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LOCAL AND IMPROPER DANIELL-LOOMIS INTEGRALS

E. DE AMO – M. DÍAZ CARRILLO

In this paper we start from previous results obtained in [7] on the abstract space of
Daniell-Loomis integrable functions L , which is constructed like to the Daniell extension
process, but without continuity assumptions on the elementary integral.

The localized integral is used to prove that L consists of those functions whose local
upper and lower integrals are equal and finite, or that L is closed with respect to improper
integration.

Our results are also holded in integration with respect to finitely additive measures.

1. Introduction.

The Daniell-Bourbaki integral extension has been generalized with the
integral I : B → IR, introduced in [5], starting with any nonnegative linear
functional I on a vector lattice B of real-valued functions on X . In [6]
an abstract space of integrable functions L is constructed similar to the
Daniell L1, using an appropriate local convergence in measure, which is very
useful to obtain convergence theorems in a form analogous to the classical
ones, but contrary to that L 1 case, no continuity conditions on the starting
elementary integral I | B , e.g. of Daniell type or “starke” integral norm of
[13], are needed. It allows to discuss an unified functional analytic approach
to integration, in an abstract Riemann spirit; which subsume previous results
obtained by Aumann [4], Loomis [10], Gould [8] and Schäfke [13].

On the other hand, this also leads to treat set-theoretical aspects of inte-
gration with respect to finitely additive measures μ on semirings 
 of sets
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(abbreviated μ | 
). Always, proper Riemann- [6], abstract Riemann- [9] and
Dunford-Schwartz [7] μ-integration are subsumed by L . This abstract measure
theory is developed by proving Fubini theorems for finitely additive measures
[2] and an approximate functional Radon-Nikodym theorem [1].

An important source of information on finitely additive measures is the
paper by W.A. Luxemburg [11], which gives an extensive bibliography and
treatment of the subject that may be useful in applications.

Since the cornerstone of our approach to integration is the concept of a
localized integral, it seem interesting to discuss new characterizations of the
abstract space of integrable functions L given in [6].Thus, one obtains L via
one of the three classical methods: certain limits of elementary functions, the
closure of B with respect to an L -type seminorm; and, in this paper, via
equality and finiteness of the localized upper and lower integrals (Theorem
8) and improper integrable functions (Theorem 13).

We recall that the set of the integrable functions L coincides with L 1 in the
classical case. Always B (summable in [5]) and R1(B, I ) (abstract-Riemann
integrable functions in [6]) are contained in L .

For an upper functional in the sense of Anger and Portenier [3], essential
integration gives new characterizations of abstract Riemann integration with
respect to I | B . Then, we have in mind future applications to Riesz repre-
sentation theorems (see [1] and [2]), regularity and Radon integrals. Such as
we mentioned before, we already have incorporated to this abstract integration
theory Fubini and Radon-Nikodym thorems, which are not treated in [6].

2. General framework. Preliminaires.

Notations and conventions used are similar to that of [5] and [6], and will
be explained it whenever be necessary in order to mke the paper self-contained.

We extend the usual + in R to R: = R ∪ {−∞, ∞} by a + b: = 0,
a+̇b: = ∞ if a = −b ∈ {−∞, ∞}; a − b: = a + (−b), etc.. With
a ∨ b: = max(a, b), a ∧ b: = min(a, b), a ∩ b: = (a ∧ b) ∨ (−b) if b ≥ 0,
a+: = a ∨ 0, a−: = (−a)+, one has for a, b, c, d, e ∈ R, s, t ∈ R+: = [0,∞],
the inequalities

(1)

|a ∩ t − b ∩ t | ≤ 2(|a − b| ∧ t)

|(a + b) − (c + d)| ≤ |a − c| + |b − d|
||a| − |b|| ≤ |a − b| ≤ |a − c| + |c − d| , a ≤ b+̇(a − b)

(Aumann [4, *b), *c)]); +, +̇, +· are conmutative, + distributive with
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0(±∞): = 0, but not asociative; +̇ is associative and the above inequalities
hold for +̇.

On the set R
X of functions f : X → R, we define =, ±, +̇, ∧, ∨, ∪, · α,

|•| ,≤, pointwise on X . Given M ⊂ R
X

, +M : = { f ∈ M; f ≥ 0} and
for an arbitrary functional q on R

X
, q∗ denotes the functional defined on R

X

by q∗( f ): = −q(− f ).
In all that follows, B will be a function vector lattice (or Riesz space)

⊂ R
X and I : B → R, a linear functional with I (h) ≥ 0 for h ∈ +B .
For such I | B context, we need the following results of [5] and [6], in

somewhat modified notation:

(2)

Bτ : = sup{M; ∅ �= M ⊂ B}
I+( f ): = sup{I (h); h ∈ B, h ≤ f }, for f ∈ R

X , with sup ∅: = −∞
Bτ : = {g ∈ Bτ ; I+( f + g) = I+( f ) + I+(g), for all f ∈ Bτ }
I ( f ): = inf {I +(g); f ≤ g ∈ Bτ }, I ( f ): = (I )∗( f ), for f ∈ R

X

The elements of

B: = { f ∈ R
X ; I ( f ) = I ( f ) ∈ R}

are called I -summable functions.

Bτ and Bτ are + and ∨-closed, Bτ is also ∧-closed. I is -subadditive on
R

X
, I and I+ are +R 0-homogeneous and monotone on R

X
.

B(τ ) denotes { f ∈ Bτ ; I+( f ) < +∞}. B(τ ) is ∧-closed and B ⊂
B(τ ) ∪ (−B(τ )) ⊂ B . If f ∈ Bτ , then I+( f ) = I ( f ) = I ( f ).

(3) B is closed under +, +̇,∧,∨, ·α, |•|; B is the closure of B in R
X

with
respect to the integral seminorm I , I | B is the unique I -continuous
extension of I | B to B and is “linear” on B ([5], [6]).

(4) Using the corresponding definitions, the following result holds: f ∈ B
iff for any ε > 0 there exist h, g ∈ Bτ such that −h ≤ f ≤ g and
I+(g) + I+(h) < ε.

3. Local integrals.

In [7] an abstract integration theory is developed for general integral
metrics.

A functional q: +R
X → R is called an integral metric if q(0) = 0 and

q( f ) ≤ q(g) + q(h) if f ≤ g + h, f, g, h ∈ +R
X

.
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(5) For any T : R
X → R we define the localization

TB( f ): = sup{T ( f ∧ h); h ∈ +B}
for all f ∈ R

X
.

This is a simplified version of Schäfke’s definition [13, p.120]. If T = q =
integral metric, qB is also an integral metric. In al the following, we assume
q = I integral metric on +R

X
. From above definitions, one gets

(I B)∗( f ): = −(I B)(− f ) = inf {I ( f ∨ (−h)); h ∈ +B}.
We have (I B)∗ ≤ I B ≤ I on R

X
and I B( f ) < +∞. Moreover, if I ( f ) <

+∞, then I B( f ) = I ( f ). Simple consequences of the definitions are

I+ ≤ I B ≤ I =: I ∗ ≤ (I B)∗ ≤ I ≤ (I+)∗.

DEFINITION 1. The set L : = L(B, I ) of I -integrable functions is defined
as the clousure of B in R

X
with respect to the integralmetric I B(|•|).

(6) As in the proof of Theorem 1.5 of Schäfke [13], one shows that L(B, I ) =
set of all those f ∈ R

X
for which there exists an I -Cauchy sequence

(hi) ⊂ B such that hi → f (I ), i.e., I (| f − hi | ∧ h) → 0 for each fixed
h ∈ +B . Then J ( f ): = lim I (hi), and (hi) is called a defining sequence
for f (see [6, Sec.2]).

One gets B ⊂ L(B, I ) and I ( f ) = J ( f ) for any f ∈ B . Also, L is
closed with respect to +, +̇,∧,∨, ·α, |•| and J is linear and monotone on L .

In [6], covergence theorems for L(B, I ) are given in an analogous form to
the classical ones, and various descriptions of the set L have been treated.

Additionaly, we can obtain the following:
1. If f ∈ L(B, I ), I +( f ) ≤ I ( f ) = J ( f )

2. L(B, I ) = B∗+ − B∗+ , where

B∗
+: = { f ∈ +R

X ; f ∧ h ∈ B, ∀h ∈ B, I ( f ) < +∞}.
(7) We summarize applications given in [6, Sec.5], in the situation μ | 
: 


is a semiring of sets from X , and μ: 
 → [0,+∞[ is a finititely
additive measure on 
, B = B
: = real valuedstep functions over 
 and
I = Iμ: = ∫ •dμ are admissible.
Then,

R1
prop(μ, R) (proper Riemann μ-integrable functions in [6]) ⊂
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L(X,
, μ, R) (Dunford-Schwartz integrable functions in [8]) ⊂
R1(μ, R) (abstract Riemann μ-integrable functions in [9]) ⊂ L(B
, Iμ),

with coinciding integrals; all inclusions are strict.
If 
 is a δ-ring and μ is σ -additive, then

R1(μ, R) = L1(μ, R) (Lebesgue integrable functions modulo nullfunctions

in [7]) ⊂ L(B
, Iμ);
and fn → f μ-almost everywhere implies fn → f (I−

μ ) for μ-measurable
( fn) .

For X = open sets ⊂ R
n,
 = intervals, μ =Lebesgue measure on

X . B = C0(R
n, R) = continuous real valued functions on 
 with compact

support, and I : X → 
 =the classical Riemann integral on B , one has
B = L = L1.

The following basic properties, which will be useful in our subsequent
studies, are new here. The inequality needed here reads: if a, b ∈ R, c ∈ R,
a ≥ b, a ≥ 0, then (b + c) ∧ a = c ∧ (a − b) + b.

LEMMA 2. If f, k ∈ R
X

, h ∈ B such that I B(k) < +∞ and k ≤ f + h,
then I B(k) ≤ I B( f ) + I (h).

Proof. For every ε > 0 there exists tε ∈ +B such that I B(k) − ε <

I (k ∧ tε). Set tε ≥ h, now with tε − h ∈ +B and k ≤ f + h, we have

k ∧ tε ≤ ( f + h) ∧ tε = f ∧ (tε − h) + h.

Therefore, I B(k) − ε < I (k ∧ tε) ≤ I ( f ∧ (tε − h)) + I (h) ≤ I B( f ) + I (h)

for all ε > 0, and the result follows. �

(8) Note that if f ∈ L(B, I ), then I B( f ) < +∞.

In fact, one has f ≤ |hn|+ | f − hn| where (hn) is a defining sequence for
f ; by (3) and since I B is +-subadditive on +R

X , the result follows.
The above lemma will be generalized in Proposition 4.

LEMMA 3. If f ∈ L(B, I ), then J ( f ) = I ( f ) = (I )∗( f ) ∈ R.

Proof. By definition 1, given ε > 0, there exist n0 ∈ N and hn ∈ B such
that I B (| f − fn|) < ε, if n ≥ n0.
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We have f ≤ hn + | f − hn| =: g, with g ∈ L(B, I ) and I B( f ) < +∞.
Now, with lemma 2, one gets

I B( f ) ≤ I (hn) + I B(| f − hn|) < I (hn) + ε.

Furthermore, since f − hn ≥ − | f − hn|, lemma 2 yields

I B(− | f − hn|) ≤ I B( f − hn) ≤ I B( f ) − I (hn).

Besides,

(I B)∗(| f − hn|): = −I B(− | f − hn|) ≤ I B(| f − hn|) < ε,

so that

−ε < I B(− | f − hn|) < I B( f ) − I (hn), if n ≥ n0.

Thus,

J ( f ): = lim I (hn) = I B( f ) ∈ R.

Finally,

(I B)∗( f ): = −(I B)(− f ) = −J (− f ) = J ( f ). �

Note that the inequality ( f + g) ∧ h ≤ f ∧ h + g ∧ h is always valid for
f, g ∈ +R

X
; so, I B is subadditive on +R

X
, i.e., an integral metric.

For arbitrary functions f ∈ R
X
, the following additional properties of I B ,

extending those in Lemma 2, can be given.

PROPOSITION 4. For a given function f ∈ R
X

,

1. If h ∈ B, we have I B( f + h) ≤ I B( f ) + I (h).

2. If I B( f ) < +∞ and g ∈ L(B, I ), we have I B( f +̇g) ≤ I B( f ) + I B(g).

Proof: 1. It is clear that if I B( f + h) = +∞ (so, I B( f ) = +∞) or
= −∞, then I B( f + h) ≤ I B( f ) + I (h).

Now, suppose that I B( f + h) < +∞. For an arbitrary ε > 0, there exists
k ∈ +B, k ≥ h, such that

I B( f + h) − ε < I (( f + h) ∧ k) = I ( f ∧ (k − h) + h) ≤
I ( f ∧ (k − h)) + I (h) ≤ I B( f ) + I (h),

so that

I B( f + h) ≤ I B( f ) + I (h).



LOCAL AND IMPROPER DANIELL-LOOMIS INTEGRALS 335

2. For g ∈ L(B, I ), there exists hn ∈ B such that I B (|g − hn|) → 0.

Now, IB (g − hn) < +∞, IB(gn) < +∞, by 1. and remark below,∣∣I (g) − I (hn)
∣∣ ≤ I (|g − hn|) → 0,

so I (hn) → I (g).

Since | f + hn| ≤ | f + g| + |g − hn| and I B is subadditive on R
X
, we

have

I B( f + hn) ≤ I B( f + g) + ε,

and with | f + g| ≤ | f + hn| + |hn − g| ,
I B( f + g) ≤ I B( f + hn) + ε,

the result follows. �

Observe that, with I B( f ) < +∞ and the above reasoning in 1., one gets
I B( f ) ≤ I B( f + h) − I (h), so that,

I B( f + h) = I B( f ) + I (h).

The proof follows the same arguments of lemma 2 and those of remark (8).

DEFINITION 5. (Stone) A function f ∈ R
X

is called I -measurable if
f ∩ h ∈ L(B, I ) for all h ∈ +B. Obviously, B ⊂ L ⊂ M∩: = { f ∈ R

X ; f
I -measurable}.

In [7], the following results are given:

1. f is I -measurable and | f | ≤ some I -integrable g, implies f is I -
integrable.

2. f ∈ M∩ iff f ± ∈ M∩.

The concept of -measurability enable to give, with [6, th.3], the following
Integrability Criterion:

(9) f ∈ L(B, I ) iff f is I -measurable and I B(| f |) < +∞.

(Note that I is aditive on B , so B-semiadditive.)

PROPOSITION 6. If f ∈ +R
X

is I -measurable with I ( f ) ∈ R, then there
exist (gn) ⊂ +B, gn ≤ gn+1 ≤ f , I -Cauchy and gn → f (I ).

Proof. By (2), there exist g and (gn) in −B(τ ) ⊂ B , gn ≤ gn+1 ≤ g ≤ f ,
I (gn) → sup I (g) = I ( f ) ∈ R.
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Then, I (|gn − gm|) = I (gn) − I (gm) < ε, if n ≥ m ≥ n0(ε), so (gn) is
I -Cauchy.

Now, if not gn → f (I ), by (6), there exist h0 ∈ +B , δ0 > 0, nk ↗ +∞,
such that I (( f − gnk ) ∧ h0) ≥ δ0, k ∈ N.

We have ( f − gnk ) ∧ h0 ∈ B , so there exists lk ∈ B such that ( f − gnk ) ∧
h0 ≥ lk ≥ 0 and I (lk) ≥ δ0

2
.

Then, I (gnk ) + I (lk) ≤ I ( f ), but I (gnk ) → I ( f ), which implies

contradiction with I (lk) ≥ δ0

2
> 0, k ∈ �

LEMMA 7. If f ∈ R
X

is such that (I B)∗( f ) = I B( f ) ∈ R, then f ± and
f are I -measurable.

Proof. Let h0 ∈ +B . For a given ε > 0, there exists h1 ∈ +B such that,
with h1 ≥ h0, I B( f ) − ε < I ( f ∧ h1) ≤ I B( f ).

Now, for h1 ∈ +B, there exists h2 ∈ B(+) such that f ∧ h1 ≤ h2 and
I (h2) < I ( f ∧ h1) + ε ≤ I B ( f ) + ε; one can assume h2 ≤ h1 since
B ⊂ B(+) ⊂ B and B(+) is ∧-closed. Then∣∣I (h2) − I B( f )

∣∣ < ε (1)

For h0, h1, there exists −k1 ∈ +B, k1 ≤ − (h0 ∨ h1 ∨ |h2|), such that(
I B
)
∗ ( f ) ≤ I ( f ∨ k1) < I B ( f ) + ε.

Now, for k1, there exists k2 ∈ −B(+) ⊂ B, k2 ≤ f ∨ k1, with k1 ≤ h2, such
that I (k2) > I ( f ∨ k1) − ε. Then∣∣I (k2) − (I B

)
∗ ( f )
∣∣ < ε

(
2
)

Finally, for h1, k1, k2 ∈ B , there exists h3 ∈ B , h3 ≥ h1 ∨ k1 ∨ k2, such that

I B( f ) − ε < I ( f ∧ h3) ≤ I B( f ),

and for h3, there exists h4 ∈ B(+) such that f ∧ h3 ≤ h4 ≤ h3 and

I B( f ) − ε < I ( f ∧ h3) ≤ I (h4) < I ( f ∧ h3) + ε < I B( f ) + ε,

so that ∣∣I (h4) − I B( f )
∣∣ < ε (3)

One gets

|h4 − k2| ≤ h4 − k2 + 2ρ, with ρ: = h4 ∨ k2 − h4 (4)

and
f + ρ ≤ f ∨ k1 (5)
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By lemma 2, I B applied to (5), with
(
2
)
, yields to(

I B
)
∗ ( f ) + I (ρ) ≤ (I B

)
∗ ( f + ρ)

≤ (I B
)
∗ ( f ∨ k1) ≤ I ( f ∨ k1) ≤ (I B

)
∗ ( f ) + ε;

hence,

0 ≤ I (ρ) < ε. (6)

Moreover, one verifies by checking cases,∣∣h+
4 ∩ h0 − f + ∩ h0

∣∣ ≤ |h4 − h2| . (7)

Next, let l: = h+
4 ∩ h0 ∈ B(+) ⊂ B ; and with

(
4
)
,
(
7
)
,
(
6
)
,
(
2
)

and
(
3
)
, one

gets Therefore, since B is I -dense in B, we conclude that f + ∩ h0 ∈ B , for
all h0 ∈ +B, hence f + is I -measurable.

For f − it is enough to consider that f −: = (− f )+, and the previous
facts for positive functions. Since, for an arbitrary function f we have
f ∩ h0 = f + ∧ h0 − f − ∧ h0 ∈ B, for all h0 ∈ +B, the I -measurability
of f follows. �

The integrability criterion (6), together Lemma 7, allows to us to show
the following characterization of I -integrable functions (the upper and lower
localized integrals are equal and finite).

THEOREM 8. A function f ∈ R
X

is I -integrable iff (I B)∗( f )= I B( f )∈R.

Proof. Lemma 3 gives the sufficiency. To prove the necessity, with (6) and
Lemma 7, we only have to prove that I B(| f |) < +∞.

For 0 ≤ h ≤ l ∈ B , one has, with f + ∧ l, f + ∧ h ∈ B ⊂ L ,

f ∧ l = f ∧ h + ( f + ∧ l − f + ∧ h). (1)

First, we claim that I B( f ±) < +∞. If I B( f ) < +∞, for a given ε > 0,
there exists hε ∈ +B such that I B( f ) − I ( f ∧ hε) < ε.

Let h: = hε , 0 ≤ hε ≤ l , then

I ( f ∧ hε) ≤ I ( f ∧ l) ≤ I B( f ).

Next, I applied to
(
1
)

gives

I ( f ∧ l) = I ( f ∧ hε) + I ( f + ∧ l) − I ( f + ∧ hε) ≤ I B( f ),

so that,

I ( f + ∧ l) < I ( f + ∧ hε) + ε < +∞
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for all l ≥ hε , hence I B( f +) < +∞, so f + ∈ L(B, I ).

Because analogously f − ∈ L(B, I ), we have

I B(| f |) ≤ I B( f +) + I B( f −) < +∞,

and therefore f ∈ L(B, I ). �

For any f ∈ R
X , the lower and upper Darboux integrals are defined as in

[6, Def.4]:
J∗( f ): = sup{J (g); g ≤ f, g ∈ L(B, I )}

and J ∗( f ): = −J∗(− f ). One check easily that J ∗ is an integral metric on R
X
.

With Theorem 8 and [6, Th.4], I -integrability can be characterized in
its more general form (as in the classical cases), without any measurability
assumptions:

COROLLARY 9. For any f ∈ R
X
, the followig conditions are equivalent:

1. f ∈ L(B, I )

2. (I B)∗( f ) = I B( f ) ∈ R

3. J ∗( f ) = J∗( f ) ∈ R.

In this case, J ( f ) coincides with all the above integrals.

We conclude this section with a more general sufficient condition for I -
integrability, which is directly proved using (4).

PROPOSITION 10. For f ∈ R
X
, if I B( f ) = I B( f ) ∈ R, then f ∈ L(B, I )

and, in this case, J ( f ) = I ( f ).

Proof. Let h0 ∈ +B and ε > 0. By (5),there are (gn) , (hn) ⊂ +B such
that

I B( f ) − ε < I ( f ∧ gn) < I B( f ) + ε

and
I B( f ) − ε < I ( f ∧ hn) < I B( f ) + ε.

One can assume hn = gn and hn ≥ h0 (take hn ∨ gn , hn ∧ h0). By (2),
there are ln, kn ∈ Bτ such that −kn ≤ f ∧ hn ≤ ln and

I+(ln) < I ( f ∧ hn) + ε

2
, I ( f ∧ hn) − ε

2
< −I+(kn).

Then, I+(ln) + I+(kn) → 0, if n → +∞.
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Furthermore, −kn ∧ h0 ≤ f ∧ h0 ≤ ln ∧ h0, if n ≥ n0(ε), with
−(−kn ∧ h0) = kn ∨ (−h0) ∈ Bτ .

This gives, with (4), f ∩ h0 = ( f ∧ h0) ∨ (−h0) ∈ B for all h0 ∈ +B,

so f is I -measurable. By 2. in definition 5, f ± are I -measurable, with
f −: = −( f ∧0) ∈ B . Now, by the proof of the finiteness of I B(| f |) in theorem
8, one gets f ∈ L(B, I ); and, by lemma 3 and (5), J ( f ) = I ( f ). �

Example 13 shows that I B = J on L(B, I ) is false in general. If
additionaly, for f ∈ L(B, I ), there exists h ∈ B with f ≥ h (or equivalently,
I+( f ) > −∞), the converse of Proposition 6 holds; the proof is mostly similar
to those above using our earlier results.

4. Improper integrals.

In the present Section, we discuss improper I -integrability with respect to
I -summable functions and give an I -integrability criterion.

When an integral T on a set M ⊂ R
X

of integrable functions is given, a
function f ∈ R

X
is called improper T -integrable (w.r.t. M ) if f ∩ h ∈ M

for all h ∈ +B = nonnegative elementary functions (e.g., step functions) and
exists lim+B T ( f ∩ h) ∈ R, with +B a set directed by ≤ .

So, for I | B as in Section 1, and with T = I , the class B∩: = { f ∈ R
X ; f

improper integrable} and I ∩: = this limit on B∩, are well defined.

LEMMA 11. We have L(B, I ) ⊂ B∩ and J = I ∩ on L(B, I ).

Proof. With f ∈ L(B, I ), because | f | ∈ L(B, I ), for a given ε > 0,

there exists h ∈ +B such that I B(| f | − h) < ε.

If h ≤ k ∈ +B , one gets

| f ∩ k − f | ≤ | f ∩ h − f | = | f ∩ h − f ∩ | f || ≤ |h − | f || ,
where f ∩ k − f ∈ L(B, I ). Therefore,∣∣I B( f ∩ k) − I B( f )

∣∣ ≤ I B(h − | f |) < ε;
since I = I B on B, we have f ∈ B∩ and J = I B = I ∩ on L(B, I ). �

LEMMA 12. For f ∈ R
X
, f ∈ B∩ if and only if f ± ∈ B∩.

Proof. Let f ∈ B∩. For h ∈ +B , f + ∩ h ∈ B, since B is ∧-closed. Now,
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if there exists lim+B I ( f ∩ h) ∈ R, chose h0 ∈ +B with

I ( f ∩ k) ≤ I ( f ∩ h0) + 1

if h0 ≤ k ∈ +B; since f ∩ h ≤ f ∩ (h + h0) + | f ∩ h0| for h ∈ +B , with
| f ∩ h0| ∈ B , one gets

I ( f ∩h) ≤ I ( f ∩ (h +h0))+ I (| f ∩ h0|) ≤ I ( f ∩h0)+1+ I (| f ∩ h0|) =: α.

For the existence of lim+B I ( f + ∩ h), it is enough to show that

sup{I ( f + ∩ h); h ∈ +B} < +∞.

But, if the above sup is +∞, there exists h ∈ +B such that I ( f +∧h) > α+2.

We have f ∩ k = f + ∧ k − f − ∧ k and f − ∧ k ≤ ∣∣( f + ∧ h) − k
∣∣ since

f + = 0 where f −: = (− f )+ > 0, so that

I ( f + ∧ k) ≤ I ( f ∧ k + ∣∣( f + ∧ h) − k
∣∣) ≤ I ( f ∩ k) + 1 ≤ α + 1.

We conclude

α + 2 < I ( f + ∧ h) ≤ I ( f + ∧ h − f + ∧ k) + I ( f + ∧ k) ≤
I
(

f + ∧ ( f + ∧ k
)− ( f + ∧ k

))+α+1 ≤ I
(∣∣( f + ∧ h) − k

∣∣)+α+1 < α+2,

a contradiction.
Because I is linear on B , which is closed for addition, with f ∩ h =

f + ∩ h − f − ∩ h, we have the “⇐�” implication, and this completes the
proof. �

We recall that [6, Th.1] gives a substitute for the general missing com-
pleteness of L(B, I ):

(10) If ( fn) ⊂ L(B, I ) is a J -Cauchy sequence with fn → f (I ), for f ∈ R
X
,

then f ∈ L(B, I ) and J ( fn) → J ( f ), if n → +∞.

THEOREM 13. For f ∈ R
X
, f ∈ L(B, I ) if and only if f is improper

I -integrable (w.r.t. B) and, in this case, J = I ∩.

Proof. By lemma 11 it is necessary only to prove that B∩ ⊂ L(B, I ).

Now, by lemma 12, if f ∈ B∩, then f ± ∈ B∩. Because L(B, I ) is closed
for addition, we can assume f ∈ +B∩. There exists hn ∈ +B with hn ≤ hn+1

and I ( f ∧ hn) → I ∩( f ) =: α, where f ∧ hn ∈ B .
For any k ∈ +B , one gets

| f − f ∩ hn|∧k = ( f − ( f ∩ hn))∧k = f ∧(k + ( f ∧ hn))−( f ∧ hn) ∈ B.
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If α − ε < I ( f ∧ hn) for all n ≥ n(ε), we have

I (| f − f ∩ hn| ∧ k) ≤ I ( f ∧ (k + ( f ∧ hn))) − I ( f ∧ hn) ≤ α − (α − ε) ;
with gn: = | f − f ∩ hn| ∧ k ∈ B, then I (gn) → 0 and f ∧ hn ∈ B is an
I -Cauchy sequence, and by (7) we obtain that f ∈ L(B, I ). �

Specially, in the situation μ | 
 one can also consider improper integration
with respect to 
-unbounded domains:

(B
)∩: = { f ∈ R
X ; f χA ∈ B
 if A ∈ 
,

(
Iμ
)
∩ ( f ):

= lim
r


I μ( f χA) exists ∈ R},

where r
 is the ring generted by 
.

Example 15. Let X : = [0, 1], 
: = {[a, b[ ; a, b ∈ R} and μ: = Lebesgue
measure. If we consider

f (x):=
⎧⎨⎩− 1√

x
, 0 < x ≤ 1

0, x = 0

we obtain that f ∈ L(B, I ), with J ( f ) = ∫ 1
0 f = 2 and I+( f ) = −∞.

Example 14. Let X := [0,∞[, 
: = {M ⊂ X ; M or X − M is finite
and ⊂ [1,∞[}, and μ: = δ0 = Dirac measure on 0 (so, with E ⊂ [1,∞[ and
finite, we have μ(E) = 0 and μ(X − E) = 1).

In this case:

R1
prop(μ, R)�R1(μ, R)�L1(μ, R)�B = Lτ (B, I ) ⊂ L(B, I )

with B = B
, I = Iμ, and Lτ = Bourbaki extension.

Remarks.

1. If ν: R
X → R is an upper functional in the sense of Anger and Portenier

[3], with the notations and results in [5], the functional q: = ν |+R
X is an

integral metric, B: = J (ν)∩ R
X is a function vector lattice and I : = ν|B is

linear and monotone, where

J (ν): = { f ∈ R
X ; ν( f ) = ν∗( f ) ∈ R}

and ν = I is admissible, then J (ν) = B.
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2. [3, Cor.3.7] and our Theorem 1 give that the class J (ν•) of the essential
ν-integrable functions coincides with B∩, where

ν•( f ): = inf u∈J− sup
v∈J−

ν [( f ∧ (−v)) ∨ u]

and
J−: = J (ν) ∩ ]−∞,+∞]X.
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