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Abstract: We revisite Takagi’s peculiar function 7" with the aid of arith-
metical techniques (instead of the more known geometrical ones). This formula
simplyfies computations, and classical properties are now easily derived from
it.

Among the other results, Kono’s Probability Theorem, functional equations
characterasing 7', and Trollope summation formula are newly shown.
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Key Words: binary expansions, (local) Lipschitz condition, Holder conti-
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1. Introduction

We are getting used to work with functions in a natural way, almost without
thinking on their meaning. Nowdays, the concept of function is completely
defined. However, it was not so usual long time ago, and the way to establish
it was complicated and tortuous. The great success of calculus (1665-1685),
showing that derivation and integration of functions are reciprocal operations,
was actually proved in the absence of an explicit and commonly accepted defini-
tion of the concept of function. It was necessary to wait until 1718 when Johan
Bernouilli said that “a function of one variable is a (new) magnitude compound,
one way or to another, with that variable magnitude and constants”.
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408 E. de Amo, J. Ferndndez-Sédnchez

However, for all relation among magnitudes, and these were the excesses,
it was considered true that: (i) the Fundamental Theorem of Calculus was
verified, (ii) there existed its power expansion series and (iii) it was possible to
integrate and derivate on all these series (see, for example, [17]).

A modern form for the concept of function was given during the XIX cen-
tury; nevertheless of these improvements, during a part of that century, a great
number of mathematicians thought that continuous functions had derivatives
on an “important” set of points on which they were defined (Ampere believed
he had proved this fact).

Three great mathematicians found, independently, a negative answer for
this question showing that there exist explicit examples of continuous functions
that have not derivative on any point. They were: Bolzano, in1830 (see [14]),
who published it in 1922; Cellérier (1860, aprox.), with a published paper [9]
in 1890; and Weierstrass (see [6]) who gave his remarkable function

+o0
Wi(z)=— Zak cos (b’%ra:) .
k=0

(where 0 < a < 1l,ab > 1+ %w, and b € (2n — 1) Z) on July, 1872. It was pub-
lished during 1875. The first two never published their results by themselves;
and the paradox is that these results were published in the reverse order that
they were obtained by their authors.

Few time later, in 1903, Takagi gave an extraordinarily easy example of a
continuous function without derivatives (such as it is recognized by the author
in the title of his paper [20]). This function has been widely studied from
a geometrical point of view (see, for example, [2], [4], [7] and [19]). It was
originally defined in [20] by two different ways. We will prove in Lemma 1
below that, of course, they coincide. For z € [0, 1], Takagi considers its binary
expansion

0.z125... 5 ..
(zn, € {0,1} for all n’s) and defines the function

+oo
FrO =R fl@) =) o
k=1
with

s e { Un..ey =20,
Ty, By = s

where 7, and v, denote, respectively, the number of 0’s and 1’s among z1,
Ta,..., Tp, (hence m, + vp =n, and 0 < a, < n —1).
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Afterwards this kind of continuous nowhere differentiable functions were
rediscovered by many other authors (see [11]). During the preparation of this
work we have found the paper of Allaart and Kawamura [1] where they give a
version of the formula we use here.

2. Takagi’s Function

We start with the following definition for Takagi’s function (see [20], [2], [4] and
[7]). Let d(z) be the distance from each real x to the nearest integer. Let us
define continuous functions

n k
d (2%z)
Tn(:c)::Z T Ve R,VneN
k=0
(N denotes the set Z*1 of positive integers). The (uniform) limit of (77,) is the
so called Takagi’s function. As a consecuence, it is continuous on R. Let us
denote it by 7" from now on.

Hence, we have this analytic definition for 7

IR d(2*
T(z):=) (ka), Vz € R.
k=0

Lemma 1. The functions f and T are the same function.

Proof. If z has binary expansion equals to 0.zyz3...2y..., then

L T...y r1 = O,

It works as follows for binary expansions:

i1 Ty = 0
d(z) = ’ ’
(:ZI) { 0. BT Ty 21 = 1.

with Ty := 1 — xx. Moreover,

d (2'%;) o
2/€ = 0.0...0$k+1$k+2... > (*)
where
~_,_{$] ) a;k:-i-l:Oa
@y =
1- Tjery Th41 = .9
Finally, by addition on k in [*], it follows the required equality. O

The target of this paper is to obtain another expression (the third) for
the Takagi’s peculiar function 7', and to derive its classical properties. We
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begin with a uniqueness property for real numbers with two different binary
expressions.

Lemma 2. Let x be in the unit interval [0,1]. If it is possible to write
1 (¥
=Y =S
k=1 k=1

with

Ojs = Oy ifk=1,2,...,n—-1,
k+oan=a} 4 1., fkEN
(o, and o mean 1’s at positions k for two different binary expansions of z),
then
"o —2(k-1) |Wet-20k-1)
Z 20k . Z oy '
k=1 k=1

Proof. We can assume z € |0,1[. Easy calculations on the series on the
right give:

i"a;—z(k—m _”io/k—z(k—m ++§a’k—2(l€—l)
S 2% = 2% — 2%
o -2k-1) o tk-2(n-1+k-1)
= 5o, +2 SantE ’
k=1 k=1
and working now on the last series of this sum we obtain:
Rop+k-2m-1+k-1) 1 Ra—k-2n-2
Z Qan+k T 9an Z ok
k=1 k=1
on—2n 1 Ra-k ap-2(n-1)
— _|_ . = = . D
9an 9an ok 2an
k=1
Theorem 3. Letz € [0,1]. If v = Y% 5L, then
+o0
O — 2 (k — 1)
R

k=1

; o et e n 1
Proof. There is no restriction if we only compute T for z = > 5ar>
because arguments of continuity on a dense set. Notice that

i
d(2an—1x) = 5 and d(zml') = O,V'fn > Q.

TAKAGI'S FUN(

We do computatio

+00 4 (ok
d(2
-3 1
k=0
= d(z)
2z
N W W (5]
=x+ 5 s Ve
Let
Xy = —QE
and using periodic
1
= (a1 = 2) %

Doing analogous ¢

To i=

" 23
it follows
an—Q1
T(z1)= )
k=0

By substitution in

231
T(x) = oy + (c
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We do computations on the series expansion of T'(z):

+00 k an—1 k
d (2 ZE) d (2 ac)

T(x) - Z ok = Z ok

k=0 k=0
d(20—1g d (2% g d (20~—1g
:d(x)+...+ (2a1_1 )+ (2a1 )+...+———(9an_1 )

> =25 ] -_2m-ly g(207) d (2a”_1x)
_ @ plfen—2 N T
=z+ -+ em2) 4 e T T, e e

1 d (21 z) d (2‘“‘%1:)

2a1—1 + 201 Tt Qan—l

:(a1—2)$+

Let

1 1
zy = L 4ot sie, 2%z =14 245

Qaz—ai Qa3 —Qi 2an—a1’

and using periodicity of 1"

1
= (a1 -2 2a1 + Z 20 2a1 - T —ZTlT (331)

n

1

___@—1--{— a1—2 ZQGJ+ﬁT l‘l)
j=2

Doing analogous computations on z1, and letting

1 1 .
To 1= Sas—az + Sau—az o A i W; 1.€.y 2a2$1 —N| + 9,
it follows
Qn—Q1 k
d (2 .’L‘1) i 1
T(’L‘l) = Z ——-Qk— == (ag = O == 2) T, + 20‘2‘_(“_1 + 2&2—a1T(x2) i

k=0
By substitution in 7'(z) above:
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Let us now suggest the validity of the following formula, with p € N:

Ty =N 20— 1) S 1
(m)_ZT“‘“(%*Q’}?) 307 T 5a L (2p)
Jj=1 j=p+1

and we will prove it for p 4 1. Reasoning on z,:
—d (2*ap)

k=0
1 1
= (ai’H’l —Gp— 2) Tp + 90p+1—ap—1 + 2ap+1~apT(xp+l) ;
where
1 1 . o
Sl = 0p1—Qp T 2Qp+3—CQp El m; Le., 2 pHxP =l + Tp+1-
Hence,
= ape= (=1 n
@) = Y U200 3 L
j=1 j=p+1 "

20p+1—ap—l 2Qp+1—0p

1 1 1
+%Tp [(ap+1 —Qp — 2) Tp + — -+ - T (pr_;_l)

n

1

p e Y e

g=1 j=p+1
1. 2 1

L 955 | 2% T Zeu
J=p

A (xp-i-l)

_ zp:aj—ﬂj—l) apt1 — 2p

2 20(]' 20‘p+1
J=l
+ (aZH'l =2 (p+ 1)) Z ﬁ + WT (pr+1) .
Jj=p+2
Finally, with p = n — 1, we conclude:
n—1 s
i o5 — 2 (.7 _ 1) Qp—1 — Q(n — 1) Oy — Olp—1
T(l) B Z; 25 + 2an + 90
]:

Za3—23—1) 0
= 525 5

This formula will provide easier computations. The next result is an explicit
example of this.

TAKAGI’'S FUN(

Proposition
binary expansion.

Proof. In case
have periodicity. I
‘o0

g =)

n=1"

i 1

27

Applying the form
k o o

T(z) = Z S

=

i — 2
+< 261

where the sum of
true.

Moreover, the
easy consequence ¢
sponding to the pa
of T for a Schaude

The idea rests
by linear segments

Definition 5.
a Schauder basis i
such that z = 37

The basis of St
on the unit interv
description: ag :=

1611,16(1‘)
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with p € N:

1
:a—pT (zp);

a—pT( p+1) 5

1

»l_apT(xp-i-l)

($p+1)

2 -2 -1 4
295 '

-esult is an explicit

TAKAGI’S FUNCTION REVISITED FROM... 413

Proposition 4. If z € Q, then T (z) € Q. Moreover, T'(z) has finite
binary expansion.

Proof. In case of finite expansions it is inmediate. On another case, we
have periodicity. Let us consider

X1 11,1 1
=D mmmtm Tmwmtmt e
n=1

1 1 1 1
Applying the formula of Theorem 3 above, we will have

k .
T(:E):Zaj_2(]_1)

2%
j=1
Bi—2k Bo—2(k+1) By T a—1)% 2 1
y S
+ ( o 5 TR o ) 227
t=
11 e
+(r—2) <ﬁ+%++275>22‘t;’

t=
where the sum of each series is a rational number. Hence, the statement is
true. 0

Moreover, theoretical advantages will turn up. The next theorem, as an
easy consequence of this formula for T, yields to a sequence of poligonals (corre-
sponding to the partial sums 7,,), which is equivalent to describe the coeficients
of T for a Schauder’s basis (see [13]).

The idea rests on the fact that continuous functions can be approximated
by linear segments.

Definition 5. (Schauder Basis) A sequence (z) on a normed space X is
a Schauder basis if for every x in X there is a unique sequence of scalars (a,)
such that z = 312 anz,; ie.,

=0.

lim
n

n
T — E arT
k=0

The basis of Schauder that we will use in the space of continuous functions
on the unit interval, C ([0, 1]) equipped with the sup-norm, has the following
description: ag :=x, a; ;=1 —z, and

B bl @) = ok (’m—— ;T’ + ’x— n2_—i]:1‘ — ng:— 27172_—%})
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(where 0 < n < 25~! and & > 0) with Bn k’s taking null values out of [

and with graph, when z runs on it, given by the equal sides of the isosceles

triangle determined by (2%, ), ("Q—J;l, ), and (22’,2]:1, 1).
For the function of Takagi, we have (as in [12]):

Theorem 6. For naturals n and k, the folowing identity is true:
2n+1 1 n n+1 1
T<2k+1>:§[T(ﬁ)+T< ok ):|+2lc+1'

Proof. If n, k € N, then

n 1 1 1

ok = pan + 2 Ao o

n+1_ 1 1 1
ok = a1 + 902 e 2o + STEEE

n+1 1 1 1 1

e i B el

and computations with the formula in Theorem 3 give:
n

() =

j=1
on + 1 a;j—2(j—1) k+1-2n
T< ok )ZZ SRS
j=1
n+1 T aj—-2(j—-1) k-2n
T<7>:2 po; T ok
]:

The equality is now clear.

3. Classical Properties of T'

It is well known that T is continuous on R. Next step is to show the non-
derivability of T" anywhere. A very useful tool, already used by Stieltjes, is now

presented as a lemma.

Lemma 7. (see [5]) Let us suppose that a function f has (finite) derivative

on a point x. Then
N OEF O

u—z~,v—zt u—v

= f'(z).

Proof. 1t follows as in [5, p. 404]
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Theorem 8. (see [20] and [4]) Takagi’s function has not derivative on any
point in the unit interval.

Proof. First, let us suppose a finite expansion for z; i.e., z = Z?:I 2%] (this
is the case when the number of 1’s or 0’s in its binary expansion is finite). Let
us consider

y:=xz+ 20‘%’5 (k € N).
Hence, the quotient
T(x) - T(y)
=Yy
diverges as k — 400, and this implies that does not exist the derivative T'{z).

=an,+k—2n

We now consider the case in which the number of 1’s and the number of 0’s
in the binary expansion of z are both infinite (and hence, the set

{neN:apy1 >on+1}

is infinite). We write = > ;2] 5a=, and consider two kinds of chains of
inequalities:
n n
1 1 1
Up, ::Z%Tk<g:<25&_;+_—_2an+1 =:!Un
k=1 k=1
and

Un<-73<vn+2—%::)?§::vn-

We compute for each one of these cases:
T (un) — T'(vn)

= 14+ a—2n,
Up, — Up,
T(un) — T'(, 2
———( n) N(n) = -—+oa,—2n.
sy — Uy 3
But, if n — 400, then the lemma above says that 7" has not derivative on
z €]0,1[. The cases z € {0,1} have analogous reasonings. O

In fact, it is possible to obtain much more information if we are carefull in
the calculations above:

Theorem 9. (see [7]) Takagi’s function has not right sided neither left
sided derivatives on any point.

Proof. Let = € [0,1[. We will prove that the right sided derivative T"(z™)
of T on z does not exist. For the dual situation 7" (z~) the proof will run
analogously (or, may be, considering that T'(1 — z) = T'(z) for all z € [0, 1]).
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The proof in the above theorem shows that if  has finite binary expansion,
then the right sided derivative of 7" on = does not exist. Hence, we will reduce
to the case there exist infinites 1’s and infinities 0’s in the (infinite) binary
expansion of z. Hence

+00 1
ai=3
n=1
and {n € N: a, +1 < ap4+1} is an infinite set.

Let us define

n—1 +00
1 1 1
Ly = 20k + 9an—1 Z 20y
=7 k=n+1
It follows that x,, > z, and
T (zn) — T(x)
—_— =y, — 2n.
Ty — T

But, if there exists the limit o, — 2n — T(z™), then it must be an integer;
and this implies a periodic expansion for z into the form

T 1 +00 1 7 1 +00 1
wZZQTﬁ(ZW) D s +;W

k=1 k=0 k=1

Let us consider n > r + 1, and define

. 1 1
Yn =2 — 20an+2 - 2an—1 )~

In this case

T -T
Yn — T
and we finish the proof with this contradiction. O

Hence, the peculiar function of Takagi plays an intermediate role between
continuous and without sided derivatives functions.

Definition 10. (Lipschitz and Local Lipschitz Conditions) Let f be a
map from a metric space (X,d) to another metric space (X', d'). We say that
f verifies Lipschitz condition (or that f is Lipschitz) if

Jk>0:z,ye X = d (f(z), fly)) < kd(z,y).
We say that f is Lipschitz at x € X if
Jk,e > 0y € X, dlgg) < =>|d {flz); ) = kd{zy) -

Proposition 11. There exist points in which T is not Lipschitz; i.e., there
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exists = € [0,1] such that if k,e € R, then
{y€[0,1] : d(z,y) <& |T(z) = T(y)| > klz —yl} # 0.

Proof. If we consider points with finite binary expansions, then the proof

is implicit in that of Theorem 9. O
Lemma 12. If (o) is an increasing sequence of naturals such that o, —
2(n—1) #0, then
X —2(k—1) an —2(n—1)
Fra2El) o2l
20 20
k=n
Proof. Computations give the result:
Rom+s;—2n+i-1) Nan—2(n-1) 1
z 90n+s; - Z 2an E
j=1 j=1
1 Rs;j—2j an —2(n—1)
== _ n -
+ 2an z; 25j - O < 2an > . D
j:

Proposition 13. The function T is Lipschitz on a dense subset of [0,1].

Proof. Let us consider:

T 1 +o0 1
T= oo+ D oy
n=1 n=1

and
7 1 m 1 5
y:zz_ga_n+22ar+2n +2ar+2m; z € [071[-
n==1 m=i

In this situation, there exist positive reals A and B, such that

1
Alz —y| < ——==- < Blz —y|

e 2ar+2m —
and
1 lartr = 2r] | Jars1 — 27| | |org — 27|
IT(:L) - T(y)| S 2ar+1 2ar+1+2 2(_‘tr+1+4
joj —2(¢ = 1)|
o

Hence, the series in the first arrow is of order O (%) and the series in

the second is too, by the lemma above and the decreasing monotony of 5z. [J

With a little effort, we will have more information.
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Definition 14. (Holder Continuity) A function f is said Holder-continuous
of degree 3 at z, if there exist positives M and § such that |z — y| < ¢ implies
|f(z)— fly)| < M|z — y|® (in case 8 = 1, f is Lipschitz at z).

Theorem 15. (see [19]) The function T is Hélder-continuous of degree f3,
for all 8 in ]0,1].

This result follows as a consequence of a more general result of Hata. With
the formula of Theorem 3, we can prove the following continuity property:

Theorem 16. (see Hata [11]) For z,y € R,

IT(z) -TW)| < O(lz —ylln|z —yl).

Proof. Let us consider numbers

=1 1 1 LA 1
$::Zﬁ+2—m+2m+l+---andy:= ZTk—%—2—mT+---.
k=1 k=1
It is possible to do m +1 =m' or m+ 1 < m’. In either case, we have that
1 1
sma = P U S 5
and
m—2n Qnia —2(n+1)
T() - T@) < [ = eV R
o apio—2(n+1) e
g 20m+2
oo .
m m j+m
j=1
m
= 0(5¢) =0(z—yllnle —y)).
On the other hand, if
T
1 1 1
ri=) oo T om T om
k=1
and
,
w1 1 1
y.——— ZTk+2m+1++W+2m2+
k=1
we will consider m” := min {m;, m + n}. Hence, there exist positive reals ¢,
and co, such that
C1 C2
o Sz —yl < 5

gm” = o’
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Finally, the corresponding 5%,; term in 7'(z) operates with the corresponding one
to Qm% + .- QTlm in T'(y), and proceeding as above, we have the desidered
result. O

Proposition 17. It is impossible to improve Hata’s result:
JzeR: |T(x) —T(z+h)| #o(lh|In]h]).

Proof. If we consider z and y with finite dyadic expansions:

11 1 T
$—§a+éa—2+---+2an_l +§O:an y—x+2m,
then
1 m —2n

b=l -yl = 5 and [T(z) ~ T(3)] = | -

Hence, with m — +oo, |T'(z) — T(xz + h)| # o (|h|In|h]). O
4. Koéno’s Theorem

If 2 = > /25 1/2% then we will write by bg(x) the leng of the k-th sequence

of 1’s in the series expansion (the two possibly different ways of definition for
x are not important for us, because it occurs on a denumerable set). The by’s
are random variables.

Lemma 18. The random variables {bx; k € N} are independent and iden-
tically distributed, with p (by = n) = 1/27F1

Lemma 19. The set of points where by, > 2logs k occurs infinitely many
times is a zero measure set.

Proof. It is a consequence of Borel-Cantelli Lemma (see [5]). O
Given a number z = ,’:;Xl’ ar /2%, we will study the random variables ay’s.

Lemma 20. The random variables {ay, : k € N} are independent and iden-
tically distributed, with p (ax =0) =p(ar =1) = 1/2.

By the law of the iterated logarithm (see [5]):

Corollary 21. Let A denote the Lebesgue measure. Then,

. 227}_ ar —n })
A prlimeup -8 1 =3
<{ np vnv2Inlnn
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and

o A2 B })
Al §z:liminf = ——em— = -1 —1.
<{ n /nv2Inlnn
If we now consider the subsequence of the 1’s in (ay); then we have:

Corollary 22.

=2
/\<{$ hmsup e 1})
n 2an1n1nan

n— 2
)\({x:hminf i -1 > =
n 2an1nlnan

and

Lemma 23. If0 <y = L + ,-+ e < 1and & =

1 1 {)all 2 2
QET+‘QT}4*2‘+"'+QT,C, then

T<s+y>
2T

Proof. The following equalities are true:

s r— 2k
=T(2)+ y+T(y).

boah—2 a,—2(k-1
T(y):all+ 2 . +...+¥/)+...,
. 2 k-1)

s\ _ o1  «ay—2 o — —
T<57>_271+ gar Tt T e
sy 1 1 1 o} ah — 2
7 ~gm Tgm g o G T

Sty . o ar—2(k—1) r+a)—2k r+ah—2(k+1)
T< 27 ) - 20‘11 + 2“2 + il s 2% + r+a + 2r+a/2 * z

and, hence, the result follows.

Theorem 24. (see Kéno, [16]) On a set of A\-measure 1, we have

T h)—-T
A x : limsup iy (z) =1 = 1.

b hy/2log, (+) Inlnlog, (+)

Proof. We will consider points z with infinite dyadic expansions. Let

s+y s+
B = o ,:C-f—h—T,

0<y<y <L

We choose 7 as the maximum for which this relation is valid. Hence y < % <y

By the lemma above,

T<s+y> s T(i)+r_2ky+T(y),

2 2 2L 27
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1

where oy :=r. H

The last quotient

then
/)
T
and
T(y')
yl

on a set of measu

Ify :=x+h

lim sup -

h—0+

on a set of \-mea:

Simmetry wit
0.

If we apply th

rithm, then we ob

Theorem 25.

lim A <{x €
h—0
h>0
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3T+a/2

_|_...’
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1.

Hencey < 3 < v/
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¢ — 2k Ty

T(s+y> _ T(i)+T J + L&)
27‘

where «j, := r. Hence

16
- T -T
T@+h) -T@ _, 0 T6)=T@)
h Y-y
The last quotient is bounded unless % <y< % <y < % If this is the case:
1 1 1
vT o mEtamtam T
1 1 1
/ J— i S e wiete @
y = 2+2’n+272+ : v > R,
then
R
—n+4 [o—2(R—-2)
T(y) = e R
n=2
1 ’)/1—2
/ o —_— ..
Tly) = g+t
and

T()-T@h) _ 3+0(F) =555 +0 ()
(T 5%
= O(R)=0(lnoy)
on a set of measure 1 (the last inequality follows from Lemma 19).
If y :=z+ h and y := z, then w =7 — 2k + O(In o). Hence,
lim sup L@+t~ Tiw) = lim sup -i =1

h—0+ h\/2 logs % InInlog, % k—-+oo V2ay Inln o

on a set of A-measure 1, by Corollary 22.

Simmetry with respect to 1/2 implies the validity of the result for h —
0 O

If we apply the Central Limit Theorem instead of the law of iterated loga-
rithm, then we obtain the following result.

Theorem 25.
, T(x+h)—T(z) 1 N P
limA{ dx€]0,1[: <y :——/ e */2dz.
o ({ hy/—1ogy h V2T J -
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5. Functional Equations Characterasing T and Self-Affinity

With the aid of the Banach Contractive Mapping Principle, T is characterised
by functional equations (see [18]).

Theorem 26. (Functional Equations) The function of Takagi T is the only
continuous and bounded function in [0, 1] satisfying the functional equations

T<£>:£+M

i 2, T(z)
T T T
Tl=+%)=z-= .
<2+2 2 3"

Proof. Let us consider the Banach space C ([0, 1], R) of real continuous (and
bounded, a fortiori) functions defined on [0, 1] endowed with the supremum
norm. We define the functional

F : C(0,1,R)— C([0,1],R);
¢ — Flg):01] —R

given by
e x+9%@m, 0<z<1/2
F(g)(z) = I —
1—m+ﬂigilﬂ 1/2<z<1.

F(g) is well defined, and we only have to claim the aid of the Banach Fixed
Point Theorem (or contraction mapping principle): there exists one, and only
one, g € C([0,1],R) satisfying the functional equations above.

Doing manipulations on the series we obtain that 7" is the solution. O
As a consequence, we can solve the area under the graph of 7.

1

1
Corollary 27. / T=—-.
0 2

Proof. The functional equations above show self-affinity for 7": the total
area o is equal to that of a triangle of base 1, and height 1/2 and two 1/2-
replica of itself; it is to say

1 o
o = Z 2Z7
d

and hence, the statement is true.
Theorem 28. (see [2]) Takagi’s function attains its (absolute) maxima on

the set A of the points whose 4-base expansion only consists on 1’s and/or 2’s.
The maximum value of T is 2/3, and the fractal dimension of A is 1/2.
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Proof. Clearly

1, 1 1, 1
=(z4A+-)u(=4a+2).
a=(Ga+3)v(34+3)

Hence, A is self-similar and consecuently, dimpg (4) = 1/2.

If z € A, then z = ;’3 %, with a, € {1,2}; and we can rewrite = as
follows
| 1., ap=2
_ o . _ ) n — 4,
= Z 92n—sn’ VLD, 5y = { i3, am=1:
n=1
Applying the formula in Theorem 3:
+00 +@J
2n — sp —2(n — 1)
T(Z‘) T Z 22n—sn = Z 22n Sn Z 22n 173
n=1 n=I1

(the penultimate equality does not depend on the sy, s!).

Let us consider points  with some 0 or 3 among its digits. We will prove
that these points are not point of maximum for 7. Let

k— 1 k—la 3 400 1
. . n
— n=k

with a, € {1,2} and b, € {0,1,2,3} (for a; = 0, the reasoning would be
analogous).
Then, with this notation and the fact that 4% = 22,}4 =t #,

k—1 400
1 1 2k — 2k 2k+cn—2(k+n)
T(@) =) oon—1 T 52k—1 T "ok T b 92k+cn :
=1 =1
If we now consider
k-1 +o0 k-1 400
o an 1 bn G 1 1
y=2_ mtT g™t s 4—n+ﬁ+zgfm—+cn7
n=1 n=k-+1 n=1 n=k+1

1 1 Bh—08 = Ol —2 2(k+n—1)
T(y) = Z - ke + ;T Z 92k+cn
n=1 n=1

Hence, T'(z) < T'(y), and T does not reach its maxima on points of z-type. [
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6. Trollope’s Formula

Number theory often studies asymptotic behaviour for the sum of arithmetic
functions. With the help of Theorem 3, we obtain an exact formula for one of
these expressions: the sum of the number of digits with binary expansion for
positive integers (see [21] and [10]).

For a given n € N, its binary expansion is Z:;’% er (n) 2", with ex (n) €
{0,1}. Let us define numbers

+00 N-1
s(n):=Y ex(n) and S(N) := > s(n).
k=0 n=0

Lemma 29. If1 <n <2™, then
T(£>—T<—7—l—~—l—> :m—2s(n—1)'

Proof. Case a. nis odd. Let n =21 4+2% ... + 2% with 0 = af < o} <
-+ < ay. Hence, we can write
n 1 1 1 1

om ~ 9a1 " a2 oak—1 | om

(where m = ay); and it inmediatly follows that

T(n)_T<n 1>_ak—2(k—1) m—2s(n—1)

om om ~om ) N '

2%k 2m

Case b. nis even. Let n = 2t+el fotted 4 ... 4 9t+ok with0=0of <of <

= 2 0. Now,
no_ 1 1 1
2_m - om—t—aj + 2m—t—o¢,*c_1 o om—t—aj
and
n 1 . 1 1 1
Q_m T om T gm—t—ay + gm—t—ay_, o gm—t—oj
1 1 1
+2m—t—a*{+1 + om—t—aj+2 +oo T %
give
7 (L) _T(_n__ L) _mot-2k-1)
om om om Qm—t
m—t+1—2(k—l) m—t+2—2k m——2(]€—|—t~—2)
B ogm—t+1 B 2m—t+‘2 T om
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m—Q(k+t—1)_m—23(n—1) 0
= om e om :

Theorem 30. (Generalised Trollope’s Formula) If 1 <n < 2m  then
I, g
S(n) = 5 2 =i (2m> ;
Proof. By the lemma above,
n m—2s(n—1) n 1Y
S +T(§n‘“§n‘>’
and by induction:
-1
T(n) nm  s(1)+...+s(n )+T(0).

= il e S

o Tt
Because, T(0) = 0, the result follows. a
Denote {z} := = — [z], and with the notations we have already introduced,
we have:
Corollary 31. (Trollope’s Formula)

nlogy n n(l — {10g~2 n}) —{log, n} 1
> 2 —n2TE T e )

Sin)=

Proof. Let us take m = 1 + [logy n] in the theorem above. O

7. Ending Proposal

It is possible to derive consequences for a more general framework if we consider
the class of Takagi-van der Waerden peculiar functions:

+00 nka:
TWa(z) =3 d(nk ) (meN)
k=0

(the second author found TWyo during 1930). This family of functions has
been studied, among others, by [2], [3] and [8]. For even naturals n, the next
theorem is true and it is possible to be applied in further studies of the family
(T W, -0 €N
Theorem 32. Ifz =3 ;23 % €(0,1], with n € 2N, then
Rk (2ry — k) z — 1 (k — %)

TWn(.’E) = Z k )

k=1
where Ty, == Card{:cj € {0, 1,9y ey 57 1} i = 1y Zainey k} .

n
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