LOCAL AND IMPROPER DANIELL-LOOMIS INTEGRALS

E. DE AMO - M. DÍAZ CARRILLO

Abstract

In this paper we start from previous results obtained in [7] on the abstract space of Daniell-Loomis integrable functions L, which is constructed like to the Daniell extension process, but without continuity assumptions on the elementary integral.

The localized integral is used to prove that L consists of those functions whose local upper and lower integrals are equal and finite, or that L is closed with respect to improper integration.

Our results are also holded in integration with respect to finitely additive measures.

1. Introduction.

The Daniell-Bourbaki integral extension has been generalized with the integral $\bar{I}: \bar{B} \rightarrow \mathbb{R}$, introduced in [5], starting with any nonnegative linear functional I on a vector lattice B of real-valued functions on X. In [6] an abstract space of integrable functions L is constructed similar to the Daniell L^{1}, using an appropriate local convergence in measure, which is very useful to obtain convergence theorems in a form analogous to the classical ones, but contrary to that L^{1} case, no continuity conditions on the starting elementary integral $I \mid B$, e.g. of Daniell type or "starke" integral norm of [13], are needed. It allows to discuss an unified functional analytic approach to integration, in an abstract Riemann spirit; which subsume previous results obtained by Aumann [4], Loomis [10], Gould [8] and Schäfke [13].

On the other hand, this also leads to treat set-theoretical aspects of integration with respect to finitely additive measures μ on semirings Ω of sets

[^0](abbreviated $\mu \mid \Omega$). Always, proper Riemann- [6], abstract Riemann- [9] and Dunford-Schwartz [7] μ-integration are subsumed by L. This abstract measure theory is developed by proving Fubini theorems for finitely additive measures [2] and an approximate functional Radon-Nikodym theorem [1].

An important source of information on finitely additive measures is the paper by W.A. Luxemburg [11], which gives an extensive bibliography and treatment of the subject that may be useful in applications.

Since the cornerstone of our approach to integration is the concept of a localized integral, it seem interesting to discuss new characterizations of the abstract space of integrable functions L given in [6].Thus, one obtains L via one of the three classical methods: certain limits of elementary functions, the closure of B with respect to an L-type seminorm; and, in this paper, via equality and finiteness of the localized upper and lower integrals (Theorem 8) and improper integrable functions (Theorem 13).

We recall that the set of the integrable functions L coincides with L^{1} in the classical case. Always \bar{B} (summable in [5]) and $R_{1}(B, I)$ (abstract-Riemann integrable functions in [6]) are contained in L.

For an upper functional in the sense of Anger and Portenier [3], essential integration gives new characterizations of abstract Riemann integration with respect to $I \mid B$. Then, we have in mind future applications to Riesz representation theorems (see [1] and [2]), regularity and Radon integrals. Such as we mentioned before, we already have incorporated to this abstract integration theory Fubini and Radon-Nikodym thorems, which are not treated in [6].

2. General framework. Preliminaires.

Notations and conventions used are similar to that of [5] and [6], and will be explained it whenever be necessary in order to mke the paper self-contained.

We extend the usual + in \mathbb{R} to $\overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty, \infty\}$ by $a+b:=0$, $a \dot{+} b:=\infty$ if $a=-b \in\{-\infty, \infty\} ; a-b:=a+(-b)$, etc.. With $a \vee b:=\max (a, b), a \wedge b:=\min (a, b), a \cap b:=(a \wedge b) \vee(-b)$ if $b \geq 0$, $a^{+}:=a \vee 0, a^{-}:=(-a)^{+}$, one has for $a, b, c, d, e \in \overline{\mathbb{R}}, s, t \in \overline{\mathbb{R}}_{+}:=[0, \infty]$, the inequalities

$$
\begin{align*}
& |a \cap t-b \cap t| \leq 2(|a-b| \wedge t) \\
& |(a+b)-(c+d)| \leq|a-c|+|b-d| \tag{1}\\
& ||a|-|b|| \leq|a-b| \leq|a-c|+|c-d|, \quad a \leq b \dot{+}(a-b)
\end{align*}
$$

(Aumann [4, *b), *c)]); $+\dot{+},+$ are conmutative, + distributive with
$0(\pm \infty):=0$, but not asociative; $\dot{+}$ is associative and the above inequalities hold for $\dot{+}$.

On the set $\overline{\mathbb{R}}^{X}$ of functions $f: X \rightarrow \overline{\mathbb{R}}$, we define $=, \pm, \dot{+}, \wedge, \vee, \cup, \cdot \alpha$, $|\bullet|, \leq$, pointwise on X. Given $M \subset \overline{\mathbb{R}}^{X},+M:=\{f \in M ; \quad f \geq 0\}$ and for an arbitrary functional q on $\overline{\mathbb{R}}^{X}, q_{*}$ denotes the functional defined on $\overline{\mathbb{R}}^{X}$ by $q_{*}(f):=-q(-f)$.

In all that follows, B will be a function vector lattice (or Riesz space) $\subset \mathbb{R}^{X}$ and $I: B \rightarrow \mathbb{R}$, a linear functional with $I(h) \geq 0$ for $h \in+B$.

For such $I \mid B$ context, we need the following results of [5] and [6], in somewhat modified notation:

$$
B^{\tau}:=\sup \{M ; \emptyset \neq M \subset B\}
$$

$$
\begin{align*}
& I^{+}(f):=\sup \{I(h) ; h \in B, h \leq f\}, \text { for } f \in \overline{\mathbb{R}}^{X}, \text { with } \sup \emptyset:=-\infty \\
& B_{\tau}:=\left\{g \in B^{\tau} ; I^{+}(f+g)=I^{+}(f)+I^{+}(g), \text { for all } f \in B^{\tau}\right\} \tag{2}\\
& \bar{I}(f):=\inf \left\{I^{+}(g) ; f \leq g \in B_{\tau}\right\}, \quad \underline{I}(f):=(\bar{I})_{*}(f), \text { for } f \in \overline{\mathbb{R}}^{X}
\end{align*}
$$

The elements of

$$
\bar{B}:=\left\{f \in \overline{\mathbb{R}}^{X} ; \bar{I}(f)=\underline{I}(f) \in \mathbb{R}\right\}
$$

are called I-summable functions.
B^{τ} and B_{τ} are + and \vee-closed, B_{τ} is also \wedge-closed. \bar{I} is -subadditive on $\overline{\mathbb{R}}^{X}, \bar{I}$ and I^{+}are $+\mathbb{R}_{0}$-homogeneous and monotone on $\overline{\mathbb{R}}^{X}$.
$B_{(\tau)}$ denotes $\left\{f \in B_{\tau} ; I^{+}(f)<+\infty\right\} . B_{(\tau)}$ is \wedge-closed and $B \subset$ $B_{(\tau)} \cup\left(-B_{(\tau)}\right) \subset \bar{B}$. If $f \in B_{\tau}$, then $I^{+}(f)=\bar{I}(f)=\underline{I}(f)$.
(3) \bar{B} is closed under $+, \dot{+}, \wedge, \vee, \cdot \alpha,|\bullet| ; \bar{B}$ is the closure of B in $\overline{\mathbb{R}}^{X}$ with respect to the integral seminorm $\bar{I}, \bar{I} \mid \bar{B}$ is the unique \bar{I}-continuous extension of $I \mid B$ to \bar{B} and is "linear" on \bar{B} ([5], [6]).
(4) Using the corresponding definitions, the following result holds: $f \in \bar{B}$ iff for any $\varepsilon>0$ there exist $h, g \in B_{\tau}$ such that $-h \leq f \leq g$ and $I^{+}(g)+I^{+}(h)<\varepsilon$.

3. Local integrals.

In [7] an abstract integration theory is developed for general integral metrics.

A functional $q:+\overline{\mathbb{R}}^{X} \rightarrow \overline{\mathbb{R}}$ is called an integral metric if $q(0)=0$ and $q(f) \leq q(g)+q(h)$ if $f \leq g+h, f, g, h \in+\overline{\mathbb{R}}^{X}$.
(5) For any $T: \overline{\mathbb{R}}^{X} \rightarrow \overline{\mathbb{R}}$ we define the localization

$$
T_{B}(f):=\sup \{T(f \wedge h) ; h \in+B\}
$$

for all $f \in \overline{\mathbb{R}}^{X}$.
This is a simplified version of Schäfke's definition [13, p.120]. If $T=q=$ integral metric, q_{B} is also an integral metric. In al the following, we assume $q=\bar{I}$ integral metric on $+\overline{\mathbb{R}}^{X}$. From above definitions, one gets

$$
\left(\bar{I}_{B}\right)_{*}(f):=-\left(\bar{I}_{B}\right)(-f)=\inf \{\underline{I}(f \vee(-h)) ; h \in+B\} .
$$

We have $\left(\bar{I}_{B}\right)_{*} \leq \bar{I}_{B} \leq \bar{I}$ on $\overline{\mathbb{R}}^{X}$ and $\bar{I}_{B}(f)<+\infty$. Moreover, if $\bar{I}(f)<$ $+\infty$, then $\bar{I}_{B}(f)=\bar{I}(f)$. Simple consequences of the definitions are

$$
I^{+} \leq \underline{I}_{B} \leq \underline{I}=: \bar{I}_{*} \leq\left(\bar{I}_{B}\right)_{*} \leq \bar{I} \leq\left(I^{+}\right)_{*} .
$$

DEFINITION 1. The set $L:=L(B, I)$ of I-integrable functions is defined as the clousure of B in $\overline{\mathbb{R}}^{X}$ with respect to the integralmetric $\bar{I}_{B}(|\bullet|)$.
(6) As in the proof of Theorem 1.5 of Schäfke [13], one shows that $L(B, I)=$ set of all those $f \in \overline{\mathbb{R}}^{X}$ for which there exists an \bar{I}-Cauchy sequence $\left(h_{i}\right) \subset B$ such that $h_{i} \rightarrow f(\bar{I})$, i.e., $\bar{I}\left(\left|f-h_{i}\right| \wedge h\right) \rightarrow 0$ for each fixed $h \in+B$. Then $J(f):=\lim I\left(h_{i}\right)$, and $\left(h_{i}\right)$ is called a defining sequence for f (see [6, Sec.2]).

One gets $\bar{B} \subset \bar{L}(B, I)$ and $\bar{I}(f)=J(f)$ for any $f \in \bar{B}$. Also, L is closed with respect to $+, \dot{+}, \wedge, \vee, \cdot \alpha,|\bullet|$ and J is linear and monotone on L.

In [6], covergence theorems for $L(B, I)$ are given in an analogous form to the classical ones, and various descriptions of the set L have been treated.

Additionaly, we can obtain the following:

1. If $f \in L(B, I), I^{+}(f) \leq \underline{I}(f)=J(f)$
2. $L(B, I)=B_{+}^{*}-B_{+}^{*}$, where

$$
B_{+}^{*}:=\left\{f \in+\overline{\mathbb{R}}^{X} ; f \wedge h \in B, \forall h \in B, \underline{I}(f)<+\infty\right\} .
$$

(7) We summarize applications given in [6, Sec.5], in the situation $\mu \mid \Omega: \Omega$ is a semiring of sets from X, and $\mu: \Omega \rightarrow[0,+\infty[$ is a finititely additive measure on $\Omega, B=B_{\Omega}$: = real valuedstep functions over Ω and $I=I_{\mu}:=\int \bullet d \mu$ are admissible.
Then,

$$
R_{\text {prop }}^{1}(\mu, \mathbb{R})(\text { proper Riemann } \mu \text {-integrable functions in }[6]) \subset
$$

$$
\begin{aligned}
& \quad L(X, \Omega, \mu, \mathbb{R})(\text { Dunford-Schwartz integrable functions in }[8]) \subset \\
& R_{1}(\mu, \overline{\mathbb{R}})(\text { abstract Riemann } \mu \text {-integrable functions in }[9]) \subset L\left(B_{\Omega}, I_{\mu}\right), \\
& \text { with coinciding integrals; all inclusions are strict. } \\
& \text { If } \Omega \text { is a } \delta \text {-ring and } \mu \text { is } \sigma \text {-additive, then } \\
& R_{1}(\mu, \overline{\mathbb{R}})=L^{1}(\mu, \overline{\mathbb{R}}) \text { (Lebesgue integrable functions modulo nullfunctions } \\
& \text { in }[7]) \subset L\left(B_{\Omega}, I_{\mu}\right) ;
\end{aligned}
$$

and $f_{n} \rightarrow f \mu$-almost everywhere implies $f_{n} \rightarrow f\left(I_{\mu}^{-}\right)$for μ-measurable $\left(f_{n}\right)$.

For $X=$ open sets $\subset \mathbb{R}^{n}, \Omega=$ intervals, $\mu=$ Lebesgue measure on $X . B=C_{0}\left(\mathbb{R}^{n}, \mathbb{R}\right)=$ continuous real valued functions on Ω with compact support, and $I: X \rightarrow \Omega=$ the classical Riemann integral on B, one has $\bar{B}=L=L^{1}$.

The following basic properties, which will be useful in our subsequent studies, are new here. The inequality needed here reads: if $a, b \in \overline{\mathbb{R}}, c \in \overline{\mathbb{R}}$, $a \geq b, a \geq 0$, then $(b+c) \wedge a=c \wedge(a-b)+b$.

LEMMA 2. If $f, k \in \overline{\mathbb{R}}^{X}, h \in B$ such that $\bar{I}_{B}(k)<+\infty$ and $k \leq f+h$, then $\bar{I}_{B}(k) \leq \bar{I}_{B}(f)+I(h)$.

Proof. For every $\varepsilon>0$ there exists $t_{\varepsilon} \in+B$ such that $\bar{I}_{B}(k)-\varepsilon<$ $\bar{I}\left(k \wedge t_{\varepsilon}\right)$. Set $t_{\varepsilon} \geq h$, now with $t_{\varepsilon}-h \in+B$ and $k \leq f+h$, we have

$$
k \wedge t_{\varepsilon} \leq(f+h) \wedge t_{\varepsilon}=f \wedge\left(t_{\varepsilon}-h\right)+h
$$

Therefore, $\bar{I}_{B}(k)-\varepsilon<\bar{I}\left(k \wedge t_{\varepsilon}\right) \leq \bar{I}\left(f \wedge\left(t_{\varepsilon}-h\right)\right)+I(h) \leq \bar{I}_{B}(f)+I(h)$ for all $\varepsilon>0$, and the result follows.
(8) Note that if $f \in L(B, I)$, then $\bar{I}_{B}(f)<+\infty$.

In fact, one has $f \leq\left|h_{n}\right|+\left|f-h_{n}\right|$ where $\left(h_{n}\right)$ is a defining sequence for f; by (3) and since \bar{I}_{B} is + -subadditive on $+\overline{\mathbb{R}}^{X}$, the result follows.

The above lemma will be generalized in Proposition 4.
LEmmA 3. If $f \in L(B, I)$, then $J(f)=\bar{I}(f)=(\underline{I})_{*}(f) \in \mathbb{R}$.
Proof. By definition 1, given $\varepsilon>0$, there exist $n_{0} \in \mathbb{N}$ and $h_{n} \in B$ such that $\bar{I}_{B}\left(\left|f-f_{n}\right|\right)<\varepsilon$, if $n \geq n_{0}$.

We have $f \leq h_{n}+\left|f-h_{n}\right|=: g$, with $g \in L(B, I)$ and $\bar{I}_{B}(f)<+\infty$. Now, with lemma 2, one gets

$$
\bar{I}_{B}(f) \leq I\left(h_{n}\right)+\bar{I}_{B}\left(\left|f-h_{n}\right|\right)<I\left(h_{n}\right)+\varepsilon .
$$

Furthermore, since $f-h_{n} \geq-\left|f-h_{n}\right|$, lemma 2 yields

$$
\bar{I}_{B}\left(-\left|f-h_{n}\right|\right) \leq \bar{I}_{B}\left(f-h_{n}\right) \leq \bar{I}_{B}(f)-I\left(h_{n}\right) .
$$

Besides,

$$
\left(\bar{I}_{B}\right)_{*}\left(\left|f-h_{n}\right|\right):=-\bar{I}_{B}\left(-\left|f-h_{n}\right|\right) \leq \bar{I}_{B}\left(\left|f-h_{n}\right|\right)<\varepsilon,
$$

so that

$$
-\varepsilon<\bar{I}_{B}\left(-\left|f-h_{n}\right|\right)<\bar{I}_{B}(f)-I\left(h_{n}\right), \text { if } n \geq n_{0} .
$$

Thus,

$$
J(f):=\lim I\left(h_{n}\right)=\bar{I}_{B}(f) \in \mathbb{R}
$$

Finally,

$$
\left(\bar{I}_{B}\right)_{*}(f):=-\left(\bar{I}_{B}\right)(-f)=-J(-f)=J(f)
$$

Note that the inequality $(f+g) \wedge h \leq f \wedge h+g \wedge h$ is always valid for $f, g \in+\overline{\mathbb{R}}^{X}$; so, \bar{I}_{B} is subadditive on $+\overline{\mathbb{R}}^{\bar{X}}$, i.e., an integral metric.

For arbitrary functions $f \in \overline{\mathbb{R}}^{X}$, the following additional properties of \bar{I}_{B}, extending those in Lemma 2, can be given.

PROPOSITION 4. For a given function $f \in \overline{\mathbb{R}}^{X}$,

1. If $h \in B$, we have $\bar{I}_{B}(f+h) \leq \bar{I}_{B}(f)+I(h)$.
2. If $\bar{I}_{B}(f)<+\infty$ and $g \in L(B, I)$, we have $\bar{I}_{B}(f \dot{+} g) \leq \bar{I}_{B}(f)+\bar{I}_{B}(g)$.

Proof: 1. It is clear that if $\bar{I}_{B}(f+h)=+\infty\left(\right.$ so, $\left.\bar{I}_{B}(f)=+\infty\right)$ or $=-\infty$, then $\bar{I}_{B}(f+h) \leq \bar{I}_{B}(f)+I(h)$.

Now, suppose that $\bar{I}_{B}(f+h)<+\infty$. For an arbitrary $\varepsilon>0$, there exists $k \in+B, k \geq h$, such that

$$
\begin{gathered}
\bar{I}_{B}(f+h)-\varepsilon<\bar{I}((f+h) \wedge k)=\bar{I}(f \wedge(k-h)+h) \leq \\
\bar{I}(f \wedge(k-h))+I(h) \leq \bar{I}_{B}(f)+I(h),
\end{gathered}
$$

so that

$$
\bar{I}_{B}(f+h) \leq \bar{I}_{B}(f)+I(h) .
$$

2. For $g \in L(B, I)$, there exists $h_{n} \in B$ such that $\bar{I}_{B}\left(\left|g-h_{n}\right|\right) \rightarrow 0$. Now, $I_{B}\left(g-h_{n}\right)<+\infty, I_{B}\left(g_{n}\right)<+\infty$, by 1 . and remark below,

$$
\left|\bar{I}(g)-I\left(h_{n}\right)\right| \leq \bar{I}\left(\left|g-h_{n}\right|\right) \rightarrow 0,
$$

so $I\left(h_{n}\right) \rightarrow \bar{I}(g)$.
Since $\left|f+h_{n}\right| \leq|f+g|+\left|g-h_{n}\right|$ and \bar{I}_{B} is subadditive on $\overline{\mathbb{R}}^{X}$, we have

$$
\bar{I}_{B}\left(f+h_{n}\right) \leq \bar{I}_{B}(f+g)+\varepsilon,
$$

and with $|f+g| \leq\left|f+h_{n}\right|+\left|h_{n}-g\right|$,

$$
\bar{I}_{B}(f+g) \leq \bar{I}_{B}\left(f+h_{n}\right)+\varepsilon,
$$

the result follows.
Observe that, with $\bar{I}_{B}(f)<+\infty$ and the above reasoning in 1., one gets $\bar{I}_{B}(f) \leq \bar{I}_{B}(f+h)-I(h)$, so that,

$$
\bar{I}_{B}(f+h)=\bar{I}_{B}(f)+I(h) .
$$

The proof follows the same arguments of lemma 2 and those of remark (8).
DEFINITION 5. (Stone) A function $f \in \overline{\mathbb{R}}^{X}$ is called I-measurable if $f \cap h \in L(B, I)$ for all $h \in+B$. Obviously, $\bar{B} \subset L \subset M_{\cap}:=\left\{f \in \overline{\mathbb{R}}^{X} ; \quad f\right.$ I-measurable\}.

In [7], the following results are given:

1. f is I-measurable and $|f| \leq$ some I-integrable g, implies f is I integrable.
2. $f \in M_{\cap}$ iff $f^{ \pm} \in M_{\cap}$.

The concept of -measurability enable to give, with [6, th.3], the following Integrability Criterion:
(9) $f \in L(B, I)$ iff f is I-measurable and $\bar{I}_{B}(|f|)<+\infty$. (Note that \bar{I} is aditive on B, so B-semiadditive.)

PRoposition 6. If $f \in+\overline{\mathbb{R}}^{X}$ is I-measurable with $\underline{I}(f) \in \mathbb{R}$, then there exist $\left(g_{n}\right) \subset+\bar{B}, g_{n} \leq g_{n+1} \leq f, I$-Cauchy and $g_{n} \rightarrow f(\bar{I})$.

Proof. By (2), there exist g and $\left(g_{n}\right)$ in $-B_{(\tau)} \subset \bar{B}, g_{n} \leq g_{n+1} \leq g \leq f$, $\bar{I}\left(g_{n}\right) \rightarrow \sup \bar{I}(g)=\underline{I}(f) \in \mathbb{R}$.

Then, $\bar{I}\left(\left|g_{n}-g_{m}\right|\right)=\bar{I}\left(g_{n}\right)-\bar{I}\left(g_{m}\right)<\varepsilon$, if $n \geq m \geq n_{0}(\varepsilon)$, so $\left(g_{n}\right)$ is \bar{I}-Cauchy.

Now, if not $g_{n} \rightarrow f(\bar{I})$, by (6), there exist $h_{0} \in+B, \delta_{0}>0, n_{k} \nearrow+\infty$, such that $\bar{I}\left(\left(f-g_{n_{k}}\right) \wedge h_{0}\right) \geq \delta_{0}, k \in \mathbb{N}$.

We have $\left(f-g_{n_{k}}\right) \wedge h_{0} \in \bar{B}$, so there exists $l_{k} \in \bar{B}$ such that $\left(f-g_{n_{k}}\right) \wedge$ $h_{0} \geq l_{k} \geq 0$ and $\bar{I}\left(l_{k}\right) \geq \frac{\delta_{0}}{2}$.

Then, $\bar{I}\left(g_{n_{k}}\right)+\bar{I}\left(l_{k}\right) \leq \underline{I}(f)$, but $\bar{I}\left(g_{n_{k}}\right) \rightarrow \bar{I}(f)$, which implies contradiction with $\bar{I}\left(l_{k}\right) \geq \frac{\delta_{0}}{2}>0, k \in$

LEmma 7. If $f \in \overline{\mathbb{R}}^{X}$ is such that $\left(\bar{I}_{B}\right)_{*}(f)=\bar{I}_{B}(f) \in \mathbb{R}$, then $f^{ \pm}$and f are I-measurable.

Proof. Let $h_{0} \in+B$. For a given $\varepsilon>0$, there exists $h_{1} \in+B$ such that, with $h_{1} \geq h_{0}, \bar{I}_{B}(f)-\varepsilon<\bar{I}\left(f \wedge h_{1}\right) \leq \bar{I}_{B}(f)$.

Now, for $h_{1} \in+B$, there exists $h_{2} \in B_{(+)}$such that $f \wedge h_{1} \leq h_{2}$ and $I\left(h_{2}\right)<\bar{I}\left(f \wedge h_{1}\right)+\varepsilon \leq \bar{I}_{B}(f)+\varepsilon$; one can assume $h_{2} \leq h_{1}$ since $B \subset B_{(+)} \subset \bar{B}$ and $B_{(+)}$is \wedge-closed. Then

$$
\begin{equation*}
\left|I\left(h_{2}\right)-\bar{I}_{B}(f)\right|<\varepsilon \tag{1}
\end{equation*}
$$

For h_{0}, h_{1}, there exists $-k_{1} \in+B, k_{1} \leq-\left(h_{0} \vee h_{1} \vee\left|h_{2}\right|\right)$, such that

$$
\left(\bar{I}_{B}\right)_{*}(f) \leq \underline{I}\left(f \vee k_{1}\right)<\bar{I}_{B}(f)+\varepsilon .
$$

Now, for k_{1}, there exists $k_{2} \in-B_{(+)} \subset \bar{B}, k_{2} \leq f \vee k_{1}$, with $k_{1} \leq h_{2}$, such that $\underline{I}\left(k_{2}\right)>\underline{I}\left(f \vee k_{1}\right)-\varepsilon$. Then

$$
\begin{equation*}
\left|\underline{I}\left(k_{2}\right)-\left(\bar{I}_{B}\right)_{*}(f)\right|<\varepsilon \tag{2}
\end{equation*}
$$

Finally, for $h_{1}, k_{1}, k_{2} \in \bar{B}$, there exists $h_{3} \in \bar{B}, h_{3} \geq h_{1} \vee k_{1} \vee k_{2}$, such that

$$
\bar{I}_{B}(f)-\varepsilon<\bar{I}\left(f \wedge h_{3}\right) \leq \bar{I}_{B}(f),
$$

and for h_{3}, there exists $h_{4} \in B_{(+)}$such that $f \wedge h_{3} \leq h_{4} \leq h_{3}$ and

$$
\bar{I}_{B}(f)-\varepsilon<\bar{I}\left(f \wedge h_{3}\right) \leq \bar{I}\left(h_{4}\right)<\bar{I}\left(f \wedge h_{3}\right)+\varepsilon<\bar{I}_{B}(f)+\varepsilon,
$$

so that

$$
\begin{equation*}
\left|\bar{I}\left(h_{4}\right)-\bar{I}_{B}(f)\right|<\varepsilon \tag{3}
\end{equation*}
$$

One gets

$$
\begin{equation*}
\left|h_{4}-k_{2}\right| \leq h_{4}-k_{2}+2 \rho \text {, with } \rho:=h_{4} \vee k_{2}-h_{4} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
f+\rho \leq f \vee k_{1} \tag{5}
\end{equation*}
$$

By lemma $2, \bar{I}_{B}$ applied to (5), with (2) , yields to

$$
\begin{aligned}
\left(\bar{I}_{B}\right)_{*}(f)+\bar{I}(\rho) & \leq\left(\bar{I}_{B}\right)_{*}(f+\rho) \\
& \leq\left(\bar{I}_{B}\right)_{*}\left(f \vee k_{1}\right) \leq \underline{I}\left(f \vee k_{1}\right) \leq\left(\bar{I}_{B}\right)_{*}(f)+\varepsilon ;
\end{aligned}
$$

hence,

$$
\begin{equation*}
0 \leq \bar{I}(\rho)<\varepsilon . \tag{6}
\end{equation*}
$$

Moreover, one verifies by checking cases,

$$
\begin{equation*}
\left|h_{4}^{+} \cap h_{0}-f^{+} \cap h_{0}\right| \leq\left|h_{4}-h_{2}\right| . \tag{7}
\end{equation*}
$$

 gets Therefore, since B is \bar{I}-dense in \bar{B}, we conclude that $f^{+} \cap h_{0} \in \bar{B}$, for all $h_{0} \in+B$, hence f^{+}is I-measurable.

For f^{-}it is enough to consider that $f^{-}:=(-f)^{+}$, and the previous facts for positive functions. Since, for an arbitrary function f we have $f \cap h_{0}=f^{+} \wedge h_{0}-f^{-} \wedge h_{0} \in \bar{B}$, for all $h_{0} \in+B$, the I-measurability of f follows.

The integrability criterion (6), together Lemma 7, allows to us to show the following characterization of I-integrable functions (the upper and lower localized integrals are equal and finite).

THEOREM 8. A function $f \in \overline{\mathbb{R}}^{X}$ is I-integrable iff $\left(\bar{I}_{B}\right)_{*}(f)=\bar{I}_{B}(f) \in \mathbb{R}$.
Proof. Lemma 3 gives the sufficiency. To prove the necessity, with (6) and Lemma 7 , we only have to prove that $\bar{I}_{B}(|f|)<+\infty$.

For $0 \leq h \leq l \in B$, one has, with $f^{+} \wedge l, f^{+} \wedge h \in \bar{B} \subset L$,

$$
\begin{equation*}
f \wedge l=f \wedge h+\left(f^{+} \wedge l-f^{+} \wedge h\right) \tag{1}
\end{equation*}
$$

First, we claim that $\bar{I}_{B}\left(f^{ \pm}\right)<+\infty$. If $\bar{I}_{B}(f)<+\infty$, for a given $\varepsilon>0$, there exists $h_{\varepsilon} \in+B$ such that $\bar{I}_{B}(f)-\bar{I}\left(f \wedge h_{\varepsilon}\right)<\varepsilon$.

Let $h:=h_{\varepsilon}, 0 \leq h_{\varepsilon} \leq l$, then

$$
\bar{I}\left(f \wedge h_{\varepsilon}\right) \leq \bar{I}(f \wedge l) \leq \bar{I}_{B}(f) .
$$

Next, \bar{I} applied to (1) gives

$$
\bar{I}(f \wedge l)=\bar{I}\left(f \wedge h_{\varepsilon}\right)+\bar{I}\left(f^{+} \wedge l\right)-\bar{I}\left(f^{+} \wedge h_{\varepsilon}\right) \leq \bar{I}_{B}(f)
$$

so that,

$$
\bar{I}\left(f^{+} \wedge l\right)<\bar{I}\left(f^{+} \wedge h_{\varepsilon}\right)+\varepsilon<+\infty
$$

for all $l \geq h_{\varepsilon}$, hence $\bar{I}_{B}\left(f^{+}\right)<+\infty$, so $f^{+} \in L(B, I)$.
Because analogously $f^{-} \in L(B, I)$, we have

$$
\bar{I}_{B}(|f|) \leq \bar{I}_{B}\left(f^{+}\right)+\bar{I}_{B}\left(f^{-}\right)<+\infty,
$$

and therefore $f \in L(B, I)$.
For any $f \in \overline{\mathbb{R}}^{X}$, the lower and upper Darboux integrals are defined as in [6, Def.4]:

$$
J_{*}(f):=\sup \{J(g) ; g \leq f, g \in L(B, I)\}
$$

and $J^{*}(f):=-J_{*}(-f)$. One check easily that J^{*} is an integral metric on $\overline{\mathbb{R}}^{X}$.
With Theorem 8 and [6, Th.4], I-integrability can be characterized in its more general form (as in the classical cases), without any measurability assumptions:

COROLLARY 9. For any $f \in \overline{\mathbb{R}}^{X}$, the followig conditions are equivalent:

1. $f \in L(B, I)$
2. $\left(\bar{I}_{B}\right)_{*}(f)=\bar{I}_{B}(f) \in \mathbb{R}$
3. $J^{*}(f)=J_{*}(f) \in \mathbb{R}$.

In this case, $J(f)$ coincides with all the above integrals.
We conclude this section with a more general sufficient condition for I integrability, which is directly proved using (4).

Proposition 10. For $f \in \overline{\mathbb{R}}^{X}$, if $\underline{I}_{B}(f)=\bar{I}_{B}(f) \in \mathbb{R}$, then $f \in L(B, I)$ and, in this case, $J(f)=\underline{I}(f)$.

Proof. Let $h_{0} \in+B$ and $\varepsilon>0$. By (5),there are $\left(g_{n}\right),\left(h_{n}\right) \subset+B$ such that

$$
\bar{I}_{B}(f)-\varepsilon<\bar{I}\left(f \wedge g_{n}\right)<\bar{I}_{B}(f)+\varepsilon
$$

and

$$
\underline{I}_{B}(f)-\varepsilon<\underline{I}\left(f \wedge h_{n}\right)<\underline{I}_{B}(f)+\varepsilon .
$$

One can assume $h_{n}=g_{n}$ and $h_{n} \geq h_{0}$ (take $h_{n} \vee g_{n}, h_{n} \wedge h_{0}$). By (2), there are $l_{n}, k_{n} \in B_{\tau}$ such that $-k_{n} \leq f \wedge h_{n} \leq l_{n}$ and

$$
I^{+}\left(l_{n}\right)<\bar{I}\left(f \wedge h_{n}\right)+\frac{\varepsilon}{2}, \quad \underline{I}\left(f \wedge h_{n}\right)-\frac{\varepsilon}{2}<-I^{+}\left(k_{n}\right)
$$

Then, $I^{+}\left(l_{n}\right)+I^{+}\left(k_{n}\right) \rightarrow 0$, if $n \rightarrow+\infty$.

Furthermore, $-k_{n} \wedge h_{0} \leq f \wedge h_{0} \leq l_{n} \wedge h_{0}$, if $n \geq n_{0}(\varepsilon)$, with $-\left(-k_{n} \wedge h_{0}\right)=k_{n} \vee\left(-h_{0}\right) \in B_{\tau}$.

This gives, with (4), $f \cap h_{0}=\left(f \wedge h_{0}\right) \vee\left(-h_{0}\right) \in \bar{B}$ for all $h_{0} \in+B$, so f is I-measurable. By 2 . in definition $5, f^{ \pm}$are I-measurable, with $f^{-}:=-(f \wedge 0) \in \bar{B}$. Now, by the proof of the finiteness of $\bar{I}_{B}(|f|)$ in theorem 8 , one gets $f \in L(B, I)$; and, by lemma 3 and (5), $J(f)=\underline{I}(f)$.

Example 13 shows that $\underline{I}_{B}=J$ on $L(B, I)$ is false in general. If additionaly, for $f \in L(B, I)$, there exists $h \in B$ with $f \geq h$ (or equivalently, $\left.I^{+}(f)>-\infty\right)$, the converse of Proposition 6 holds; the proof is mostly similar to those above using our earlier results.

4. Improper integrals.

In the present Section, we discuss improper I-integrability with respect to I-summable functions and give an I-integrability criterion.

When an integral T on a set $M \subset \overline{\mathbb{R}}^{X}$ of integrable functions is given, a function $f \in \overline{\mathbb{R}}^{X}$ is called improper T-integrable (w.r.t. M) if $f \cap h \in M$ for all $h \in+B=$ nonnegative elementary functions (e.g., step functions) and exists $\lim _{+B} T(f \cap h) \in \mathbb{R}$, with $+B$ a set directed by \leq.

So, for $I \mid B$ as in Section 1, and with $T=\bar{I}$, the class $\bar{B}_{\cap}:=\left\{f \in \overline{\mathbb{R}}^{X} ; f\right.$ improper integrable $\}$ and $\bar{I}_{\cap}:=$ this limit on \bar{B}_{\cap}, are well defined.

Lemma 11. We have $L(B, I) \subset \bar{B}_{\cap}$ and $J=\bar{I}_{\cap}$ on $L(B, I)$.
Proof. With $f \in L(B, I)$, because $|f| \in L(B, I)$, for a given $\varepsilon>0$, there exists $h \in+B$ such that $\bar{I}_{B}(|f|-h)<\varepsilon$.

If $h \leq k \in+B$, one gets

$$
|f \cap k-f| \leq|f \cap h-f|=|f \cap h-f \cap| f| | \leq|h-|f||,
$$

where $f \cap k-f \in L(B, I)$. Therefore,

$$
\left|\bar{I}_{B}(f \cap k)-\bar{I}_{B}(f)\right| \leq \bar{I}_{B}(h-|f|)<\varepsilon ;
$$

since $\bar{I}=\bar{I}_{B}$ on \bar{B}, we have $f \in \bar{B}_{\cap}$ and $J=\bar{I}_{B}=\bar{I}_{\cap}$ on $L(B, I)$.
Lemma 12. For $f \in \overline{\mathbb{R}}^{X}, f \in \bar{B}_{\cap}$ if and only if $f^{ \pm} \in \bar{B}_{\cap}$.
Proof. Let $f \in \bar{B}_{\cap}$. For $h \in+B, f^{+} \cap h \in \bar{B}$, since \bar{B} is \wedge-closed. Now,
if there exists $\lim _{+B} \bar{I}(f \cap h) \in \mathbb{R}$, chose $h_{0} \in+B$ with

$$
\bar{I}(f \cap k) \leq \bar{I}\left(f \cap h_{0}\right)+1
$$

if $h_{0} \leq k \in+B$; since $f \cap h \leq f \cap\left(h+h_{0}\right)+\left|f \cap h_{0}\right|$ for $h \in+B$, with $\left|f \cap h_{0}\right| \in \bar{B}$, one gets
$\bar{I}(f \cap h) \leq \bar{I}\left(f \cap\left(h+h_{0}\right)\right)+\bar{I}\left(\left|f \cap h_{0}\right|\right) \leq \bar{I}\left(f \cap h_{0}\right)+1+\bar{I}\left(\left|f \cap h_{0}\right|\right)=: \alpha$.
For the existence of $\lim _{+B} \bar{I}\left(f^{+} \cap h\right)$, it is enough to show that

$$
\sup \left\{\bar{I}\left(f^{+} \cap h\right) ; h \in+B\right\}<+\infty
$$

But, if the above sup is $+\infty$, there exists $h \in+B$ such that $\bar{I}\left(f^{+} \wedge h\right)>\alpha+2$.
We have $f \cap k=f^{+} \wedge k-f^{-} \wedge k$ and $f^{-} \wedge k \leq\left|\left(f^{+} \wedge h\right)-k\right|$ since $f^{+}=0$ where $f^{-}:=(-f)^{+}>0$, so that

$$
\bar{I}\left(f^{+} \wedge k\right) \leq \bar{I}\left(f \wedge k+\left|\left(f^{+} \wedge h\right)-k\right|\right) \leq \bar{I}(f \cap k)+1 \leq \alpha+1
$$

We conclude

$$
\alpha+2<\bar{I}\left(f^{+} \wedge h\right) \leq \bar{I}\left(f^{+} \wedge h-f^{+} \wedge k\right)+\bar{I}\left(f^{+} \wedge k\right) \leq
$$

$\bar{I}\left(f^{+} \wedge\left(f^{+} \wedge k\right)-\left(f^{+} \wedge k\right)\right)+\alpha+1 \leq \bar{I}\left(\left|\left(f^{+} \wedge h\right)-k\right|\right)+\alpha+1<\alpha+2$, a contradiction.

Because \bar{I} is linear on \bar{B}, which is closed for addition, with $f \cap h=$ $f^{+} \cap h-f^{-} \cap h$, we have the " \Longleftarrow " implication, and this completes the proof.

We recall that [6, Th.1] gives a substitute for the general missing completeness of $L(B, I)$:
(10) If $\left(f_{n}\right) \subset L(B, I)$ is a J-Cauchy sequence with $f_{n} \rightarrow f(\bar{I})$, for $f \in \overline{\mathbb{R}}^{X}$, then $f \in L(B, I)$ and $J\left(f_{n}\right) \rightarrow J(f)$, if $n \rightarrow+\infty$.

THEOREM 13. For $f \in \overline{\mathbb{R}}^{X}, f \in L(B, I)$ if and only if f is improper I-integrable (w.r.t. \bar{B}) and, in this case, $J=\bar{I}_{\cap}$.

Proof. By lemma 11 it is necessary only to prove that $\bar{B}_{\cap} \subset L(B, I)$.
Now, by lemma 12, if $f \in \bar{B}_{\cap}$, then $f^{ \pm} \in \bar{B}_{\cap}$. Because $L(B, I)$ is closed for addition, we can assume $f \in+\bar{B}_{\cap}$. There exists $h_{n} \in+B$ with $h_{n} \leq h_{n+1}$ and $\bar{I}\left(f \wedge h_{n}\right) \rightarrow \bar{I}_{\cap}(f)=: \alpha$, where $f \wedge h_{n} \in \bar{B}$.

For any $k \in+B$, one gets
$\left|f-f \cap h_{n}\right| \wedge k=\left(f-\left(f \cap h_{n}\right)\right) \wedge k=f \wedge\left(k+\left(f \wedge h_{n}\right)\right)-\left(f \wedge h_{n}\right) \in \bar{B}$.

If $\alpha-\varepsilon<\bar{I}\left(f \wedge h_{n}\right)$ for all $n \geq n(\varepsilon)$, we have
$\bar{I}\left(\left|f-f \cap h_{n}\right| \wedge k\right) \leq \bar{I}\left(f \wedge\left(k+\left(f \wedge h_{n}\right)\right)\right)-\bar{I}\left(f \wedge h_{n}\right) \leq \alpha-(\alpha-\varepsilon) ;$
with $g_{n}:=\left|f-f \cap h_{n}\right| \wedge k \in \bar{B}$, then $\bar{I}\left(g_{n}\right) \rightarrow 0$ and $f \wedge h_{n} \in \bar{B}$ is an \bar{I}-Cauchy sequence, and by (7) we obtain that $f \in L(B, I)$.

Specially, in the situation $\mu \mid \Omega$ one can also consider improper integration with respect to Ω-unbounded domains:

$$
\begin{aligned}
\left(\bar{B}_{\Omega}\right)_{\cap}:=\left\{f \in \overline{\mathbb{R}}^{X} ; f \chi_{A} \in \bar{B}_{\Omega} \text { if } A\right. & \in \Omega,\left(I_{\mu}\right)_{\cap}(f): \\
& \left.=\lim _{r \Omega} \bar{I}_{\mu}\left(f \chi_{A}\right) \text { exists } \in \mathbb{R}\right\},
\end{aligned}
$$

where $r \Omega$ is the ring generted by Ω.
Example 15. Let $X:=[0,1], \Omega:=\{[a, b[; a, b \in \mathbb{R}\}$ and $\mu:=$ Lebesgue measure. If we consider

$$
f(x):= \begin{cases}-\frac{1}{\sqrt{x}}, & 0<x \leq 1 \\ 0, & x=0\end{cases}
$$

we obtain that $f \in L(B, I)$, with $J(f)=\int_{0}^{1} f=2$ and $I^{+}(f)=-\infty$.
Example 14. Let $X:=[0, \infty[, \Omega:=\{M \subset X ; M$ or $X-M$ is finite and $\subset\left[1, \infty[\}\right.$, and $\mu:=\delta_{0}=$ Dirac measure on 0 (so, with $E \subset[1, \infty[$ and finite, we have $\mu(E)=0$ and $\mu(X-E)=1)$.

In this case:

$$
R_{\text {prop }}^{1}(\mu, \mathbb{R}) \varsubsetneqq R_{1}(\mu, \overline{\mathbb{R}}) \varsubsetneqq L^{1}(\mu, \overline{\mathbb{R}}) \varsubsetneqq \bar{B}=L^{\tau}(B, I) \subset L(B, I)
$$

with $B=B_{\Omega}, I=I_{\mu}$, and $L^{\tau}=$ Bourbaki extension.

Remarks.

1. If $v: \overline{\mathbb{R}}^{X} \rightarrow \overline{\mathbb{R}}$ is an upper functional in the sense of Anger and Portenier [3], with the notations and results in [5], the functional $q:=v_{1+\overline{\mathbb{R}}^{X}}$ is an integral metric, $B:=J(v) \cap \mathbb{R}^{X}$ is a function vector lattice and $I:=v_{\mid B}$ is linear and monotone, where

$$
J(v):=\left\{f \in \overline{\mathbb{R}}^{X} ; v(f)=v_{*}(f) \in \mathbb{R}\right\}
$$

and $v=\bar{I}$ is admissible, then $J(v)=\bar{B}$.
2. [3, Cor.3.7] and our Theorem 1 give that the class $J\left(v^{\bullet}\right)$ of the essential ν-integrable functions coincides with \bar{B}_{\cap}, where

$$
v^{\bullet}(f):=\inf _{u \in J_{-}} \sup _{v \in J_{-}} v[(f \wedge(-v)) \vee u]
$$

and

$$
\left.\left.J_{-}:=J(v) \cap\right]-\infty,+\infty\right]^{X .}
$$

REFERENCES

[1] E. de Amo, I. Chitescu, M. Díaz Carrillo. An approximate functional Radon-Nikodym theorem, Rend. Circ. Mat. Palermo, 48 (1999), 443-450.
[2] de Amo E., Díaz Carrillo M., On abstract Fubini theorems for finitely additive integration, Proc. Amer. Mat. Soc., 123 (9) (1995), 2739-2744.
[3] Anger B., Portenier C., Radon Integrals, Birkhäuser. Bessel, 1997.
[4] Aumann G., Integralerweiterungen mittels Normen, Arch. Math., 3 (1952), 441-450.
[5] Bobillo Guerrero P., Díaz Carrillo M., Summable and integrable functions with respect to any Loomis system, Arch. Math., 49 (1987), 245-256.
[6] Díaz Carrillo M., Günzler H., Daniell-Loomis integrals, Rocky Mt. J. Math., 27 (4) (1997), 1075-1087.
[7] Dunford N., Schwartz J. T., Linear Operators I, Interscience. New York, 1957.
[8] Gould. G. G., The Daniell-Bourbaki integral for finitely additive measures, Proc. London Math. Soc., 16 (1966), 297-320.
[9] Günzler H., Integration, Bibliogr. Institut. Mannheim, 1985.
[10] Loomis L. H., Linear functionals and content, Amer. J. Math., 7 (1954), 168-182.
[11] Luxemburg W. A. J., Integration with respect to finitely additive measures, Stud. Econ. Theory, 2 (1991), 109-150.
[12] Pfeffer W. F., Integrals and Measure, Dekker. New York, 1977.
[13] Schäfke F. W., Lokale Integralnormen und verallgemeinerte uneigentliche Riemann-Stieltjes-Integrale, J. Reine Angew. Math., 289 (1977), 118-134.

[^1]E. De Amo
Departamento de Álgebra y Análisis Matemático
Universidad de Almeríla
$04120-A l m e r i ́ a ~$
SPAIN
e-mail: edeamo @ual.es
Díaz Carrillo
Departamento de Análisis Matemático
Universidad de Granada
$18071-G r a n a d a$
SPAIN
e-mail: madiaz@ugr.es

[^0]: AMS Subject Classification: 28C05, 26A42.

[^1]: Pervenuto il 1 febbraio 2005.

