RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Tomo LIV (2005), pp. 329-342

LOCAL AND IMPROPER DANIELL-LOOMIS INTEGRALS

E. DE AMO – M. DÍAZ CARRILLO

In this paper we start from previous results obtained in [7] on the abstract space of Daniell-Loomis integrable functions L, which is constructed like to the Daniell extension process, but without continuity assumptions on the elementary integral.

The localized integral is used to prove that L consists of those functions whose local upper and lower integrals are equal and finite, or that L is closed with respect to improper integration.

Our results are also holded in integration with respect to finitely additive measures.

1. Introduction.

The Daniell-Bourbaki integral extension has been generalized with the integral $\overline{I}: \overline{B} \to I\!\!R$, introduced in [5], starting with any nonnegative linear functional I on a vector lattice B of real-valued functions on X. In [6] an abstract space of integrable functions L is constructed similar to the Daniell L^1 , using an appropriate local convergence in measure, which is very useful to obtain convergence theorems in a form analogous to the classical ones, but contrary to that L^1 case, no continuity conditions on the starting elementary integral $I \mid B$, e.g. of Daniell type or "starke" integral norm of [13], are needed. It allows to discuss an unified functional analytic approach to integration, in an abstract Riemann spirit; which subsume previous results obtained by Aumann [4], Loomis [10], Gould [8] and Schäfke [13].

On the other hand, this also leads to treat set-theoretical aspects of integration with respect to finitely additive measures μ on semirings Ω of sets

AMS Subject Classification: 28C05, 26A42.

(abbreviated $\mu \mid \Omega$). Always, proper Riemann- [6], abstract Riemann- [9] and Dunford-Schwartz [7] μ -integration are subsumed by *L*. This abstract measure theory is developed by proving Fubini theorems for finitely additive measures [2] and an approximate functional Radon-Nikodym theorem [1].

An important source of information on finitely additive measures is the paper by W.A. Luxemburg [11], which gives an extensive bibliography and treatment of the subject that may be useful in applications.

Since the cornerstone of our approach to integration is the concept of a localized integral, it seem interesting to discuss new characterizations of the abstract space of integrable functions L given in [6].Thus, one obtains L via one of the three classical methods: certain limits of elementary functions, the closure of B with respect to an L-type seminorm; and, in this paper, via equality and finiteness of the localized upper and lower integrals (Theorem 8) and improper integrable functions (Theorem 13).

We recall that the set of the integrable functions L coincides with L^1 in the classical case. Always \overline{B} (summable in [5]) and $R_1(B, I)$ (abstract-Riemann integrable functions in [6]) are contained in L.

For an upper functional in the sense of Anger and Portenier [3], essential integration gives new characterizations of abstract Riemann integration with respect to $I \mid B$. Then, we have in mind future applications to Riesz representation theorems (see [1] and [2]), regularity and Radon integrals. Such as we mentioned before, we already have incorporated to this abstract integration theory Fubini and Radon-Nikodym thorems, which are not treated in [6].

2. General framework. Preliminaires.

Notations and conventions used are similar to that of [5] and [6], and will be explained it whenever be necessary in order to mke the paper self-contained.

We extend the usual + in \mathbb{R} to $\overline{\mathbb{R}}$:= $\mathbb{R} \cup \{-\infty, \infty\}$ by a + b:= 0, a + b:= ∞ if $a = -b \in \{-\infty, \infty\}$; a - b:= a + (-b), etc.. With $a \lor b$:= max $(a, b), a \land b$:= min $(a, b), a \cap b$:= $(a \land b) \lor (-b)$ if $b \ge 0$, a^+ := $a \lor 0, a^-$:= $(-a)^+$, one has for $a, b, c, d, e \in \overline{\mathbb{R}}, s, t \in \overline{\mathbb{R}}_+$:= $[0, \infty]$, the inequalities

 $|a \cap t - b \cap t| \le 2(|a - b| \land t)$ (1) $|(a + b) - (c + d)| \le |a - c| + |b - d|$ $||a| - |b|| \le |a - b| \le |a - c| + |c - d|, \quad a \le b + (a - b)$

(Aumann [4, *b), *c)]); +, +, + are commutative, + distributive with

 $0(\pm\infty)$:= 0, but not associative; \dotplus is associative and the above inequalities hold for \dotplus .

On the set $\overline{\mathbb{R}}^X$ of functions $f: X \to \overline{\mathbb{R}}$, we define $=, \pm, +, \wedge, \vee, \cup, \cdot \alpha$, $|\bullet|, \leq$, pointwise on X. Given $M \subset \overline{\mathbb{R}}^X$, $+M := \{f \in M; f \geq 0\}$ and for an arbitrary functional q on $\overline{\mathbb{R}}^X$, q_* denotes the functional defined on $\overline{\mathbb{R}}^X$ by $q_*(f) := -q(-f)$.

In all that follows, *B* will be a function vector lattice (or Riesz space) $\subset \mathbb{R}^X$ and $I: B \to \mathbb{R}$, a linear functional with $I(h) \ge 0$ for $h \in +B$.

For such $I \mid B$ context, we need the following results of [5] and [6], in somewhat modified notation:

 $B^{\tau} := \sup\{M; \emptyset \neq M \subset B\}$

(2)
$$I^{+}(f) := \sup\{I(h); h \in B, h \leq f\}, \text{ for } f \in \overline{\mathbb{R}}^{A}, \text{ with } \sup \emptyset := -\infty$$
$$B_{\tau} := \{g \in B^{\tau}; I^{+}(f+g) = I^{+}(f) + I^{+}(g), \text{ for all } f \in B^{\tau}\}$$
$$\overline{I}(f) := \inf\{I^{+}(g); f \leq g \in B_{\tau}\}, \qquad \underline{I}(f) := (\overline{I})_{*}(f), \text{ for } f \in \overline{\mathbb{R}}^{X}$$

The elements of

$$\overline{B} := \{ f \in \overline{\mathbb{R}}^X; \overline{I}(f) = \underline{I}(f) \in \mathbb{R} \}$$

are called *I*-summable functions.

 B^{τ} and B_{τ} are + and \vee -closed, B_{τ} is also \wedge -closed. \overline{I} is -subadditive on $\overline{\mathbb{R}}^X$, \overline{I} and I^+ are $+\mathbb{R}_0$ -homogeneous and monotone on $\overline{\mathbb{R}}^X$.

 $B_{(\tau)}$ denotes $\{f \in B_{\tau}; I^+(f) < +\infty\}$. $B_{(\tau)}$ is \wedge -closed and $B \subset B_{(\tau)} \cup (-B_{(\tau)}) \subset \overline{B}$. If $f \in B_{\tau}$, then $I^+(f) = \overline{I}(f) = \underline{I}(f)$.

- (3) \overline{B} is closed under $+, +, \wedge, \vee, \cdot \alpha, |\bullet|; \overline{B}$ is the closure of B in $\overline{\mathbb{R}}^X$ with respect to the integral seminorm $\overline{I}, \overline{I} | \overline{B}$ is the unique \overline{I} -continuous extension of I | B to \overline{B} and is "linear" on \overline{B} ([5], [6]).
- (4) Using the corresponding definitions, the following result holds: $f \in \overline{B}$ iff for any $\varepsilon > 0$ there exist $h, g \in B_{\tau}$ such that $-h \leq f \leq g$ and $I^+(g) + I^+(h) < \varepsilon$.

3. Local integrals.

In [7] an abstract integration theory is developed for general integral metrics.

A functional $q: +\overline{\mathbb{R}}^X \to \overline{\mathbb{R}}$ is called an *integral metric* if q(0) = 0 and $q(f) \le q(g) + q(h)$ if $f \le g + h$, $f, g, h \in +\overline{\mathbb{R}}^X$.

(5) For any $T: \overline{\mathbb{R}}^X \to \overline{\mathbb{R}}$ we define the *localization*

$$T_B(f) := \sup\{T(f \land h); h \in +B\}$$

for all $f \in \overline{\mathbb{R}}^X$.

This is a simplified version of Schäfke's definition [13, p.120]. If T = q = integral metric, q_B is also an integral metric. In all the following, we assume $q = \overline{I}$ integral metric on $+\overline{\mathbb{R}}^X$. From above definitions, one gets

$$(\overline{I}_B)_*(f) := -(\overline{I}_B)(-f) = \inf \{ \underline{I}(f \lor (-h)); h \in +B \}.$$

We have $(\overline{I}_B)_* \leq \overline{I}_B \leq \overline{I}$ on $\overline{\mathbb{R}}^X$ and $\overline{I}_B(f) < +\infty$. Moreover, if $\overline{I}(f) < +\infty$, then $\overline{I}_B(f) = \overline{I}(f)$. Simple consequences of the definitions are

$$I^+ \leq \underline{I}_B \leq \underline{I} =: \overline{I}_* \leq (\overline{I}_B)_* \leq \overline{I} \leq (I^+)_*.$$

DEFINITION 1. The set L := L(B, I) of *I*-integrable functions is defined as the clousure of *B* in $\overline{\mathbb{R}}^X$ with respect to the integralmetric $\overline{I}_B(|\bullet|)$.

(6) As in the proof of Theorem 1.5 of Schäfke [13], one shows that L(B, I) = set of all those f ∈ R^X for which there exists an *I*-Cauchy sequence (h_i) ⊂ B such that h_i → f(*I*), i.e., *I*(|f − h_i| ∧ h) → 0 for each fixed h ∈ +B. Then J(f): = lim I(h_i), and (h_i) is called a defining sequence for f (see [6, Sec.2]).

One gets $\overline{B} \subset \overline{L}(B, I)$ and $\overline{I}(f) = J(f)$ for any $f \in \overline{B}$. Also, L is closed with respect to $+, +, \wedge, \vee, \cdot \alpha, |\bullet|$ and J is linear and monotone on L.

In [6], covergence theorems for L(B, I) are given in an analogous form to the classical ones, and various descriptions of the set L have been treated.

Additionaly, we can obtain the following:

- 1. If $f \in L(B, I), I^+(f) \le \underline{I}(f) = J(f)$
- 2. $L(B, I) = B_+^* B_+^*$, where

$$B_{+}^{*} := \{ f \in +\overline{\mathbb{R}}^{X}; f \wedge h \in B, \forall h \in B, \underline{I}(f) < +\infty \}.$$

(7) We summarize applications given in [6, Sec.5], in the situation μ | Ω: Ω is a semiring of sets from X, and μ: Ω → [0, +∞[is a finitiely additive measure on Ω, B = B_Ω: = real valuedstep functions over Ω and I = I_μ: = ∫ •dμ are admissible.

Then,

$$R_{prop}^{1}(\mu, \mathbb{R})$$
 (proper Riemann μ -integrable functions in [6]) \subset

 $L(X, \Omega, \mu, \mathbb{R})$ (Dunford-Schwartz integrable functions in [8]) \subset

 $R_1(\mu, \mathbb{R})$ (abstract Riemann μ -integrable functions in [9]) $\subset L(B_\Omega, I_\mu)$,

with coinciding integrals; all inclusions are strict.

If Ω is a δ -ring and μ is σ -additive, then

 $R_1(\mu, \overline{\mathbb{R}}) = L^1(\mu, \overline{\mathbb{R}})$ (Lebesgue integrable functions modulo nullfunctions in [7]) $\subset L(B_\Omega, I_\mu)$;

and $f_n \to f \mu$ -almost everywhere implies $f_n \to f(I_{\mu})$ for μ -measurable (f_n) .

For $X = \text{open sets} \subset \mathbb{R}^n$, $\Omega = \text{intervals}$, $\mu = \text{Lebesgue measure on}$ $X. B = C_0(\mathbb{R}^n, \mathbb{R}) = \text{continuous real valued functions on } \Omega$ with compact support, and $I: X \to \Omega$ =the classical Riemann integral on B, one has $\overline{B} = L = L^1$.

The following basic properties, which will be useful in our subsequent studies, are new here. The inequality needed here reads: if $a, b \in \overline{\mathbb{R}}, c \in \overline{\mathbb{R}}$, $a \ge b, a \ge 0$, then $(b + c) \land a = c \land (a - b) + b$.

LEMMA 2. If $f, k \in \mathbb{R}^X$, $h \in B$ such that $\overline{I}_B(k) < +\infty$ and $k \leq f + h$, then $\overline{I}_B(k) \leq \overline{I}_B(f) + I(h)$.

Proof. For every $\varepsilon > 0$ there exists $t_{\varepsilon} \in +B$ such that $\overline{I}_B(k) - \varepsilon < \overline{I}(k \wedge t_{\varepsilon})$. Set $t_{\varepsilon} \ge h$, now with $t_{\varepsilon} - h \in +B$ and $k \le f + h$, we have

 $k \wedge t_{\varepsilon} \leq (f+h) \wedge t_{\varepsilon} = f \wedge (t_{\varepsilon} - h) + h.$

Therefore, $\overline{I}_B(k) - \varepsilon < \overline{I}(k \wedge t_{\varepsilon}) \le \overline{I}(f \wedge (t_{\varepsilon} - h)) + I(h) \le \overline{I}_B(f) + I(h)$ for all $\varepsilon > 0$, and the result follows.

(8) Note that if $f \in L(B, I)$, then $\overline{I}_B(f) < +\infty$.

In fact, one has $f \leq |h_n| + |f - h_n|$ where (h_n) is a defining sequence for f; by (3) and since \overline{I}_B is +-subadditive on $+\overline{\mathbb{R}}^X$, the result follows.

The above lemma will be generalized in Proposition 4.

LEMMA 3. If $f \in L(B, I)$, then $J(f) = \overline{I}(f) = (\underline{I})_*(f) \in \mathbb{R}$.

Proof. By definition 1, given $\varepsilon > 0$, there exist $n_0 \in \mathbb{N}$ and $h_n \in B$ such that $\overline{I}_B(|f - f_n|) < \varepsilon$, if $n \ge n_0$.

We have $f \le h_n + |f - h_n| =: g$, with $g \in L(B, I)$ and $\overline{I}_B(f) < +\infty$. Now, with lemma 2, one gets

$$\overline{I}_B(f) \le I(h_n) + \overline{I}_B(|f - h_n|) < I(h_n) + \varepsilon.$$

Furthermore, since $f - h_n \ge -|f - h_n|$, lemma 2 yields

$$\overline{I}_B(-|f-h_n|) \le \overline{I}_B(f-h_n) \le \overline{I}_B(f) - I(h_n).$$

Besides,

$$(\overline{I}_B)_*(|f-h_n|):=-\overline{I}_B(-|f-h_n|)\leq \overline{I}_B(|f-h_n|)<\varepsilon,$$

so that

$$-\varepsilon < \overline{I}_B(-|f-h_n|) < \overline{I}_B(f) - I(h_n), \text{ if } n \ge n_0.$$

Thus,

$$J(f) := \lim I(h_n) = \overline{I}_B(f) \in \mathbb{R}.$$

Finally,

$$(\overline{I}_B)_*(f) := -(\overline{I}_B)(-f) = -J(-f) = J(f).$$

Note that the inequality $(f + g) \wedge h \leq f \wedge h + g \wedge h$ is always valid for $f, g \in +\overline{\mathbb{R}}^X$; so, \overline{I}_B is subadditive on $+\overline{\mathbb{R}}^X$, i.e., an integral metric.

For arbitrary functions $f \in \mathbb{R}^X$, the following additional properties of \overline{I}_B , extending those in Lemma 2, can be given.

PROPOSITION 4. For a given function $f \in \overline{\mathbb{R}}^X$,

- 1. If $h \in B$, we have $\overline{I}_B(f+h) \leq \overline{I}_B(f) + I(h)$.
- 2. If $\overline{I}_B(f) < +\infty$ and $g \in L(B, I)$, we have $\overline{I}_B(f + g) \leq \overline{I}_B(f) + \overline{I}_B(g)$.

Proof: 1. It is clear that if $\overline{I}_B(f+h) = +\infty$ (so, $\overline{I}_B(f) = +\infty$) or $= -\infty$, then $\overline{I}_B(f+h) \leq \overline{I}_B(f) + I(h)$.

Now, suppose that $\overline{I}_B(f+h) < +\infty$. For an arbitrary $\varepsilon > 0$, there exists $k \in +B$, $k \ge h$, such that

$$\overline{I}_B(f+h) - \varepsilon < \overline{I} ((f+h) \wedge k) = \overline{I} (f \wedge (k-h) + h) \le$$
$$\overline{I} (f \wedge (k-h)) + I(h) \le \overline{I}_B(f) + I(h),$$

so that

$$\overline{I}_B(f+h) \le \overline{I}_B(f) + I(h).$$

2. For $g \in L(B, I)$, there exists $h_n \in B$ such that $\overline{I}_B(|g - h_n|) \to 0$. Now, $I_B(g - h_n) < +\infty$, $I_B(g_n) < +\infty$, by 1. and remark below,

$$\left|\overline{I}(g) - I(h_n)\right| \le \overline{I}\left(|g - h_n|\right) \to 0,$$

so $I(h_n) \to \overline{I}(g)$.

Since $|f + h_n| \leq |f + g| + |g - h_n|$ and \overline{I}_B is subadditive on $\overline{\mathbb{R}}^X$, we have

$$\overline{I}_B(f+h_n) \le \overline{I}_B(f+g) + \varepsilon,$$

and with $|f + g| \le |f + h_n| + |h_n - g|$,

$$\overline{I}_B(f+g) \le \overline{I}_B(f+h_n) + \varepsilon,$$

the result follows.

Observe that, with $\overline{I}_B(f) < +\infty$ and the above reasoning in 1., one gets $\overline{I}_B(f) \leq \overline{I}_B(f+h) - I(h)$, so that,

$$\overline{I}_B(f+h) = \overline{I}_B(f) + I(h).$$

The proof follows the same arguments of lemma 2 and those of remark (8).

DEFINITION 5. (Stone) A function $f \in \mathbb{R}^X$ is called I-measurable if $f \cap h \in L(B, I)$ for all $h \in +B$. Obviously, $\overline{B} \subset L \subset M_{\cap} := \{f \in \mathbb{R}^X; f I-measurable\}$.

In [7], *the following results are given:*

- 1. f is I-measurable and $|f| \leq some$ I-integrable g, implies f is I-integrable.
- 2. $f \in M_{\cap}$ iff $f^{\pm} \in M_{\cap}$.

The concept of -measurability enable to give, with [6, th.3], the following **Integrability Criterion**:

(9) $f \in L(B, I)$ iff f is *I*-measurable and $\overline{I}_B(|f|) < +\infty$. (Note that \overline{I} is additive on B, so B-semiadditive.)

PROPOSITION 6. If $f \in +\overline{\mathbb{R}}^X$ is *I*-measurable with $\underline{I}(f) \in \mathbb{R}$, then there exist $(g_n) \subset +\overline{B}$, $g_n \leq g_{n+1} \leq f$, *I*-Cauchy and $g_n \to \overline{f(I)}$.

Proof. By (2), there exist g and (g_n) in $-B_{(\tau)} \subset \overline{B}$, $g_n \leq g_{n+1} \leq g \leq f$, $\overline{I}(g_n) \to \sup \overline{I}(g) = \underline{I}(f) \in \mathbb{R}$.

Then, $\overline{I}(|g_n - g_m|) = \overline{I}(g_n) - \overline{I}(g_m) < \varepsilon$, if $n \ge m \ge n_0(\varepsilon)$, so (g_n) is \overline{I} -Cauchy.

Now, if not $g_n \to f(\overline{I})$, by (6), there exist $h_0 \in +B$, $\delta_0 > 0$, $n_k \nearrow +\infty$, such that $\overline{I}((f - g_{n_k}) \wedge h_0) \ge \delta_0$, $k \in \mathbb{N}$.

We have $(f - g_{n_k}) \wedge h_0 \in \overline{B}$, so there exists $l_k \in \overline{B}$ such that $(f - g_{n_k}) \wedge h_0 \ge l_k \ge 0$ and $\overline{I}(l_k) \ge \frac{\delta_0}{2}$.

Then, $\overline{I}(g_{n_k}) + \overline{I}(l_k) \leq \underline{I}(f)$, but $\overline{I}(g_{n_k}) \to \overline{I}(f)$, which implies contradiction with $\overline{I}(l_k) \geq \frac{\delta_0}{2} > 0, k \in \square$

LEMMA 7. If $f \in \mathbb{R}^X$ is such that $(\overline{I}_B)_*(f) = \overline{I}_B(f) \in \mathbb{R}$, then f^{\pm} and f are I-measurable.

Proof. Let $h_0 \in +B$. For a given $\varepsilon > 0$, there exists $h_1 \in +B$ such that, with $h_1 \ge h_0$, $\overline{I}_B(f) - \varepsilon < \overline{I}(f \land h_1) \le \overline{I}_B(f)$.

Now, for $h_1 \in +B$, there exists $h_2 \in B_{(+)}$ such that $f \wedge h_1 \leq h_2$ and $I(h_2) < \overline{I}(f \wedge h_1) + \varepsilon \leq \overline{I}_B(f) + \varepsilon$; one can assume $h_2 \leq h_1$ since $B \subset B_{(+)} \subset \overline{B}$ and $B_{(+)}$ is \wedge -closed. Then

$$\left|I(h_2) - \overline{I}_B(f)\right| < \varepsilon \qquad (\underline{1})$$

For h_0 , h_1 , there exists $-k_1 \in +B$, $k_1 \leq -(h_0 \vee h_1 \vee |h_2|)$, such that

$$(\overline{I}_B)_*(f) \leq \underline{I}(f \vee k_1) < \overline{I}_B(f) + \varepsilon$$

Now, for k_1 , there exists $k_2 \in -B_{(+)} \subset \overline{B}$, $k_2 \leq f \vee k_1$, with $k_1 \leq h_2$, such that $\underline{I}(k_2) > \underline{I}(f \vee k_1) - \varepsilon$. Then

$$\left|\underline{I}(k_2) - \left(\overline{I}_B\right)_*(f)\right| < \varepsilon \qquad (\underline{2})$$

Finally, for $h_1, k_1, k_2 \in \overline{B}$, there exists $h_3 \in \overline{B}, h_3 \ge h_1 \lor k_1 \lor k_2$, such that

$$\overline{I}_B(f) - \varepsilon < \overline{I}(f \wedge h_3) \le \overline{I}_B(f),$$

and for h_3 , there exists $h_4 \in B_{(+)}$ such that $f \wedge h_3 \leq h_4 \leq h_3$ and

$$\overline{I}_B(f) - \varepsilon < \overline{I}(f \wedge h_3) \le \overline{I}(h_4) < \overline{I}(f \wedge h_3) + \varepsilon < \overline{I}_B(f) + \varepsilon,$$

so that

$$\left|\overline{I}(h_4) - \overline{I}_B(f)\right| < \varepsilon \qquad (\underline{3})$$

One gets

$$|h_4 - k_2| \le h_4 - k_2 + 2\rho$$
, with $\rho := h_4 \lor k_2 - h_4$ (4)

and

$$f + \rho \le f \lor k_1 \qquad (\underline{5})$$

By lemma 2, \overline{I}_B applied to (5), with (2), yields to

$$(\overline{I}_B)_*(f) + \overline{I}(\rho) \le (\overline{I}_B)_*(f+\rho)$$

$$\le (\overline{I}_B)_*(f \lor k_1) \le \underline{I}(f \lor k_1) \le (\overline{I}_B)_*(f) + \varepsilon;$$

hence,

$$0 \le \overline{I}(\rho) < \varepsilon. \qquad (\underline{6})$$

Moreover, one verifies by checking cases,

$$|h_4^+ \cap h_0 - f^+ \cap h_0| \le |h_4 - h_2|.$$
 (7)

Next, let $l:=h_4^+ \cap h_0 \in B_{(+)} \subset \overline{B}$; and with (4), (7), (6), (2) and (3), one gets Therefore, since *B* is \overline{I} -dense in \overline{B} , we conclude that $f^+ \cap h_0 \in \overline{B}$, for all $h_0 \in +B$, hence f^+ is *I*-measurable.

For f^- it is enough to consider that $f^-:=(-f)^+$, and the previous facts for positive functions. Since, for an arbitrary function f we have $f \cap h_0 = f^+ \wedge h_0 - f^- \wedge h_0 \in \overline{B}$, for all $h_0 \in +B$, the *I*-measurability of f follows.

The integrability criterion (6), together Lemma 7, allows to us to show the following characterization of *I*-integrable functions (the upper and lower localized integrals are equal and finite).

THEOREM 8. A function
$$f \in \mathbb{R}^X$$
 is *I*-integrable iff $(\overline{I}_B)_*(f) = \overline{I}_B(f) \in \mathbb{R}$.

Proof. Lemma 3 gives the sufficiency. To prove the necessity, with (6) and Lemma 7, we only have to prove that $\overline{I}_B(|f|) < +\infty$.

For $0 \le h \le l \in B$, one has, with $f^+ \land l$, $f^+ \land h \in \overline{B} \subset L$,

$$f \wedge l = f \wedge h + (f^+ \wedge l - f^+ \wedge h). \qquad (\underline{1})$$

First, we claim that $\overline{I}_B(f^{\pm}) < +\infty$. If $\overline{I}_B(f) < +\infty$, for a given $\varepsilon > 0$, there exists $h_{\varepsilon} \in +B$ such that $\overline{I}_B(f) - \overline{I}(f \wedge h_{\varepsilon}) < \varepsilon$.

Let $h := h_{\varepsilon}, 0 \le h_{\varepsilon} \le l$, then

$$\overline{I}(f \wedge h_{\varepsilon}) \leq \overline{I}(f \wedge l) \leq \overline{I}_{B}(f).$$

Next, \overline{I} applied to (1) gives

$$\overline{I}(f \wedge l) = \overline{I}(f \wedge h_{\varepsilon}) + \overline{I}(f^+ \wedge l) - \overline{I}(f^+ \wedge h_{\varepsilon}) \leq \overline{I}_B(f),$$

so that,

$$\overline{I}(f^+ \wedge l) < \overline{I}(f^+ \wedge h_{\varepsilon}) + \varepsilon < +\infty$$

for all $l \ge h_{\varepsilon}$, hence $\overline{I}_B(f^+) < +\infty$, so $f^+ \in L(B, I)$.

Because analogously $f^- \in L(B, I)$, we have

$$\overline{I}_B(|f|) \le \overline{I}_B(f^+) + \overline{I}_B(f^-) < +\infty,$$

and therefore $f \in L(B, I)$.

For any $f \in \mathbb{R}^X$, the *lower and upper Darboux integrals* are defined as in [6, Def.4]:

$$J_*(f) := \sup\{J(g); g \le f, g \in L(B, I)\}$$

and $J^*(f) := -J_*(-f)$. One check easily that J^* is an integral metric on $\overline{\mathbb{R}}^X$.

With Theorem 8 and [6, Th.4], *I*-integrability can be characterized in its more general form (as in the classical cases), without any measurability assumptions:

COROLLARY 9. For any $f \in \overline{\mathbb{R}}^X$, the following conditions are equivalent:

- *l*. $f \in L(B, I)$
- 2. $(\overline{I}_B)_*(f) = \overline{I}_B(f) \in \mathbb{R}$
- 3. $J^*(f) = J_*(f) \in \mathbb{R}$.

In this case, J(f) coincides with all the above integrals.

We conclude this section with a more general sufficient condition for I-integrability, which is directly proved using (4).

PROPOSITION 10. For $f \in \overline{\mathbb{R}}^X$, if $\underline{I}_B(f) = \overline{I}_B(f) \in \mathbb{R}$, then $f \in L(B, I)$ and, in this case, $J(f) = \underline{I}(f)$.

Proof. Let $h_0 \in +B$ and $\varepsilon > 0$. By (5),there are $(g_n), (h_n) \subset +B$ such that

$$\overline{I}_B(f) - \varepsilon < \overline{I}(f \wedge g_n) < \overline{I}_B(f) + \varepsilon$$

and

$$\underline{I}_{B}(f) - \varepsilon < \underline{I}(f \wedge h_{n}) < \underline{I}_{B}(f) + \varepsilon.$$

One can assume $h_n = g_n$ and $h_n \ge h_0$ (take $h_n \lor g_n$, $h_n \land h_0$). By (2), there are $l_n, k_n \in B_\tau$ such that $-k_n \le f \land h_n \le l_n$ and

$$I^+(l_n) < \overline{I}(f \wedge h_n) + \frac{\varepsilon}{2}, \qquad \underline{I}(f \wedge h_n) - \frac{\varepsilon}{2} < -I^+(k_n).$$

Then, $I^+(l_n) + I^+(k_n) \to 0$, if $n \to +\infty$.

Furthermore, $-k_n \wedge h_0 \leq f \wedge h_0 \leq l_n \wedge h_0$, if $n \geq n_0(\varepsilon)$, with $-(-k_n \wedge h_0) = k_n \vee (-h_0) \in B_{\tau}$.

This gives, with (4), $f \cap h_0 = (f \wedge h_0) \vee (-h_0) \in \overline{B}$ for all $h_0 \in +B$, so f is I-measurable. By 2. in definition 5, f^{\pm} are I-measurable, with $f^-:=-(f \wedge 0) \in \overline{B}$. Now, by the proof of the finiteness of $\overline{I}_B(|f|)$ in theorem 8, one gets $f \in L(B, I)$; and, by lemma 3 and (5), $J(f) = \underline{I}(f)$. \Box

Example 13 shows that $\underline{I}_B = J$ on L(B, I) is false in general. If additionally, for $f \in L(B, I)$, there exists $h \in B$ with $f \ge h$ (or equivalently, $I^+(f) > -\infty$), the converse of Proposition 6 holds; the proof is mostly similar to those above using our earlier results.

4. Improper integrals.

In the present Section, we discuss improper *I*-integrability with respect to *I*-summable functions and give an *I*-integrability criterion.

When an integral T on a set $M \subset \overline{\mathbb{R}}^X$ of integrable functions is given, a function $f \in \overline{\mathbb{R}}^X$ is called *improper* T-*integrable* (w.r.t. M) if $f \cap h \in M$ for all $h \in +B$ = nonnegative elementary functions (e.g., step functions) and exists $\lim_{+B} T(f \cap h) \in \mathbb{R}$, with +B a set directed by \leq .

So, for I | B as in Section 1, and with $T = \overline{I}$, the class $\overline{B}_{\cap} := \{f \in \mathbb{R}^X; f \text{ improper integrable}\}$ and $\overline{I}_{\cap} :=$ this limit on \overline{B}_{\cap} , are well defined.

LEMMA 11. We have $L(B, I) \subset \overline{B}_{\cap}$ and $J = \overline{I}_{\cap}$ on L(B, I).

Proof. With $f \in L(B, I)$, because $|f| \in L(B, I)$, for a given $\varepsilon > 0$, there exists $h \in +B$ such that $\overline{I}_B(|f| - h) < \varepsilon$.

If $h \le k \in +B$, one gets

$$|f \cap k - f| \le |f \cap h - f| = |f \cap h - f \cap |f|| \le |h - |f||,$$

where $f \cap k - f \in L(B, I)$. Therefore,

$$\left|\overline{I}_B(f\cap k) - \overline{I}_B(f)\right| \leq \overline{I}_B(h - |f|) < \varepsilon;$$

since $\overline{I} = \overline{I}_B$ on \overline{B} , we have $f \in \overline{B}_{\cap}$ and $J = \overline{I}_B = \overline{I}_{\cap}$ on L(B, I).

LEMMA 12. For $f \in \overline{\mathbb{R}}^X$, $f \in \overline{B}_{\cap}$ if and only if $f^{\pm} \in \overline{B}_{\cap}$.

Proof. Let $f \in \overline{B}_{\cap}$. For $h \in +B$, $f^+ \cap h \in \overline{B}$, since \overline{B} is \wedge -closed. Now,

if there exists $\lim_{+B} \overline{I}(f \cap h) \in \mathbb{R}$, chose $h_0 \in +B$ with

 $\overline{I}(f \cap k) \leq \overline{I}(f \cap h_0) + 1$

if $h_0 \le k \in +B$; since $f \cap h \le f \cap (h + h_0) + |f \cap h_0|$ for $h \in +B$, with $|f \cap h_0| \in \overline{B}$, one gets

$$\overline{I}(f \cap h) \le \overline{I}(f \cap (h+h_0)) + \overline{I}(|f \cap h_0|) \le \overline{I}(f \cap h_0) + 1 + \overline{I}(|f \cap h_0|) =: \alpha.$$

For the existence of $\lim_{B} \overline{I}(f^+ \cap h)$, it is enough to show that

$$\sup\{\overline{I}(f^+ \cap h); h \in +B\} < +\infty.$$

But, if the above sup is $+\infty$, there exists $h \in +B$ such that $\overline{I}(f^+ \wedge h) > \alpha + 2$.

We have $f \cap k = f^+ \wedge k - f^- \wedge k$ and $f^- \wedge k \le |(f^+ \wedge h) - k|$ since $f^+ = 0$ where $f^- := (-f)^+ > 0$, so that

$$\overline{I}(f^+ \wedge k) \le \overline{I}(f \wedge k + \left| (f^+ \wedge h) - k \right|) \le \overline{I}(f \cap k) + 1 \le \alpha + 1.$$

We conclude

$$\alpha + 2 < \overline{I}(f^+ \wedge h) \le \overline{I}(f^+ \wedge h - f^+ \wedge k) + \overline{I}(f^+ \wedge k) \le$$

 $\overline{I}(f^+ \wedge (f^+ \wedge k) - (f^+ \wedge k)) + \alpha + 1 \le \overline{I}(|(f^+ \wedge h) - k|) + \alpha + 1 < \alpha + 2,$ a contradiction.

Because \overline{I} is linear on \overline{B} , which is closed for addition, with $f \cap h = f^+ \cap h - f^- \cap h$, we have the " \Leftarrow " implication, and this completes the proof.

We recall that [6, Th.1] gives a substitute for the general missing completeness of L(B, I):

(10) If $(f_n) \subset L(B, I)$ is a *J*-Cauchy sequence with $f_n \to f(\overline{I})$, for $f \in \overline{\mathbb{R}}^X$, then $f \in L(B, I)$ and $J(f_n) \to J(f)$, if $n \to +\infty$.

THEOREM 13. For $f \in \mathbb{R}^X$, $f \in L(B, I)$ if and only if f is improper I-integrable (w.r.t. \overline{B}) and, in this case, $J = \overline{I}_{\cap}$.

Proof. By lemma 11 it is necessary only to prove that $\overline{B}_{\cap} \subset L(B, I)$.

Now, by lemma 12, if $f \in \overline{B}_{\cap}$, then $f^{\pm} \in \overline{B}_{\cap}$. Because L(B, I) is closed for addition, we can assume $f \in +\overline{B}_{\cap}$. There exists $h_n \in +B$ with $h_n \leq h_{n+1}$ and $\overline{I}(f \wedge h_n) \to \overline{I}_{\cap}(f) =: \alpha$, where $f \wedge h_n \in \overline{B}$.

For any $k \in +B$, one gets

$$|f - f \cap h_n| \wedge k = (f - (f \cap h_n)) \wedge k = f \wedge (k + (f \wedge h_n)) - (f \wedge h_n) \in \overline{B}.$$

If
$$\alpha - \varepsilon < \overline{I}(f \land h_n)$$
 for all $n \ge n(\varepsilon)$, we have
 $\overline{I}(|f - f \cap h_n| \land k) \le \overline{I}(f \land (k + (f \land h_n))) - \overline{I}(f \land h_n) \le \alpha - (\alpha - \varepsilon);$
with $g_n := |f - f \cap h_n| \land k \in \overline{B}$, then $\overline{I}(g_n) \to 0$ and $f \land h_n \in \overline{B}$ is an
 \overline{I} -Cauchy sequence, and by (7) we obtain that $f \in L(B, I)$.

Specially, in the situation $\mu \mid \Omega$ one can also consider improper integration with respect to Ω -unbounded domains:

$$(\overline{B}_{\Omega})_{\cap} := \{ f \in \overline{\mathbb{R}}^X; f \chi_A \in \overline{B}_{\Omega} \text{ if } A \in \Omega, \ (I_{\mu})_{\cap} (f) : \\ = \lim_{r\Omega} \overline{I}_{\mu} (f \chi_A) \text{ exists } \in \mathbb{R} \},$$

where $r\Omega$ is the ring generted by Ω .

Example 15. Let X := [0, 1], $\Omega := \{[a, b[; a, b \in \mathbb{R}\} \text{ and } \mu := \text{Lebesgue measure. If we consider}\}$

$$f(x) := \begin{cases} -\frac{1}{\sqrt{x}}, & 0 < x \le 1\\ 0, & x = 0 \end{cases}$$

we obtain that $f \in L(B, I)$, with $J(f) = \int_0^1 f = 2$ and $I^+(f) = -\infty$.

Example 14. Let $X := [0, \infty[, \Omega] := \{M \subset X; M \text{ or } X - M \text{ is finite} and \subset [1, \infty[\}, and <math>\mu := \delta_0 = \text{Dirac}$ measure on 0 (so, with $E \subset [1, \infty[$ and finite, we have $\mu(E) = 0$ and $\mu(X - E) = 1$).

In this case:

$$R^{1}_{prop}(\mu, \mathbb{R}) \subsetneqq R_{1}(\mu, \overline{\mathbb{R}}) \subsetneqq L^{1}(\mu, \overline{\mathbb{R}}) \subsetneqq \overline{B} = L^{\tau}(B, I) \subset L(B, I)$$

with $B = B_{\Omega}$, $I = I_{\mu}$, and L^{τ} = Bourbaki extension.

Remarks.

1. If $v: \overline{\mathbb{R}}^X \to \overline{\mathbb{R}}$ is an upper functional in the sense of Anger and Portenier [3], with the notations and results in [5], the functional $q:=v_{|+\overline{\mathbb{R}}^X}$ is an integral metric, $B:=J(v)\cap\mathbb{R}^X$ is a function vector lattice and $I:=v_{|B}$ is linear and monotone, where

$$J(\nu) := \{ f \in \overline{\mathbb{R}}^X; \nu(f) = \nu_*(f) \in \mathbb{R} \}$$

and $v = \overline{I}$ is admissible, then $J(v) = \overline{B}$.

2. [3, Cor.3.7] and our Theorem 1 give that the class $J(v^{\bullet})$ of the essential v-integrable functions coincides with \overline{B}_{\cap} , where

$$\nu^{\bullet}(f) := \inf_{u \in J_{-}} \sup_{v \in J_{-}} \nu\left[(f \land (-v)) \lor u \right]$$

and

$$J_{-} := J(\nu) \cap] - \infty, +\infty]^{X}$$

REFERENCES

- [1] E. de Amo, I. Chitescu, M. Díaz Carrillo. An approximate functional Radon-Nikodym theorem, Rend. Circ. Mat. Palermo, **48** (1999), 443-450.
- [2] de Amo E., Díaz Carrillo M., On abstract Fubini theorems for finitely additive integration, Proc. Amer. Mat. Soc., 123 (9) (1995), 2739-2744.
- [3] Anger B., Portenier C., Radon Integrals, Birkhäuser. Bessel, 1997.
- [4] Aumann G., Integralerweiterungen mittels Normen, Arch. Math., 3 (1952), 441-450.
- [5] Bobillo Guerrero P., Díaz Carrillo M., Summable and integrable functions with respect to any Loomis system, Arch. Math., 49 (1987), 245-256.
- [6] Díaz Carrillo M., Günzler H., Daniell-Loomis integrals, Rocky Mt. J. Math., 27 (4) (1997), 1075-1087.
- [7] Dunford N., Schwartz J. T., Linear Operators I, Interscience. New York, 1957.
- [8] Gould. G. G., *The Daniell-Bourbaki integral for finitely additive measures*, Proc. London Math. Soc., 16 (1966), 297-320.
- [9] Günzler H., Integration, Bibliogr. Institut. Mannheim, 1985.
- [10] Loomis L. H., Linear functionals and content, Amer. J. Math., 7 (1954), 168-182.
- [11] Luxemburg W. A. J., Integration with respect to finitely additive measures, Stud. Econ. Theory, 2 (1991), 109-150.
- [12] Pfeffer W. F., Integrals and Measure, Dekker. New York, 1977.
- [13] Schäfke F. W., Lokale Integralnormen und verallgemeinerte uneigentliche Riemann-Stieltjes-Integrale, J. Reine Angew. Math., 289 (1977), 118-134.

Pervenuto il 1 febbraio 2005.

E. De Amo Departamento de Álgebra y Análisis Matemático Universidad de Almeríua 04120-Almeríua SPAIN e-mail: edeamo@ual.es Díaz Carrillo Departamento de Análisis Matemático Universidad de Granada 18071-Granada SPAIN e-mail: madiaz@ugr.es