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ABSTRACT

Monotone increasing Cantor’s function is used as a "machine” of buliding examples of peculiar func-
tions having interesting properties both from the Fractal Measure Theory and from the Singular Func-
tions points of view.

We give four examples showing functions f where (i) f is strictly increasing with an associated Stieltjes
measure df concentrated on a set with prescribed Hausdorff dimension « € [0, 1], (i1) f is of bounded
variation with f’ = 0 a.e. and monotonc on no intervals (MNI); (ii1) f is an absolutely continuous and
MNTI; and (iv) f is a continuous nowhere difterentiable function.

1 Introduction

The work done in [1] uses a family of real functions in [0, 1] we denoted by 7,,;. These functions have
the following properties: they arc continuous. having null derivatives on I-measure sets, and there are
not any interval where being monotone. And it has not been established if they are or not of bounded
variation. With this state of things we proposed to look for an easy example of bounded variation
function exhibiting the described properties.

The key for the building of the first example is the wellknown Cantor’s function C'. Let us remember
that the ternary Cantor’ sct ¢ consists on those numbers in [0, 1] with their 3-base representation having
0’s and 2’s. Geometrically it can be realized by iteration of the process of tricotomization for intervals
and removing the open central oncs at cach step; hence, you have 2™ intervals of lenght 1/3" each one

of them, for the n-th iteration.
The Cantor’s function is defined as follows: for each element in ¢, z = > °2 | % qa, € {0,2}, it

n=1 3n°

0o a2 : .
il D - On the other hand, each element in [0, 1] \ ¢, which would be written

ke an /2
n=1 2"

corresponds the image

k O [ : - g . 2 : s
asz =3 r_ Ty ﬁ + 5z withw, € {0.2} andy € [0, 1], its corresponding image is
(See, for example, [5].)



It is, in fact, a monotone increasing continuous function verifying.C'(0) = 0 and C'(1) = 1. The ideas
we use allow to find another peculiar functions. There exist methods based upon classical Fubini’s The-
orem concerning to convergence of series expansion with term by term derivatives that allow creating
examples of strictly increasing singular functions. (See [7]). It is possible to exhibit, following similar
ideas, examples of monotone increasing functions starting from initial ones that are monotone on no
interval (MNI, see [3]), and with the additional property that theirs corresponding Sieltjes associated
measures have their masses concentrated on null measure sets having fractal dimension 1 or 0, as you
want. Up it 1s known by the authors, the only examples having these properties are in [1] and [2]; but
the methods used here in this work are simpler than those.

The sections that follow are devoted to these examples.

2 Strictly increasing singular functions

The function C,,, where o €]0, 1], proceeds in a similar way as C' := C' /3 when it was introduced: o
is the ratio lenght we remove at each step. (See [9, pg.168].) It has the following properties:

i. It is monotone increasing, with an infinity of intervals where it is constant and the sum of their
lengths is 1.

ii. The associated Stieltjes measure dC\, concentrates its mass on a self-similar set with Hausdortf
S In2
dimension Thosln=a):

iii. Clearly, if o €]0,y — [ then C,(z) < C, (y).

Proposition 1 The function

1
()'”, C !

n+1

F::Ji):Q

n=1"
is an strictly increasing singular function which associated Stieltjes measure dF concentrates its mass

on a set of measure 0, but fractal dimension 1.

For the second of the examples we previously define a non denumerable set of zero fractal dimension.
We proceed as follows: on a first step we remove the centred open interval of length 1/3 (as in the
Cantor ternary set building). But, on the second step we remove the centred two intervals each one of
length (3% — 2) /3%: there are four intervals each one of length 1/3%. The third step consists preserving
cight closed subintervals each one having length 1/3%. Hence, on each step we preserve extreme closed
subintervals with length equal to the 1/3"-th part of the pattern inteval we consider. At step 7 we will
have 2" closed intervals each one with length 1/3(""’2*”)/2. This limit process yields to a set we denote
by ¢ having fractal zero dimension.

Lemma 2 The set ¢ has Hausdorff dimension equal to zero.

The following notation is useful for our purposes.



Notation 3 Ler f : [0, 1] — R be real and bounded_l_ﬁmction Fora,b e [0,1],a < b, we write

0y z<a i

— == ab (4

“flz) =4 f <ﬁ) ey a<z<b and f(z):= Z o
] eche x>b a,be@n(0,1]

where 1, gives a enumeration for (Q N [0,1]) x (@ N [0,1]).

Definition 4 Let ¢, be the limit set built as ¢, but with corresponding lengths for the removed subin-
" 2 3 Y
tervals given by the sequence 1/3,1/3%,1/3%,...,1/3", ...

Obvious considerations give the following result.

Proposition 5 The function C. is a strictly increasing singular function which associated Stieltjes

measure dC, concentrates its mass on a set of fractal null dimension.

Remark 6 Because dC,, concentrates its mass on a set of dimension ija—) dC,, concentrates

its corresponding mass on a set of equal dimension.

If we join this fact with the previous results, we conclude that for cach 8 € [0, 1] it is possible the
building of strictly increasing singular functions with associated Stieltjes measure concentrated on sets
of dimension 3, starting from singular functions with constancy intervals with sum for the total length

equal to 1.

3 Bounded variation functions of MINI with null derivative a.e.

Let us remember C' was defined as a constant on each segment removed at each step for the building of
c. We will use two copies of C for introducing an auxiliar function.

Let be given Dy : [0,1] — [0, 1], by the formula

We call atention on the set (¢/2) U (1/2 + ¢/2) of points = where does not exist an interval containing
x where Dy is constant.

Notation 7 Let us consider f : [0, 1] — R bounded, and a, b € (0, 1]. We set

F(z) = { I (Is:g) ey a<a<b

0..., other cases

There exists an infinite sequence of intervals, say {[ag ,, by..];n € N}, where Dy is a constant function.
Moreover, the total length of these intervals is 1.

Let us now consider this new function:

ke b n — AQ.n a )
Di(z) = Do(z) + (on = aom) . it ')DO“’-”"“'” (x).

n=1



and we can do it inductively: for each natural k it is possible to do

=0 (by Qi) 4
n — Qhn Ak bk n
Drts(@) i= Dy(w) + Y | 20 2o paknbion (),

n=1

and this limit process converges uniformly:

Definition 8

(e olNe <]

b C = N Af n Ok
D () := lim Dy(x) = Do(z) + 3 5 (—k—";H?‘/“‘)DO‘*”[“‘ (x).
2 k=0n=1 <

This just defined function 1 has the previously announcced properties.

Theorem 9 The function D is (i) of bounded variation and has null derivatives on set of measure [;
(it) D reaches its maxima on a set of rationals which is dense in [0,1]; and (iii) D reaches its minima
on a set of rationals which is dense too in [0, 1]. Moreover; there is no interval where D be a monotone

Junction.

4 A continuous nowhere diffentiable function

Definition 10 Ler us consider the interval [k, bren] having length 2=+ 3= consider the

Junction G given by:
[ee] [ o] l

i ak b,y
G(z) = Do(x) + >N D ).

k=0n=1

Let us define the new function F(x) := G(z/2).

The way we have built this function shows that it verifies the equations:

F(5) = o
F(s) =} 4 ot
F(2) =} + FU2)
P() =t o

And the contraction mapping principle of Banach fulfills its unicity.
Theorem 11 The function F is a continuous nowhere differentiable function.
Selfsimilarity arguments yield to the following result.

Proposition 12
1

/ F(z)dz = 3/4.
JO



5 An absolutely continuous function Monotone on No Interval (MNI)

Following previous ideas we will build an absolutely continuous function of MNI. We will newly use
a Cantor type set. In the unit interval [0, 1], we drop out the central open interval of length 1/22 (e,
13/8,5/8(): and, proceeding by iteration on each new pair of closed intervals, we removed in each one
of them the respective central open subinterval of length 1/2%,

2, which we will denote by h. The corresponding function H

The process yields to a set of measure 1/
ant on each removed

can be obtained as limit from a sequence of polinomial aproximations being const
subinterval; but we prefer introducing it in a more adequate way for our purpouses.

Definition 13 Let be N
H(z) =2 / X, (t)dt
Jo

(where x;, denotes characteristic or indicator function for the set h).

It is absolutely continuous in an obvious way, monotone increasing, there exists a family of intervals
whose union is dense in [0, 1] with & being constant on each interval of this family; and H(0) = 0,
H(1)=1.

Let us now proceed with the construction. We introduce a function Ko : [0, 1] — [0, 1] given by

g H(2%)...
Kolz) = { HEQJ— 2)...

This function K is constant on an infinity of intervals we numerate by [cg.,do.]. If we proceed

inductively, we have:
o0

- . ‘ Zs"f] — Cson -C
Ko ila)o= L (8) E (L"—’j)'s—+lp“r)f\'c°””ds'“(:v).
n=1 =

Definition 14

K (z):= lim N (r) = Nolr) + Z Z %K“v“d‘-“ ().

S—

s=0n=1

Now, the Lebesgue’s dominated convergence theorem helps us to establish the following result.

Theorem 15 The function I\ is an absolutcly continuous function of MNI. Points where it reaches its

relative maxima and minima values arc a set of rationals dense in [0, 1].

5.1 Another way to procced

Finding an absolutely continuous function monotone on no interval type is guaranteed if we build a
decomposition of the unit interval [0, 1] in two measurable subsets A and B veritying that A (J N .A) >
0and A (J N B) > 0, for each open interval /. This is the function to consider:

yla) i= / [valt) = xp(t)] dt.

1)



These sets A and B cannot be "homogeneously" distributed: for example: it is impossible to find a
number a verifying A (J N A) = aA(J) and A (J N B) = (1 — a)A(J). If it would be so, the function
g(x) = [ xa(t)dt = cx would have null derivatives on a set of positive measure \(B), which is
impossible.

The sets A and B can be realised in two ways.

a) Via removing centrered subintervals we build a positive measure Cantor set, say S. Let us denote
Ay = 501[0,1/2]and By := SN [1/2,1]. We proceed by induction with the middle points for each
removed interval: by A,, and 5,, denote, respectively, the points in the first or in the second halves for the
intevals removed in the n-th step. (Clearly, this is a free process in which vou can select which elements
will be in each set. The only we need is sets having union of measure 1.) We can do A := UnA,, and
B := U, B,. With these sets we get the function g.

b) Another way, we can be helped by strictly increasing singular functions. Let f : [0, 1] — [0, 1] be
one of such functions (having f(0) = 0, f(1) = 1), A* a zero measure set concentrating the total mass,
and B* its complement; i.e.: df (A*) = 1, dz(A*) = 0, df (B*) = 0, de(B*) = 1.

On the other hand, let g : [0,1] — [0,1], with 9(0) = 0, g(1) = 1, be an absolutely continuous
and strictly increasing function. If we define h := % the corresponding sets are 4 = 1 (A*) and
B = h(B*). For an interval .J, let us write .J* := h~Y(J). Hence, A(J N A) = dh (J* M AY) =

G R ) "f(,')/‘) > 0. (Last equality holds via Banach-Zaretzki’s theorem in [6, pag. 167]).

For B, it proceeds in a similar way.
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