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1. Preliminaries
We study some topologies on a given Riesz space which can be generated by a solid
seminorm or by a linear and positive functional. The connection with absolute con-
tinuity is studied too, more precisely absolute continuity is expressed as continuity
with respect to one of these topologies.

Throughout this paper Rwill be the reals, 1y, the positive reals (both with the
natural topology), INthe natuial numbers. The empty set will be denoted by 0.

We shall e concerned with non null Riesz spaces (or vector lattises) }". In such
spaces Y the notations |y, y Az, yV z (for y, z € Y) are the usual ones. A linear
map / : Y —JRwill be called a positive linear functional if I(y) >0 for y € Yy, the
positive elements of Y. Put Yy =Y, — {o}.

A Loomis system is a triple (X, A, I) where @ # X is an abstract set, Ais a lattice
(a Riesz space) of functions with usual pointwise order and [ : A —IRis a positive
linear functional.

In case I has thic supplementary property that I (u.) \, 0, whenever (Un)nen is
a monotone decreasing sequence with u, \, 0 pointwise, we say that I is & Daniell
inlegral.

2. Three Topologies on a Riesz Space

Assume Y is a Riesz space and let p: Y — Ry be a solid seminorm (i-e., is a seminorm
having the property that

lul < Jul =p(u) <p(v)
for u, v in V). We shall define three topologies on Y (in increasing order), the second
(intermediate) one being the most important for our further study.

2.1. The Topology 7(p). We denote by 7 (p) the locally convex topology gen-
erated on Y by p. Let us write, for every number £ > 0

Vie)=(yeY: ply) <e}.
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Then a basic system of open neighbourhoods of 0 for 7 (p) will be
V()= {V(e): e>0}.
For every y € Y we shall also write (for € > 0)
V(y,e)={z€Y: p(z—y) <e}. Then
V(y)={V(y.e): €>0}
constitutes a basic system of neigbourhoods of y for 7 (p).
2.2. The Topology T (p). For every a € Yy let us write
S(a)=(yeY: Iyl <a)

(of course S (0) = {0}) and 7., the induced topology on S (a) by 7 (p). v
It is clear that for every y € S (a), a basic system of open neighbourhoods of y in
T, will be

{V(y,e)NS(a): € >0} =Va(y).

We get the family of topological spaces {(S(a),7,): a € Y4}, all of them being
subspaces of the topological space (Y, 7 (p)). Writing for every a € Y

ide: S(a) = Y; ida(y) =y,

it is clear that all the mappings

id, : (S (a),m) = (¥, 7 (p))

are continuous.

According to general theory (see e.g. [3]), there exists an unique topology T (p)
on Y having the following three properties:

(i) For every a € Y, the map
id“ : ('g (a’) 1Tﬂ) . (Y!T (p))
is continuous.

(i) Y (p) is the strongest topology T on Y having the property that for all a € Y,
the map

ide : (S (a), ) — (¥, T)

is continuous (we say that Y (p) is the final topology induced on Y by the family
(ida)4ey, of mappings and the family (S (a),7a),ey, of topological spaces).
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(iii) The topology induced by T (p) on every S (a), a € Yy is exactly 7o.

For a set G C Y one has G € T (p) if and only if, for every a € Y,, one has
G5 (a) =d;! (G) €.
Of course

7(p) C T (p) (1)

and, generally speaking, inclusion (1) is strict (we shall exhibit an example at the
end of this paper). For technical details one can see (3, Prop. V 5.5, pg 431].
We finish this subsection with some considerations concerning & basic system of
neigbourhoods of 0 in T (p). Let [ (Y) be the set of functions from Y, to ]0, 4oo[.
Practically,

E(Y)= {5 = (En)nc-v; 1€, >0, Va € Y_;} :

For every € € E (YY), define

W)= U [V(e) NS (a)l.

Theorem 1. For every neighbourhood W of 0 in T (p), there ezists € € E(Y) such
that W () C W '

Proof. Let W be a neighbourhood of 0 in T (p) and let G € T (p) such that
0e G C W. Then, for every a € Y, we have 0€ G N S(a) € T, so there exists a
number £, > 0 such that

V(ea)NS(a) cGNS(a) cwnS(a).
Then one forms € = (€a),¢y; @nd one has

W)= U, V() NS(@)C Y [GNnS(a)=Gcw.=m

We recall attention we are concerned with non null Riesz spaces.
Corollary 1. The singleton {0} is not a neighbourhood of 0 in T (p) -

Proof. Assume by absurd {0} is a neighbourhood of 0 in T (p). Then, according
to Theorem 1, we find € € E (Y) such that W (¢) C {0}. But this is not true: take
a € Y; and n €Ngreat enough. Then loeV(e)NS(a)CW (¢) end la #0.m
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2.3. The Topology U (p).
Theorem 2. There ezisls an unique topology U(p) on Y such thal for everyy €'Y
By)={WnS(l): WeV)}
is a basic system of neighbourhoods of y in U (p).

Proof. We shall check the properties of a basic system of neighbourhoods of a
fix y € Y for B (y), see (3, Prop 1.2.13, pg 82].

I. Of course B (y) is non empty.

[1. Of course y € V for all V € B (y).

[11. For all V;,V; in B (y), one can find V € B (y) such that V C Vi N Vs,

Indeed, if V; = W;nS(Ju]), i = 1,2, one takes some W € V(y) such that
W cW,NW,and V=WnS(ly|) will do the job. :

IV. Finally, we show that for every V € B (y) one can find W € B (y) such that
for all z € W we can find V, € B(z) with V; C V.

Indeed, let V =V (y,e) NS (Jy]) € B(y). Take

w=v(s.5)ns -

For an arbitrary z € W, take
V=V (z,%) NS (lz]) € B(2).
Let t € V. Then

. E £
plt-y)<plt-2)+plz-y)<5+5=¢

so ! € V(y,e). On the other hand, 2 € W implies |2] < |y|, so t € S (|z|) implies
teS(ly|), hencet e V. &

Theorem 3. One has the strict incluston

T (p) cU(p).

Proof. Let @ # G € T (p). This means that for every a € Y, one has GNS (a) €
To. We shall show that G € U (p).

To this aim, take an arbitrary y € G. We shall show the existence of some
W € V (y) such that W N S (ly|]) € G (which means that G is a neighbourhood of y
in U (p)), thus finishing the proof.
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In any case G N S (|y]) € 7y, so there exists Gy € 7 (p) such that GNnS(y) =
G, N S(lyl). Becausey € Gy € 7(p), we can find W € V (y) such that W C G,
consequently W N S (Jy]) c Gin S (lyl) € G.

The already proved inclusion T (p) C U (p) is strict, because:

(a) B (0) contains only the set {0}, therefore {0} eU (p).

(b) In Corollary 1, we have seen that {0} is not a neighbourhood of 0 in T (p),
hence {0} ¢ T (p) . ®

Conclusion 1. One has
7(p) C T(p) CU(p).

The last inclusion is always strict because {0} € U (p) — T (p). The first inclusion
can be strict (see the example in the last section).

2.4. Study of the Trivial Case p = 0. General Non-Linearity of U (p). We
shall divide this subsection into two parts.

First part: Study of the case p=0. In this case we shall see that:
(i) One has T (p) =T (p) = {#,Y) (and, of course, T (p) is a veclor topology).

Indeed, V (y,e) =Y for all y € Y and strictly positive € > 0, so 7 (p) = {0,Y}.
Now, let us take @ # G € T (p). Then

G=GnY = 9. [GN S (a)].

We have GN S(a) € 7, for all a € Y, and 7, = {0, 5 (a)}, because some H e &
must be of the form H = M NS (a), M € 7(p). So, for every a € Y, one has either
GNS(a)=5S(a)or GNS(a) =0

It is impossible to have GN S (a) = @ for all a € Y} (this would imply G = ).
So, let a € Y, such that GN S(a) = S(a). Then 0 € G, hence 0€ G NS (b) for all
b€ V;, which means that GNS (b) =S (b) for all b € Y. This proves that G=Y. =

(ii) The topology U (p) admils the class of sets
{(S(a); a €Yy}

as a basis.
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Let a € Y;. We claim that S(a) € U (p). To prove this, take y € S(a). Then
lyl <aand V(y,e) =Y foralle > 0. Then V (y,6) NS (Jyl) = S(lyl) € S(a) and
y €V (y,e) NS (ly]) € B(y), hence S (a) is a neighbourhood of y.

Now, the open sets S (a), a € Yy, form a basis for U (p). Indeed, let an arbitrary
y € Y and an arbitrary G € U (p) such that y € G. Then, there exists € > 0 such
that

yeV(y.e)nS(yl)=s(vh) cG
Noticing also the fact that for all a, b € Y, one has S(a) NS (b) = S(anb), it

is seen immediately that the class of sets {$ (a); a € Y.} is a subbase of U (p), i.e.,
U (p) is generated by this class. B :

Second part: In all cases U (p) is not a vector topology. Assume, by
absurd, that U (p) is a vector topology. We have already seen that {0} € U (p).
Translation being a homeomorphism, it follows that for all y € Y one must have

{y) eU(p).
Take 0 # y € Y. One must find a number € > 0 such that

B(y)> V(y,e)nS(lyl) € {y},

ie. V(y,e)NS(Jy]) = {y}- So, there exists a number € > 0 such that for every z # y
one must have either p(y — z) > € or |z| > |y|.

Take an arbitrary natural n > 2 and define z = (1 = %)y # y. Because |z] =
(1 - ,{) ly| < ly|, one must have

%p(y) =plz—y)>e

for all n. > 2, which is imposible. B

3. Absolute continuity and the topology T (p)

We shall generalize a little the notion of absolute continuity (see [2]).
Let Y be a Riesz space and let / : Y — Rbe a linear and positive functional. Then
I generates the solid seminorm

p:Y = Ry ply)=I(yl), VyeY.
Let J : Y — Rbe another linear and positive fuctional.

Definition. We shall say that J is absolutely continuous with respect to I (and
we shall write J < I) if for every number € > 0 and for every a € Yy, there
exists a number 6 (g,a) = § > 0 such that for every y € ¥ with |y| < a and
p(y) = I (ly]) < 8 one has |J (y)] <.
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In the definition one can work only with y € Yy, because |J (y)| < J (Jy|). Rewrit-
ing what this means, we obtain:

J<I&Ve>0VaeY,, 36>0: YyeS(a)nV (9),|J (W)l <e.

Here V (8) = {z € Y : p(2) < &} as previously used.
The last assertion means:

J<l&YaeY,, Joid,: (S(a),7.) — Mis continuous at 0.

Let us notice the next lemma.
Lemma 1. The following assertions are equivalen:

1. Ya €Yy, Joid,: (S(a),7a) =R is continuous at 0.

2. Va €Yy, Joida: (S(a),7.) —IR is conlinuous.

Proof. We prove 1.= 2. Take an arbitrary a € Yy and an arbitrary y € S (a).
We shall prove that Joid, : (S (a),7.) —Ris continuous at y. Let € > 0 be arbitrary.

In any case, there exists § > 0 such that for every z € S (2a) with I (lz) =p(2) <
§ one has |[J (z)] < €. ‘

Now, take an arbitrary ¥/ € S(a) with ¢/ € V (y,0), ie, p(¥ —y) < 6. This
implies (because |y — y| < 2a):

@) —JI =1V -9l <e,

and 2. is true. ®

Now, we use the following property of the final topology T (p) (see [3]): for every
topological space (X, A) and for every function f: (Y, Y (p)) — (X, A), the following

assertions are equivalent:
1. [ is conlinuous.
2. for everya € Yy, [oid,: (S (a),7s) = (X, A) is conlinuous.

Applying this to .J : (¥, T (p)) —Rinstead of f we obtain

Theorem 4. Consider a Riesz space Y and lwo linear and positive functionals
I, J:Y —IR. Define the solid seminorm p : Y — IRy given by p(v)=1(yl),
for everyy € Y. Then, the following assertions are equivalent:
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1.k,
2. J: (Y, Y (p)) — IR is continuous.
We ate now able to show, via an example, that in case p # 0 the inclusion

7(p) C T (p) is generally strict. The example is taken from [1] but, in order to make
the paper self-contained, we shall give complete proofs.

Example (when the inclusion 7 (p) C T (p) is strict).
Define the Loomis system (X, A4, ]) as follows: take X := [0,1],
A:={f:[0,1) = IR: [ continuous}

and | : A —IRgiven by I(f) := Jy fdA (here A is Lebesgue measure on [0,1)).
Actually, I is Daniell. )

Let us consider the A-integrable function h : [0,1] —IRgiven by h(0) = 0 and
h(t) = _\]/Z for t # 0. We can define the Daniell integral J: A —Rgiven by J(f) =

Jo JhdA.
(a) We prove that J < I.

(This is true in virtue of 2], but we give here a direct proof.)

Assume that J < [ is not true. So, there exists up € A4 and g9 > 0, such that
for every n € INthere exists 0 < fn < g, with [ (fn) < L, but J(fn) 2 €0

So, [ [nd) < % for all n, which implies f, — 0 in L' (X). Let us find a subsequence
(fny ), such that fn, = 0 A—a.e. One has, for all k, fa,h < uoh and fr = 0 A-a.e.

According to Lebesgue’s dominated convergence theorem, one has

JUn) = [ fitidr 0
which is a contradiction. B
(b) J: (A, T (p)) =R is continuous.

Writing p (f) = I (|f]) for all [ € A, we obtain the solid seminorm p on A and
point (a) says that J : (A, T (p)) —Ris continuous. M

(c) J : (A, 7 (p)) =R is not continvous. This will show that T (p) C Y (p) is a strict
inclusion.
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Indeed, f/ — p(f) is a norm on A. Assuming that J would be continuous on
the normed space (A,p), we shall derive a contradiction. Namely, let us define the
sequence (u,), C A as follows:

2V2n/nx, T €

[
; L1
Ve B ok 2
un (T) =
1) (- k). we bt
0, mE]n—i—l—,I]

One has, for all n €V:

11 | 1 1 1
p(u.,,):/u“d/\: —2——2-——\/271.—{—/ ————d:z:+—<———-————>\/r_7,—-»0.
n

s
]
N

On the other hand

.

Jlais )= /u.,.h.d/\ > /_;’_‘ un (z) h(z)dz =1n2,
g an
for all n, so J (un) — 0 is false. @
Open Problem: is the topology T(p) linear?
Concerning this problem, we add that in case one could prove that for all € in
E(Y) the set W(e) is a neighbourhood of 0 in Y(p), then it is possible to give an
example when T(p) is not linear.
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