.

[16] G. Mayor, On a family of quasi-arithmetic means, Aequationes Math. 35 (1988) 97–98.
[17] G. Mayor, T. Calvo, Fractal negations, Mathware Soft Comput. 3 (1994) 277–283.
[18] G. Mayor, J. Torrens, Duality for a class of binary operations on [0,1], Fuzzy Sets Syst. 47 (1992) 77–80.
[19] G. Mayor, J. Torrens, De Rham systems and the solution of a class of functional equations, Aequationes Math. 47 (1994) 43–49.
[20] R.B. Nelsen, An Introduction to Copulas, second ed., Springer, New York, 2006.
[21] J. Paradís, P. Viader, L. Bibiloni, Riesz–Nágy singular functions revisited, J. Math. Anal. Appl. 329 (2007) 592–602.
[22] F. Riesz, B. Sz-Nagy, Leçons d’Analyse Fonctionnelle, Gauthier-Villars, Paris, 1968.
[23] R. Salem, On singular monotone functions, Trans. Am. Math. Soc. 53 (1943) 427–439.
[24] L. Takacs, An increasing continuous singular function, Am. Math. Mon. 85 (1978) 35–37.
[25] E. Trillas, Sobre funciones de negación en la teoría de conjuntos difusos, Stochastica III (1) (1979) 47–59.

Please cite this article as: E. de Amo, et al., On the duality of aggregation operators and k-negations, Fuzzy Sets and Systems (2011), doi:
10.1016/j.fss.2011.05.021

http://dx.doi.org/10.1016/j.fss.2011.05.021



