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Abstract: It is defined a representation system for numbers in the unit
interval, generalising the dyadic one, and two dynamical systems are given
which generate it. Metric results are especially derived from the second of
them. The approximative coefficient 6,, (z) is defined and studied with this
second dynamical system. Moreover, it is deduced that, among other results,
the Jager pair (0,,6,-1) has the same distribution on a set of A-measure 1,
it is concentrated on a denumerable set of segments in [0, 1]2, and an explicit
expression is given for it.

In addition, Gauss-Kuzmin-Levy and Limit Central Theorem type results
are given for some random variables in connection with this representation
numbers system.

AMS Subject Classification: 26A30, 26A06, 26A09

Key Words: dynamical system, dyadic representation system, measure pre-
serving function, ergodicity, entropy, Jager pairs, Bernouillicity, identically dis-
tributed random variables

1. Introduction

It is well known that for natural numbers > 2, each real number z in ]0, 1|

has a series expansion (its r-base expansion) in the form z = > %) % with

digits an € {0,1,2,...,7 — 1}. Moreover, this expansion is unique, but certain
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50 E. de Amo, J. Fernandez-Sanchez

rational numbers (that z = § with (p,q) = 1 and ¢ decomposes in factors all
dividing ). For these rationals there are two possible series expansion, one of
them is finite.

This expansions can be generalized for not integer bases. This is to say, for
reals § > 1 and z €]0, 1], it is possible to establish (see [4]):

+o0 a
S
— Ign
with an, € {0,1,2,...,[3] — 1}. But now, the case is very different, because there

exists a set of measure 1 such that all its points have infinite series expasions
in the B-base. Hence, uniqueness for the series expansion disappears.

This handicap can be solved via the Renyi’s greedy-representation given by
the dynamic

Tp:[0,1[— [0,1  Tp(z) := Pz (modf),

obtaining digits

an = BT
This dynamic system is ergodic and there exists one, and only one, absolutely A-
continuous measure with measure preserving density hg (see [10]). Afterwards,
Gel'fond (in [5]) and Parry (in [9]) showed that
400 1
a0 g X0,1(1)](Z)

hg(z) =
g : b3 %da:
2= T(1)

The case 8 < 2 has especial interest; in this case, all digits are 0’s and 1’s.
In case [ smaller that the golden ratio, 8 < ® := 1—+2‘/—5, for each point in ]0, 1],
the set of its series B-expansion has continuum cardinality.

If we write a := 1/(3, previous expansions are in the form

Ti— Z a™
fi=1

with m, < mpe1 and % < a < 1. The proposal of this paper is to introduce
a new representation for numbers in |0, 1[ via series expansion combining the
bases a and 1 — a; precisely, in the form

+00

= Z(l —a)"a™".

n=1
This situation is unique, very similar to that of dyadic expansions, but a de-
numerable set of numbers for which there are exactly two representations: one
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finite and the other infinite. They are obtained from a dynamical system which
is ergodic and \-preserving measure. An advantage for this system of represen-
tation is its validity for all a € ]0, 1[, whitout the restriction a > 1/2.

In the literature we know, this generalized dyadic representation does not
appear in an explicit form. It does in an implicit form, when some applications
of certain singular functions are studied (see, for example, [8, p. 268] and [7, p.
227]).

With the help of the results in this paper, the authors can obtain in [1]
Hausdorff dimension for fractal sets related with these functions, and an others
that generalise them; particularly, the set where the Stieltjes measure associated
to them concentrates its mass.

The outline of this paper is that follows. Next section is devoted to introduce
the announced generalised dyadic representation system (GDRS) and we will
establish its uniqueness.

The Section 3 describes a dynamical system generating this representation,
but the scope of the results is limited and we modificate it in order to obtain
new and better metric results, one of Loch-type among them.

In Section 4, we study the natural extension for the dynamical system and
the corresponding approximative coefficients. They help us to show that the
associated distribution function is singular and does not depend on x. Besides,

1=a

it is proved that the correlation coeflicient for the Jagger pairs is {77.

At last, in Section 5, we show the Bernouillicity of the dynamical system:;
and, as applications, are proved results of Gauss-Kuzmin-Levy type. At the
same time, we find applications of the iterated logarithm and central limit
theorems for related random variables.

We end this first section with a little of notation and conventions for the
rest of the paper.

Let N be the set Z* of positive integers {1,2,...,n,n + 1,...}. For each real
z we consider the function [z] := max {n € Z;n < z}. As it is usual, x4 is the
characteristic or indicator function for a set of reals A C R. We will denote
Lebesgue measure on the reals by A.

For arbitrarily function f and natural n, f := foo f, with the convention
fO as the identity map.

Given two measuble spaces (X, A, ) and (Y,B,v), a measuble function
f: X — Y is said measure preserving if p (f~! (B)) = v (B), for each B € B.
In case X =Y and the o-algebra A = B is generated by a family P which is
closed for finite intersections, a sufficient condition for f being measurable and
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measure preserving (see [3, p. 131]) is that
“1(A) e Aand p(f 1 (A) = pu(A) forall A€ P.

The system (X, A, i, f) will be said a dynamical system of representation, and
the central theorem is this context (see [6]) is the so called

Theorem 1. (The Ergodic Theorem) Let (X, A, u, f) be a dynamical
system of representation. If g is /\-intecrrable g € L', then the sequence

Z (7" @)
converges ji-a.e., and its limit g satzsﬁes the following properties:
i ge Ll
ii. §(f(2)) = (@), p-ae.
iii. If p(X) < 400, then [y gdp = [y gdp.
iv. The sequence ( Yot g( (a:))) converges to g in the mean.

2. Generalised Dyadic Representation System

Definition 2. Let a € ]0,1[. For each z € ]0, 1], there exists a non negative
integer ng such that
a™tl < g < Mo,
Hence, z = a™t! 4y, with 0 <33 < a™ (1 — a); and we can write
z =a™! 4 a™ (1 —a)z,
where z7 € [0,1]. Reasoning on x, we obtain
r =gt gnotmi+l (1 N a) 4 gnotm (1 _ a)sz;

and, by induction, we have this formal equality:
+00 .
. Z (1= a)k e DALY
k=0
which will be called the generalised dyadic representation for the corresponding
number z.

These series converge to z, because
m k
; ¢ n; 1
z— (1- a)F T i=0m| < (1 —a)™,

k=0
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and the majorization M-test of Weierstrass is applied. We summarize this
situaion:

Proposition 3. Leta €]0,1[. Ifz €]0, 1], then there exists an increasing

sequence of naturals 1 < mg <mj < ... <my < ..., such that
+00
g = Z(l —a)"a™.
k=0

Proposition 4. The expansion in the above proposition is unique but it
would be finite or estacionary (i.e., my =m; ifk > j).

Proof. Because
l=g+a(l—a)+a(l—a)l+a(l—a)+..,

in the finite or estacionary cases double expansions appear:

n n—1
S-a)fa™ =) (1-a)f mk+z (1—m)* g™t
k=0 k=0

By the other hand, if the sequence (my) is not bounded (the expansion for z is
not finite neither estacionary), let us consider infinite expansions for x and y:

+00 +00
r= S -, Y= (1 -afa,
k=0 k=0
where 0 < k < n — 1, implies mk:mz,and my < my, for k > n. Hence:
n~—1
y<z a)® a™ + gMn Z (1—a) :Z(l—a)kamk%—am%_l(l—a)”
k=0

<Z:(l—alC m‘“+z 1—a)fa™ =z.

k=n
As a consequence, for an x with non bounded (my), = differs from y being
estacionary or non estacionary. O

3. Dynamical System Associated to the GDRS

In all that follows a € ]0,1].

z €1[0,al],

z
Definition 5. Fy(z):=4{ &_;
efinition a(7) { ‘f Z vy T Ela, 1] .

Theorem 6. F, preserves \ and it is ergodic.
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For a proof, see [4, p. 68].
Let us consider the reciprocal for Fj,. Then
v @By (@) Flgzxa,
(1—a)F,(x)+a.., fa<z<1,
and by iteration, we obtain:
z = a4 (1-a) grotmtl
+ (1 _ a)m ano+n1+.<.+nm+1 > (1 _ a)m+1 ano+n1+...+nm+1Fg (3:) :
and, hence, the dyadic generalized expansion is guarateed.

Definition 7. Let us consider a measure space (X, A, 1) and a measurable
function f which is measure preserving. The entropy of the dynamical system
(X, A, i, f) is, if it exists, the number

W)= [ In|f @) dua)
Proposition 8. The entropy h of the system ([0, 1], B, A, F,) is
1
ln —_—1:‘3.
a®(1—a)

Proof. Tt is a consequence of the entropy formula:
1

h(F,) :/ log lFé (x)\ X (z),
0

where F denotes derivative.
Definition 9. By a cylinder of order k& we will understand a set
Do ipr 7= Aig N f (i) N 2 (Ai) 0 07 (Aiy) -
We will simply write Ag. The collection of all cyliders for each order k is a
partition for the space X. For a cylinder of order k if we are interested in some
= belonging to it, we will write A (z).

With the aid of Shannon-McMillan-Breiman Theorem (see [3]), it is inmedi-
ate that

Corollary 10. There exists a set of A\-measure 1 such that

1
A 1

li

n n a® (1 —a)
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Definition 11. We define the function Hy:

g B ey a<z<l,

a 2

(1—_31—)5—'1?&.,., CL<Q’J§CL,

T __a 3 2

Hy(z) ={ Ga&f s & <Tsa,
4 3

(T_—i”l)—ag—ﬁ—a..., ar<m<ia’,

By inversion, depending on where would be z:
a+ (1—a)Hq(2)..., GLET =1,
&+l —d)aH(x)= o°<z=La,
b = @@ + (1 — ) ot Hg (@) v a® <z <a?,
g + (1 — &) @P Hy () sy at <z <ad,

This expansion yields a representation of the already studied type:
+00
T = Z(l —a)kam’“
k=0
with 1 <mgpg<m; <...<my <

Theorem 12. H, preserves \ and is ergodic.

Proof. It follows as in [4, p. 68]. O
Theorem 13. On a set of \-measure 1,
. Mp a
lim = :
R ] 1—a
Proof. Let us define
0.5 a5 L,
fonat G B
d(z) := Qs e b
Busy GE€ XL @,
Hence:
g = g )
my = H, (z))+d(z)+1,

d(z)+1,
d(Hg (2)) +d(z)+1,

z)) +d(Ha (2))

N |

+
+

@nc:,oﬁm
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Applying the Ergodic Theorem to H,:
n
g M _ iy LA (Ha (@) + o+ d(HE (2))
n o n n n

exists on a set of A\-measure 1 (because d is integrable) with value

d is

1 is

1 +00 00 a
d dx = B e = —_ n = 5 O
/o (z)dx Z(a g* = =yl a)Zan -
n=0 n=0

Theorem 14. The fractal dimension of the set of points where lim,, = =
dlnd— (1+d)In(1+4d)
dlna+In(l—a)

Proof. See [1]. O

mn —

Corollary 15. The fractal dimension of the set of points where lim,, ==* =

—2In2
Ina+In(l—a)
Proposition 16. The entropy of the system ([0,1], B, X, Hy) is

1
In —g——.
a2 (1 —a)
Proof. Entropy’s formula and summing like above give the result. a

And the Shannon-McMillan-Brieman Theorem implies:

Corollary 17. There exists a set of \-measure 1 such that
InA(Ay) 1
e e

li =In— .
a™-+ (1 —a)

n n
Definition 18. If z =Y ;25 (1 — @) @™« then let us denote
By = ZZ:O (1 - a)k a™E; @y =By + amn-l»l (1 - a)n 2
Lemma 19. For the n-th cylinder,

%(A"—) <& = Bay| < A(Lncr) -
— Qa

Proof. The cylinder A, is the interval [Bj,, Cy], and the following identities
imply the result:
A(Ap) = a™1"1(1—a)", Bp—Bpa=d™(1-a)" . O
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Taking logarithms in the above lemma, and applying the previous corollary:

Corollary 20. On a set of A\-measure 1,
-1 - B |
lim T ey = n) =1In —.
i n (l—a)aT-—=
Corollary 21. (Loch-Type Result) If n digits of the decimal expansion of
¢ determine the first k among the m;, then there exists a set of A-measure I,
such that

1
n—————7—/In10.
(1—a)aT-a

.n
].17111’1%—1

Proof. Let z be with infinite non estacionary expansion, Dy (z) be the
decimal cylinder [A,, A/] containing z. Now, let A the dyadic cylinder con-
taining « and D, with k as great as possible; i.e., D, C A and By € D,, or
Cr+1 € Dy. We consider two cases:

a. If Bgy € D,,, then [B}C+1, Bk+2] C D,, and

A(Dpy2) € Bya — By =a™* (1 —a)

b. If Ck+1 € D,, then [Ck+2, Ck+1] C Dy, and

Cii1 — Crpa = a™ (1 — )t > A (Dgt) -
For both cases A (Ag1j) < A(Dn) < A(Ag) (4 € {1,2}), and we obtain
k k - k k
with the extreme terms converging to the value

—In(l—a)—

k+1

T In a;

hence, so it is for the central term.

Finally, with the aid of the Shannon-McMillan-Breiman Theorem, there
exists the limit lim, 3 with value
— Il —a)—gt=Ina
In 10
on a set of A-measure 1. O

Proposition 22. Let us denote by s, the number of different elements

among {mg, m1,...,mn}. Then on sets of \-measure 1,
.. Sn
lim— =a
n on

Proof. Looking at H,, we see it changes on m if HY (z) € [0,a[ and it does
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not change if HY (z) € [a,1]. Hence, by integration of x4, and the Ergodic
Theorem, we obtain

. Sn
lim — = a. O
non

4. Natural Extension and Jager Pairs

Next, we follow to know the goodness of the approximation of = € [0,1] by
Bl
Definition 23. (Approximation Coefficients) For each z and n,

— |z — Bnti]
() := amn=1(1—a)"

Remark 24. 6, = H**!; because
+o0o
Hy (z) = o741y Jammi (1—a)f
k=0
As a consequence of Ergodic Theorem:

Theorem 25. The sequence (6,,) is uniformly distributed on a set of
A-measure 1 in [0, 1].

Corollary 26. On a set of A-measure 1,
1 LI |
Ezgk: 5 and Ezgk: §
k=1 k=1
Theorem 27. If we denote
H, (z,y) = (Ha(a),a™ + (1 —a)a™'y) ,
then the dynamical system ([O, 1]2,B,/\,ﬁa> is the natural extension of the
given ([0,1], B, \, H,), where mo depends on .

Proof. The projection map
7:(0,1] x [0,1] = [0,1]; (z,y) — =

is measurable.

H, is \-measure preserving: we restrict ourselves to rectangles of the form
[am, a™” 1] x [0,1] . Because this family generates the total o-algebra, and o
is A-measure preserving on [c,d] x [s,t], hence (see [2, p. 311]) H, is A-measure

preserving on B.
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A(A % [0,1]) = A(A), by similar arguments as above, because this is its

behaviour on the intervals [am, am‘l].

For two given cylinders, (mg, m1, ma, ...,My) = (u,v) and (T, T Ty =ems
) = (r,8), let us consider the new one cylinder

(c,d) : = (Mn—Mn—1+ 1L,Mn — M2+ 1, ..,
T, Min + M0 — 1,n — M1 — 1, .., Mp + M — 1).
Hence, it follows that
H." (¢,d) = (u,0) x (1,8);

and B is generated by reciprocal images of rectangles (because it is generated

by rectangles which are product of cylinders). O

Proposition 28. H, is ergodic and mixed.

Proof. ([0,1], B, A, H,) has both properties; hence its natural extension has
them too. O

And, as a consequence of the Ergodic Theorem:
Corollary 29. IfC is a A-measurable with A (0C) = 0, then

im 23 "o (Tk (2,)) = A (©).
k=1

Corollary 30. (Jager-Type Result) There exists a set of A-measure 1 in
[0,1], such that A is an asintotic distribution function for {EZ (2 O)}

Proof. Let us consider a pair (z,y) such tha the sequence (Fz (a:,y)) is
k
uniformly distributed.
For a given € > 0, with n such that (1 —a)" < ¢, if k > n, then
—k — _
H, (Z" y) — (Ikv yk) and H, (CL" O) = ($k7 yk)
implies |yx — Ti| < €.

Now, if C := [a,b] x [¢,d], Ce- := [a,b] X [c+¢&,d — €], and Ce+ := [a,b] X
[c —e,d + €], then

H (2,y) € C.- => Hr (2,00 €C
" (2,0) € C = H: (z,y) € Cex
which imply these two chains of inequalities:
i L . L ) L
S xe.- o Hy(2,9) _ 2j=miXxo© H, (#,0) _ >y X O H (2,)
k - k - k
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and

k

A(C) — 2e <lim i%f

k =77
Y Yo oH (2,0
< limsu Z]_l XC a ( ) <
k k =
According with it, there exists the limit

k -7
5 ) — X OHa ‘T?O
hinZJl Ck ( ):)\(C).

For almost all z in [0,1], there exists y (depending on z) verifying the

A(C) + 2e.

announced property; and, hence, {FZ (x, 0)} is uniformly distributed. O
We can write the identity

Hg« —_ amn_mn—1+l _+_ (1 i a) amn’mn—l HZZ"JFI’
and rewriting it in the form

971—'1 — amn_'mn—l+l + (1 _ a) amn_mn~l 977,7
it is usual to define

U (z,y) := (:C, a™W 4 (1 — a)mO(y)H) )
and hence
—k
w<HA@m):wn@%@hmmy

Definition 31. (Jager Pairs (6, (2),0,—1(x))) The image of FZ (&:0)
under the map ¥ is called a Jager pair.

Let us note that ¥ acts mapping the rectangle [0, 1] x [ar,arﬂl} on the
: —k . 2

segment of endpoints (O,ar’q) and (a",1). Because (Ha (m,O))k is uniformly
distributed on [0,1]? for almost all z in [0,1], the Jager pair (6n (z),0n-1(x))
admits a bidimensional distribution function corresponding to the surface of
U1 ([0, 21] x [0, z2]). This distribution function concentrates regularly the cor-
responding mass (1 — a)a” on each segment of endpoints (O,a”l) and (a”,1).
Hence, it is a singular distribution. The explicit formula for F(6, < t1,0n-1 <
tg) 1s:

a"tt <ty <a,

G/Ttl..., to— r+1
t) < (21—?1)a7 )

CLT+1 S to S a'Tv
r+1

a" it 4+ (1—a)a” (t2 —a™t) ...,

to—a

t1>m.

A GENERALISED

To study Jager |
they exist):

Definition 32.
Definition 33.
Definition 34.
Definition 35.
Definition 36.

P(Hna‘gn*l) = -

Doing manipulat

+00 1
Za’(l—a)/ 4
r=0 0

which is the one we

Theorem 37.

The way ¥ acts,

Theorem 38.
Card {A, Qk

lim
n

The series in the
function

for all a in [0, 1], the
k’s for which 6 > 0,

5. Gauss-Kuz:

Theorem 39.
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r on z) verifying the

y distributed. O

rm—+1
a )

On,

).

1e image of —H—Z (,0)

] x [ar,aT_l] on the
(a:,O))k is uniformly

pair (0 (z),0n—1(x))
ling to the surface of
wtes regularly the cor-
(0,a"!) and (a”,1).
for F(Qn < t1>9n—1 <

t2 S aT7
_ar+1
7a)ar )
t2 S ar,
il
-a)a” -’
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To study Jager pairs we only need some definitions we expose as limits (if
they exist):

Definition 32. E (,) = limy 1 Z?_l 0;
(9 ) _hmka] 1 j
Definition 34. E (0,0,_1) := limy, + % ijl 6;0;-1.

2

— E(6,)%

Definition 33.

Definition 35. o2 (0,) :== E (62)
Definition 36.

P (en: Qn—l) =

E (8383-1) — E(83—1) E(6n) _ E (8n0n_1) — E (6,)°
NN o2 (0n) '

Doing manipulations on E (6,,0,—1), we have

S ' +1
ga (l—a)/om[a +(l—a)a"z] dz

2
-—Z or l—a)+(1—a) _ CL+2
3 6(1+a)
which is the one we need to assert that.

Theorem 37. p(0,,0,_1) = %jr—g

The way W acts, yields to this result:
Theorem 38.

kifp < Op_1,k=1,2 .. 2 or
thard{ Ok < Ok-1, ! ’n}:a(l—a,)Z——~a )
n n fet 1-(l—a)a"

The series in the above theorem has a remarkable interest. If we define a
function

f@)=a(l- a>Z

for all @ in [0, 1], then its graph is the given in Flgure 1; hence, the average of
k’s for which 6 > 6;_1 is more than a half on a \-set of measure 1.

5. Gauss-Kuzmin-Levy Type Theorems and Related Results

Theorem 39. The system ([0, 1], B, A, H,) is Bernouilli.
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1 o
0.8
06
0.4} e
0zt o

2 n<g Mne neK 1
Figure 1:

Proof. Let us denote A := N U {0} the set of non negative integers, the
o-algebra P (A) of the power set of A, and the measure given by £ ({n}) =
(1 —a)a™ Let us now define a bijection from the denumerable product set of
infinite copies of (A, P (A),u) on [0,1] given by

400
k
H ((s1,52,59,-)) i= Y a P59 (1= ).
k=0

This map induces a o-algebra on [0,1] (generated by the cylinders in dyadic
generalized expansion), which is B. Because the measure p coincides with A on
cylinders, it is actually A.

Introducing the shift operator

S ((51, S92, 83, )) = (82, 83, 54, ) s

it is clear that S induces H, on [0, 1]. U

Corollary 40. The variables X; := mj — mj_1 are independent and
identically distributed, with probability

P(X; = g)= (1l = a)d’:

Corollary 41. P(mj=r71)= P(r) (1 — )’ a", where P(r) the number of
times for which r is expressed by the sum of j different positive integers, taking
their order into account.

Corollary 42. (Gauss-Kuzmin-Levy) Let m be a probability measure on
the measurable space ([0,1], B). If m < A, then

liTrlnm ({z; Hy (z) < t}) = t.

A GENERALISEL

The result is true, 1

Proof. Let us ¢
the Ergodic Theore:

limm ({z; H}(x)

by mixing property,

Definition 43.
cylinder; ¢ = ¢ (&
the inverse form; i.e

then
Sn =
Corollary 44.

Proof. Let us co
C =i

and
= C.

Note that ¢, € C' <
Car e [0,t
lim ___{gn 0.2

n

= [i

7
Because C and C’ a

and the uniform dist

Corollary 45.
space ([0,1], B). If 1
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1egative integers, the

: given by p({n}) :=
ierable product set of

a)k.

e cylinders in dyadic
u coincides with A on

O

are independent and

e P(r) the number of
sitive integers, taking

-obability measure on
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The result is true, in particular case, when dm = fi—zx is the Gauss measure.

dm

Proof. Let us consider the Radon-Nikodym derivative h := Z¢. Now, by
the Ergodic Theorem:

1
limm ({z; H (z) < t}) = hm/ (X0,4 © H}) (z)dm
n n 0

1
= lim/ (Xj0.4 © Hy) (z) h(z)dA
mJo

by mixing property,

1 1
= lim/ X[o,4 (%) dA hm/ h(x)d\ = t. O

nJo nJo
Definition 43. If z has not finite expansion and Aigi;...7x is its k-th
cylinder, ¢ := < (z) will denote the finite expansion with k indexes given in

the inverse form; i.e., if
r=a"™+ (1—a)a™ + ...,
then
Gp=a"™+(1l—a)a™ '+ ...+ (1- )™
Corollary 44. If H?(z) is uniformly distributed, then ¢, is too.

Proof. Let us consider sets
Ols= Chsy 5y, . 5= 175 1t6 Hrsh Xy 886 815595 w5 Sn}
and
G'e=Cs .
Note that ¢, € C <= HF ™ (z) € C'; hence
lim Car {¢, € [0,t] ;£ =0,1,...,n}
n mn
o Car {Hff*" (z) e C';k=0,1, ,n}
n n
Because C and C’ are cylinders and [0, ¢] is a reunion of cylinders, we conclude
lim Car {<; € [0,t] ;£ =0,1,...,n}
n n
and the uniform distribution for the sequence is derived. O

smgy =172 it first X ave sp; 8154581} :

=2 (C) =1 (0).

— %

Corollary 45. (Levy) Let m be a probability measure on the measurable
space ([0,1], B). If m < A, then

liom s ({5 < £F) = &
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Proof. Because lim, m ({z; H}(z) € J}) = A (J) for arbitrary intervals J,
in cases J=C or J =,

lignm({x;gn € C}) =limm ({z; H(z) € J}) = X (J),
n
and in the same way as before, we conclude lim, m ({z;<, < t}) = t. O

Theorem 46. On a set of A\-measure 1,
y a

lim — Ko, == .

n n ; . 1—-a

Proof. It is a consequence of the Strong Law of Large Numbers, because
E (Xy) = 1% (it is a new proof of Theorem 10). (.

If we add an error term, applying the Itereted Log Law (see [2, p. 154]) to
the variables

Xy — 125

a

Ja )

l—a

Yy =

it is inmediate that
Theorem 47. On a set of A\-measure 1,
1 ¢ Viogl
im Y = 240 (_iﬂi> |
non i~ l1—a N
And, in the same way (see [2, p. 153]), we have:

Theorem 48. If (ay,) diverges positively and an = 0/n, then

n
S oy — M o
=i =0 5 o | = =S re(),

P

")

Theorem 49. For random variables Xy,

n a
> k=1 Xk — N1

O 2
<b :——/e‘Tx.
naf%F V2T Ja

ImA | a<
n

Proof. It is a jointly application of the Central Limit Theorem and the
Lindeberg-Levy Theorem (see [2, p. 357]). O

Theorem 50. With the above notation, if

Zn = max Xy = limP(Z, <ny)=1
1<k<n n

A GENERALISED

Proof. Let us no

But this sequence or

Theorem 51.

is dense in [0,1/e] .

Proof. Similar a1
[0, 1] give the result.

Theorem 52.

Theorem 53.
verges.

Proof. Let us co1

To be X,, > r, infini
three-series theorem

Corollary 54.

Proof. If ry := —

and the series ), 5

is infinite, and it foll

In fact, this is an equ
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=)\ (J),
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ge Numbers, because
d

w (see [2, p. 154]) to

nit Theorem and the
Od
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Proof. Let us note that Z, < ny <= Xy <ny,k € {1,2,...,n}, and then
n
P(Z, <my) = (1 - a[”y]H) :
But this sequence on the left converges to 1. O

Theorem 51. The sequence
1
an =P <Zn < log, —)
n
is dense in [0,1/€] .

Proof. Similar arguments as above, and the density of {log, —n [log, n]} in
[0, 1] give the result. O

Theorem 52.

y<l = limP(anlogan%)
o L

0,
y>1 = limP(anlobany) L

Theorem 53. P (X, > ry infinite usually) = 1 <= > alr=l+t di-
verges.

Proof. Let us consider random variables
Vo { l..., Xp 2>27mn,
m: =

0..., Xpn<rp.
To be X,, > r, infinitely many times is equivalent that )V, diverges. By the
three-series theorem (see [2, p. 290]) we conclude the proof. d

Corollary 54. On a set of A\-measure 1,
. Xnolna+1Inn
limsup—————=1.

7 In (Inn)
Proof. If 7, :== — (log, n + log, Inn), then
1
nlnn’
and the series Zn21 al™1+1 diverges. Hence, the set

{n e N; X,, > — (log,n +log, Inn)}

is infinite, and it follows that

a["'71]+1 ~

Xl il
lim sup Zl G Bl g
n In(Inn)

In fact, this is an equality. By the opposite, let us suppose that
Xplna+1Inn

>1
In(lnn) e

lim sup —
n
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for some € > 0. But if it is the case, then the series (using similar arguments

as above) >, -4 Eff;rl‘z)—”—a diverges, which contradicts the theorem above. [

Proposition 55. On a set of A-measure 1,

L Xy,Ina+Inn
liminf - —"———— — = —
n In (Inn)

Proof. This is a consequence that on a set of A-measure 1 X;,, = 1 infinitely
many times. O
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