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Abstract

This paper is based upon Hutchinson’s theory of generating fractals as fixed points of a finite set of
contractions, when considering this finite set of contractions as a contractive set-valued map.

We approximate the fractal using some preselected parameters and we obtain formulae describing the
“distance” between the “exact fractal” and the “approximate fractal” in terms of the preselected parameters.
Some examples and also computation programs are given, showing how our procedure works.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Notations and preliminary facts

In order to be self-contained, we introduce notations and conventions (see [1,4]).

As usual, R = the reals, R = the positive reals, R% = R\ {0}, N = the naturals. For every
non-empty set X, idy : X — X is the identity of X, defined via idy(a) = a for all a in X.

Considering a function f:X — X, one can define f":X — X for all natural n, namely: f° :=idy
and /"= fo fo---of (ntimes composition) in case 7 is strictly positive. For such f we write
fix(f) to denote the set of fixed points of f, i.e.

fix(f)={x€X|f(x)=x}
(of course, it is possible to have fix(f) = () = the empty set).
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If 4 is a subset of some topological space, 4 = the closure of 4.
In the sequel, (X,d) will be a complete metric space. Write

H(X):={A4]|0#ACX, A compact}.
If x€X and 0 # A C X, the distance between x and 4 (induced by d) will be
d(x,A4) := inf{d(x,a) |a € A}
and, of course, in case 4 = {y}, one has d(x,4) = d(x,y). One has d(x,4) = 0 if and only if
x€A and, in case 4 € A (X), for every x in X, there exists @ in A4 (depending upon x) such that
d(x,A)=d(x,a).
Now, let us consider ) # 4 C X and r € R*. The open set
B(4,r) = {xeX|d(x,A) <r}

is called the open ball centered at A of radius r (induced by d). Of course, in case 4 = {»v},
B(A,r) =: B(y,r) = the usual open ball centered at y of radius r. Similarly, the closed set

B[A,r] = {xeX |d(x,4) <r}

called the closed ball centered at A of radius r, generalizes, in case 4 = {y}, the usual closed ball
centered at y of radius r, namely one has, in this case, B[4,r] =: B[y, r].
Now, let us consider 4,B in A (X). The distance between A and B will be defined as follows:

D(4,B) :=inf{r|reR%, 4 C B(B,r) and B C B(4,r)}.
One can prove the equality
D(4,B) .= inf{r|r€R%, 4 C B[B,r] and B C B[4,r]}.

It follows immediately that, in case B C B’ C A, one has D(4,B) = D(4,B").
It is very well known that (#°(X),D) is a complete metric space (D is called the Hausdorff-
Pompeiu metric). There is still another way of defining the metric D. Namely, for the some 4,8 in

(X)), put
p(4,B) := sup{d(b,A) | b < B}.
Then, it is possible to prove the equality
D(A4,B) = max(p(4,B), p(B,4)).
For every 4 € 4 (X), the diameter of A is the number
diam(4) := sup{d(x, y) | x,y € 4}.

Notice (do not forget that 4 is compact) the existence of xo, yo in 4 such that diam(A4)=d(xo, Yo).
Recall that a function f:X — X is called a contraction in case there exists 0 < /A < 1 such that,

for all x, y in X,
d(f(x), f(¥)) < 4d(x, ).

We shall say that A is a Lipschitz constant for f. One can see that the infimum of all such
), which will be denoted by L(f) and will be called the ratio of the contraction f, also has the
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property that, for all x, y in X,
d(f(x), f(y)) < L(f)d(x, y).

If fi:X — X, i=1,2,...,m, are contractions such that, for all / and all x, y in X, one has

d(fi(x), fi(¥)) < Aid(x,y)
then, writing F = fj o f0---0 f,, one has, for all x,y in X,
A(F),F(3)) < Al dmd(x, )

which implies L( /) = L(f1)L(f2)-.-L(fn)-
The basic result of the construction is the Banach—Caccioppoli-Picard contraction principle. Let

/:X — X be a contraction. Then, there exists an unique fixed point x* of f. Moreover, x* can be
obtained as follows:

(a) take an arbitrary xo € X;
(b) x* =1lim, f"(xp).

Consequently, one has

Lemma 1. Let f:X — X be a contraction and ne€ R%. Then, one can find y €X such that
a(f(y),y) <n.

Proof. Let 0 < Z < 1 such that d(f(x), f(»)) < Ad(x, y) for all x, y in X. Take arbitrarily xo in X
and write x,.; := f(x,) for all natural n. So, x,— x*, as we have seen. For n € N:

d(x,,+l,x,,) = d(f(x,,), f.(xn—l )) < }Ld(xmxn—l)
and, iterating
d(f(xn),xn) = d(xpe1,x0) < A"d(x1,X0).
For large enough n, one has A"d(x),xo) < 1. Write y := x,, for such n.
Then
d(f(¥), ) < A"d(f(x0),%0) < 1. O (1)

Remark. Formula (1) which shows how to find practically y will be effectively used in Theorem 3

in the sequel.
From now on, we shall fix a natural number m > 1 and a finite set 5 = { fis fosssmsdmy. OF

contractions f;: X — X with ratios ;. These contractions define the functions F: A (X) — A (X)
given by

m

F(C) = A(C).

i=1

We finish this paragraph with the fundamental results which will be used in the rest of the paper.
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Theorem 1. The function F is a contraction on the metric space (A (X),D) with ratio

L(F) < max r;.
1<i<m

Using the preceding result and the contraction principle, we obtain the fundamental result of
Hutchinson [5].

Theorem 2. There exists an unique A€ A (X) such that F(A)=A. The set A is called the attractor
of the family & .
Moreover, for every B€ X (X), the sequence (F"(B)), converges to A in the space (A (X ),D).

Remark. In case m =1, taking B={x} for some x € X, one obtain 4= {x*} =the fixed point of .

Consequently, for the sake of non-triviality, only the case m = 2 will be taken into consideration.
In this case 4 is a “fractal” (in many situations). In order to continue, we shall write, for all natural
n>1, as follows: &, := the set of all possible compositions of the form f;, o fi,0---0 fi, where

il,iz,...,i,,G {1,2,...,]7’!}.
It is clear that .%, has at most m" elements.
Of course, % = .. Write also:

S Ej .

n=1

It is clear that, for all B € 2 (X), one has
F'(B)= | f(B)
JE€S
and F"*'(B) = F(F"(B)).
Another result of Hutchinson is the following: If 4 is the attractor of &, then
A= fix(/)
fes

which implies that, for all natural n > 1 and for all /" € %, one has fix(f) C 4 (of course, all fix(/f')
are singletons).

Lemma 2. Let A be the attractor of . Then, for every natural N = 1, A is the attractor of Y.

Proof. Induction upon N. For N = 1, the result is true according to the definition.
Now, accept that 4 is the attractor of Sy, 1.e.

a= | fuorofud)

& T iN—1

the union being performed over all possible iy,i,...,in—1 18§12 el
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Consequently,
A== |J fiofioofi =] f(@. O
Jj=1 Jsbisen =] e

2. A new procedure of approximating fractals

With the help of Iterated Function Systems, we improve the known techniques for approximation
of fractals (see [2,3]). We use the notations in the preceding paragraph, with the same meanings:
X, d), =111, frs--s Ju}, m =2, contractions with Lipschitz constants (or Tatlos) #i, 15y s ssFme

For a given number ¢ € R*, one can find a natural number N > 1 such that

ViyFiy -« Fiy <Le¢
for all possible choices of ij,i,...,iy In {1,2,...,m}. Call the set of all such numbers N as follows:
A(S, ). So, there exists a natural Ny > 1 such that A(S,e) = {No,No + 1,Np + Dy cceife
Let us pass to our main results.

Theorem 3. Let the numbers 1 >8>0, 1 >¢> 0 and n = 0 be given. Let N € A(¥,6) and con-
sider the set Sy = {h,ha,...,h,} (of course u < m").
One can find, for every i =1,2,...,u, an element x; €X such that d(x;, hi(x;)) < n. Denote by

B, the finite set of all such x;.
Take M € A(Y,¢) and put

B={g(x)|g€ S, x€Bi}.

Then, if A is the attractor of &, one has
en

D(A4, B) < &d diam(4) + 1—_75

Proof. Firstly, let us explain how the elements x; occur. In case 7 =0, x; must be the unique fixed
point of the contraction /;. In case n > 0, one can apply Lemma 1 (and x; need not be the fixed
point of #;). Use effectively (1).

We have

B=|J gB)=F"(B) and 4 =FM(4)
gES
(according to Lemma 2). Hence, using Theorem 1, one can have
D(A4,B) < L(F")D(4,B,) < eD(4,B)) (2)

(use the definition of M).
The rest of the proof will be divided into two steps.

First step:
- . 3
p(4,B1) lrrgl?g“d(x,,/l)- (3)
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Take some x; € B, and let a; be the fixed point of 4;. Then

d(x;,a;) = d(x;, hi(a;)) < d(xi, hi(x:)) + d(hi(x;:), hia;)) < n + od(x;, a;)

hence
d(x,ar) < — 4
X)) & — ¢
=5 (4)
Because a; € A (as we have already noticed), one obtains d(x;,4) < n/(1 — 9) hence, using (3),
n
A,B)) < ——.

pUA,BY) < T (5)
Second Step:

p(B1,4) = sup{d(a,B))|acA}. (6)
Take some a€ A =FN(4)=J", h(4), and let 1 <i <u, z€4, such that a = hi(2).
According to (4), one has (denoting again ¢; := the fixed point of h;)

d(a,B)) < d(a,x;) = d(hi(z),x;) < d(hi(2), hi(x)) + d(hi(xi), x;) < 0d(z,%) + 11

< 8(d(z,a;) + d(a;,x;)) +n < 6(diam(4) +n/(1 —0)) +1n
= ddiam(4) + n/(1 — 9).

According to (6), the last inequality gives

(B, A) < & diam(4) + Ti_a (7)
From (5) and (7), one obtains

D(4,B,) < diam(4) + 1—'1—5

and (2) finally gives
D(A4, B) < & diam(4) + l—g_”—é O

Theorem 4. Assume the conditions in the preceding theorem are fulfilled and assume also that

2e0 < 1.
Then, one has

€0 ) en
s SamB) + TS 00y

D(4,B) <

Proof. We have already seen that
o(B,A) < D(4,B) < &6 diam(4) + li_”-g (8)
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Let y, and y, be arbitrarily taken in A. Then
d(yi,B) < p(B,4), i=1,2. (9)

One can find b; € B such that d(y;,B) =d(yi,b;), i=1,2.
So, for arbitrary y;, y» in 4, we could find, using (8) and (9), the point by, b, in B such that

d(yi,b;) < eddiam(4) + 1ﬂ5 i=12,

Hence
Je
d(y1,y2) < d(y1,b1) +d(by,by) + d(by, y2) < 2¢0 diam(4) + TC’—% + diam(B).
Because y; and y, are arbitrary, we get
. ) 2en :
diam(4) < 2ed diam(4) + 1—s + diam(B)

which implies

diam(B) 2en
1—2¢6 (1 —6)1—2e0) GO

diam(4) <

The last inequality exploited in (8) gives

diam(B) 2en en

A4,B) <

DA,B) <& | T Y T o)1 —260))  1-0
4 _ en
= 1288 SemB) + TT50 " 260)

It is interesting and important to see what happens in the particular case when n = 0. Under this
condition, x; = h;(x;) for all h; € 4. So, x; are the fixed point of 4;, i=1,2,....,u. It follows that all
x; are in 4, so By C 4, which in turn implies B C 4 (indeed: y € B implies the existence of some

x€B, C A and of some g € % such that y = g(x) and 4 =F"(4)).
Summarizing the preceding considerations and using (10), we obtain

Theorem 5. Let the numbers &,6 be such that 1 >0 >0, 1 >¢&> 0 and 2e6 < 1. Let N € A(S,9)

and consider the set Sy = {h1,ha,...,h,}.
For every i =1,2,...,u, let x;€X be the unique fixed point of h; and denote by B, the finite

set of all these x;.
Take M € A(S,¢) and put

B={g(x)| g€ %, x€B}.
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Then, if A is the attractor of &, one has

diam(B)

D(4, B) < &6 diam(4) < 5 _8(;85

and B C A.

2.1. Comments

1. Our Theorems 3—5 give an estimation for the distance between the attractor (fractal) 4 and the
approximating set B, in terms of preassigned parameters 0, &, 1.

2. The set A generally cannot be “reached”, whereas the finite set B which approximates 4 can be
constructed after a finite number of steps (which can be very big in case 0, ¢ and 1 Impose a
very good approximation).

3. The use of the “parasite” number 5 is generally speaking necessary because the computation of the
fixed points @; of 4; can be very difficult or even impossible and this imposes the use of Lemma
1. So, we are obliged to use the “parasite” set B, which generates the approximating set B.

4. Theorem 3 gives an estimation of the distance between the attractor 4 (unknown) and the ap-
proximating set B (known = can be constructed) in terms of d,¢n, but also in terms of 4. This
cannot be useful. So, Theorem 4 appears to be more useful, the estimation being only in terms
of d,¢,n and B.

5. The “ideal” situation is exposed in Theorem 5. Namely, in this case, only the “essential” approx-
imation parameters appear. In this case the approximation is made “from inside”, because B C 4,
so the approximating set B contains only points of the attractor 4.

6. The particular case N=1 for Theorem 5 is also very important (i.e. we start with the set
By = {x1,x2,...,x,} of fixed points of the functions 1530 e 0atm § JiGer) = %)

So, we can take ¢ := max {r,7,...,7,} and & > 0 such that 260 < 1. Let M € A(Y,¢) (e.g. take
M such that 6 < ¢) and put

B={g(x)|g€ %, xEB}.

Then, if 4 is the attractor of ./, one has B C 4 and

D(A, B) < &6 diam(4) < 8028  diam(B). (11)

;s
In this case, after computing B;,d and M, the iterations will be
F(B)) =V, F(V\)=Va=FB\),....Vu=F"(B)

and finally one has B =V, and (11).
It is to be seen that ¥} C V> C --- C V,, C 4 and (D(4,V,)), is a decreasing sequence such that

lim, D(4, V,,) = 0.
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2.2. Practical application of the algorithm

In order to understand the underlying programs, we shall explain how Theorem 5 works, in the
particular case of some attractors in R? which are generated by affine contractions of the type

w(x, y)=(a\x + ayy +ci,a3x + asy + ¢2)

with a,,a»,a3,a4,¢1,c2 € R.
Let us assume that the m contractions f, f2,..., f, are given in matricial form via

o X X
i = A; +C, i=12,....m,
b y

where
ai(i) ax(i) ¢ ¢ (i)
ay(i)  ay(i) (i)

Then, for i,/ in {1,2,...,m}, one has

X X
ﬁOJfl < > :A"A,f < ) +A,C/+C,
y Y

Hence, using an iterative process, one obtains the coefficients of the affine contractions in Sy.
Afterwards, one computes the fixed points (x, y) € B, and one continues the process until the com-
putation of the coefficients of the elements in Sy,. So, for A € Sy:

X X ari(s) ar(s) & cri(s)

h_&. = AR\ + CR‘\-, ARS = 5 R.\‘
y y ary(s) ary(s) cra(s)

and the fixed points will be

= CR,(I — AR,)™', where I =
y(s) 0 1

for s=1,2,...,m".

One continues the computation and one represents the points (pi, p2) € B as images of the elements
(x(s), y(s),s = 1,2,...,m", from B, when applying to them the functions in Sy

In the sequel, one presents the Visual C program which uses the above described pattern followed
by some examples of fractals in R2 obtained via this program, together with the respective parameters
which have been used. For each fractal one gives also the time which is necessary for a Pentium
Il PC (600 MHz) to draw the respective image, the number of points that where computed and
the number of distinct points that where drawn in each case. We lay stress upon the fact that “the
factor of image dilation” (fa) represents an increasing factor for the image in order to permit a
good visualisation of it on the display. To center the image on the display, one uses “the image

center coordinates” (x0,y0).
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2.3. Visual C program'

# include (math.h) float FAR *al, FAR *a2, FAR *a3, FAR xa4, FAR*cl,
FAR*c2, FAR *apl, FAR *ap2, FAR =*ap3, FAR *ap4, FAR *cpl, FAR*cp2,
FAR*arl, FAR *ar2, FAR =*ar3, FAR *ar4, FAR *crl, FAR xcr2, FAR *x,
FAR *y; char FAR #tab; unsigned long aux, 1i,j,k,kl, 1 i, hy8 5N ;
HANDLE h; LARGE_INTEGER lpPerfCounter_1; LARGE_INTEGER
lpPerfCounter_2; LARGE_INTEGER lpFrequency; long points,
distinct_points; SYSTEMTIME start_1, stop.1; double e; DWORD size
=2200000; int x0,y0,x1,yl; double
xmin,xmax,ymax,r,rr,delta,eps,fa,pl,p2,nr;

h=HeapCreate(0,0,0);

al = (float FAR*)HeapAlloc (h,HEAP_ZERO_MEMORY,size) ;

a2 = (float FAR*)HeapAlloc(h,HEAP_ZERO,MEMDRY,size);

a3 = (float FAR*)HeapAlloc(h,HEAP_ZERO MEMORY,size);

a4 = (float FAR*)HeapAlloc(h,HEAP_ZERO_MEMDRY,size);

cl = (float FAR*)HeapAlloc(h,HEAP_ZERD_MEMDRY,size);

c2 = (float FAR*)HeapAlloc(h,HEAP-ZERO_MEMORY,size);

apl = (float FAR*)HeapAlloc(h,HEAP_ZERO_MEMORY,size);

ap2 = (float FAR*)HeapAlloc (h,HEAP_ZERO_MEMORY,size) ;

ap3 = (float FAR*)HeapAlloc (h,HEAP_ZERO_MEMORY,size) ;

ap4 = (float FAR*)HeapAlloc(h,HEAP_ZERO_MEMDRY,size);

cpl = (float FAR*)HeapAlloc(h,HEAP_ZERO_MEMDRY,size);

cp2 = (float FAR*)HeapAlloc (h,HEAP ZERO_MEMORY,size) ;

arl = (float FAR*x)HeapAlloc(h,HEAP_ZERO_MEMORY,size);

ar2 = (float FAR*)HeapAlloc(h,HEAP ZERO_MEMORY,size);

ar3 = (float FAR*)HeapAlloc(h,HEAP_ZERO_MEMORY,size);

ar4 = (float FAR*)HeapAlloc(h,HEAP_ZERD_MEMORY,size);

crl = (float FAR*)HeapAlloc(h,HEAP_ZERDAMEMDRY,Size);

cr2— (float FAR*)HeapAlloc(h,HEAP~ZERD_MEMORY,size);

x = (float FAR*)HeapAlloc(h,HEAP_ZERO,MEMDRY,size);

y = (float FAR*)HeapAlloc (h,HEAP_ZERO_MEMORY,size) ;

tab = (char FAR*)HeapAlloc(h,HEAP_ZERDﬁMEMDRY,size);

QueryPerformanceFrequency (& 1pFrequency) ;
QueryPerformanceCounter (& lpPerfCounter_1);

i=1; rr=r; while(rr>=delta){rr*=r; i++; } ki=i; while (rr>=eps){
rré=r; i++; } k=i; for (j=0;j<m;j++) { ari[jl=1; ar2[jl0;
cr1[j1=0; ar3[jl=0; ar4[jl=1; cr2[jl=0; } 1=1; for (n=1;n<=k;n++) { s=0;
for (j=0;j<1;j++) {apiljl=ari(jl; ap2[jl=ar2(jl;
ap3[jl=ar3(jl; ap4l[jl=ar4[jl; cpilljl=criljl; cp2Eil=ez2[jls
for (=D0;9=1ij+t) for (I=0;i<myivt)

"Available in the following address: http://www.ual.es/Universidad/Depar/AlgeAnal/fractals.htm
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{ar1[s]=allil*ap1[jl+a2[il*ap3[j];

ar2[s]=all[il*ap2[jl+a2[il*apd[j];

ar3[s]=a3[i]*apl[jl+ad[i]l*ap3[j];

ar4[s]=a3[il*ap2[jl+ad[i]l*apa[j];

cri[s]=allil*cpi[jl+a2[il*cp2[jl+ci[i];
cr2[sl=a3[il*cpi[jl+ad[il*cp2[jl+c2[i]; s++;} if (n==k1)

for (s=0;s<:1*m;s++){nr=((ar1[s]—l)*(ar4[s]—1)+(ar2[s]*ar3[s]));
x[s]=(crils]*(1-ard[s]+cr2[s]*ar2([s])/nr;
y[sl=(cr2[s]*(1-ari[s]+cri[sl*ar3[s])/nr;}1*=m;} n=1;

for (aux=1;aux <=kl;aux++) n*=m; 1=n; for (aux=kl+1;aux<=k;aux++)

1x=m; points=0; for (j=0;j<1;j++) for (i=0;i<n;i++) {
pi=ari[jl*x[il+ar2[j]*y[i]+cri[j]l; if (xmin>p1) {xmin=pl; } else

if (xmax<pl) xmax=pl;p2=ar3[jl*x[il+ard[jl*y[il+cr2(j];

if (ymin>p2){ymin=p2; } else if (ymax<p2) ymax=p2;
x1=(int) (floor (p1*fa)+x0); yl=(int) (floor(p2*fa)+y0);

tab[(x1%¥1000+y1)]=1; points++;}distinct_points=0;

for (i=0;i<1000;i++) for (j=0;j<700;j++) if (tab[(i*1000+j)])
{pdc->SetPixel(i,j,RGB(0, 0, 0)); distinct_points++; }
QueryPerformanceCounter(& lpPerfCounterA2); e=

eps*delta/(1-2*eps*delta)*
sqrt((xmax—xmin)*(Xmax—xmin)+(ymax—ymin)*(ymax—ymin));HeapFree(h,O,(LPVOID)al);
HeapFree (h, 0, (LPVOID)a2); HeapFree(h, 0, (LPVOID)a3);

(LPVOID)a4); HeapFree(h, 0, (LPVOID)c1);

(LPVOID)c2); HeapFree(h, 0, (LPVOID)apl);

(LPVOID)ap2); HeapFree(h, 0, (LPVOID)ap3);

(LPVOID)ap4); HeapFree(h, 0, (LPVOID)cpl);

(LPVOID)cp2); HeapFree(h, 0, (LPVOID)arl);

(LPVOID)ar2); HeapFree(h, O, (LPVOID)ar3);

HeapFree (h, (LPVOID)ar4); HeapFree(h, 0, (LPVOID)crl);

HeapFree (h, (LPVOID)cr2); HeapFree(h, O, (LPVOID)x);

HeapFree (h, 0, (LPVOID)y); HeapFree(h, 0, (LPVOID)tab);

HeapDestroy (h) ;

CString str,str2; str2.Format(‘‘Error %g\r\n’’, e); str += str2; double tPaf:
fDif=((double) (1pPerfCounter_2.QuadPart -

lpPerfCounter_1.QuadPart))/

((double) 1pFrequency.QuadPart); str2.format (‘‘Time in seconds is %. 15£ \r \ni*?;
fDif); str +=str2; str2.Format (‘‘Number of Points %d \r\n Number of Distinct
Points %d’’, points, distinct_points); str += str2; AfxMessageBox(str);

HeapFree (h,
HeapFree (h,
HeapFree (h,
HeapFree (h,
HeapFree (h,
HeapFree (h,

- -

-

- - -

0 O 0O e © ©

-

2.4. Examples

E1. Dragon
m=2;
r=sqrt(2)/2;
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delta=eps=0.0626;

a1[0]=0.5; a2[0]=0.5; c1[0]=0;
a3[0]=-0.5; a4[0]=0.5; c2[01=0;
a1[1]=-0.5; a2[1]=0.5; ci1]=1;
a3[1]=-0.5; a4[1]=-0.5; c2[1]=0;

fa=600; x0=270; y0=410;
time=0.222 sec

number of points = 65536
number of distinct points

57049

E2. Sierpinski gasket

m=3;

r=0.5;

delta=eps=0.0313;

al1[0]=0.5; a2[0]=0; c1[0]=0;
a3[0]=0; a4[0]=0.5; c2[0]=0;
al1{1]1=0.5; a2[1]1=0; c1[1]=0.25;
a3[1]=0; a4[1]1=0.5; c2[1]=sqrt(3)/4;
al[2]=0.5; a2[2]=0; c1[2]1=0.5;
a3[2]1=0; a4[2]=0.5; c2[2]=0;

fa=700; x0=170; y0=10;

time=0.187368 s
number of points = 59049
number of distinct points = 376557
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E3. Levy curve

m=2;
r=sqrt(2)/2;

delta=eps=0.058;

al1[0]1=0.5;
a3[0]=0.5;
al[1]1=-0.5;
a3[1]=-0.5;
fa=480;

time=0.623 sec

a2[0]=-0.5;
a4[0]=0.5;
a2[1]=0.5;
a4[1]l= 0.5;
x0=270;

number of points = 262144

number of distinct

points = 151442

c1[0]=0;
c2[0]1=0;
c1[1]1=0.5;
c2[1]1=0.5;
y0=130;

367
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E4. Little Pine
m=3;
r=sqrt(2)/2;
delta=eps=0.2;

a1[0]=0.5; a2[0]=-0.1; c1[0]=0;
a3[0]=0.5; a4[0]=0.5; c2[0]=0;
al[1]=-0.5; a2[1]=-0.1; c1[1]=-0.5;
a3[1]=-0.5; a4[1]=0.6; c2[1]=-2;
al[2]=-0.7; a2[2]=-0.3; c1[2]1=0;
a3[2]=-0.5; a4([2]=0.5; c2[2]=1;
fa=78; x0=350; y0=410;

time=0.144 sec
number of points = 59049
number of distinct points = 33536
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ES5. Fine Dragon

m=2;
r=sqrt(2)/2;
delta=eps=0.0626;

a1[0]=-0.5; a2[0]=-0.5; c1[0]=1;
a3[0]=-0.333; a4[0]=0.333; c2[0]=3;
al[1]=-0.5; a2[11=0.5; c1[1]=-5;
a3[1]=-0.5; a4[1]=-0.5; c2[1]=-3;
fa=38; x0=400; y0=365;

time=0.133 sec
number of points = 65536
number of distinct points = 28979
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