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F U B I N I - I N T E G R A L  M E T R I C S  

E. DE AMO - M. D[AZ CARRILLO 

In this paper, by using an integral extension of Lebesgue power with 
local integral metrics, we stablish abstract Fubini type theorems, which 
subsume most known situations of integration with respect to finitely 
additive measures. 

Introduction. 

Recently in [4] an integration theory (analogue to Daniell 's ex- 
tension process) was given which works for general integral metrics, 
without any continuity conditions. This is possible using a suitable 
local mean convergence, which can be traced back to Loomis [12]. 

In [4], for general local integral metrics convergence theorems 
are derived, extending results of Sch~ifke, and an unified treatment of 
proper Riemann-/z-,  abstract Riemann-, Loomis-, Daniell- and Bour- 
baki-integrals is given. All this is specialized to integration with re- 
spect to finitely additive measure. 

Since Fubini 's  theorem for finitely additive integration is in ge- 
neral false, (the existence of the abstract Riemann integral does not 
always imply the existence of the repeated integrals in the sense of 
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Riemann), it seems therefore natural to ask for conditions under whi- 

ch the repeated integrals will exist. Conditions of this type were gi- 

ven by several authors in [7], [11] and [5]. 

The object of  this paper is to study an abstract Fubini theo- 
rem in integration theory for general local integral metrics. The re- 

sults, which generalize those of Eisner [7] and Hoffmann [11], are 

specialized and discussed for an abstract Riemann-integration theory 
for finitely additive set function as has been devolopped and used 
by Dunford-Schwartz [6], Aumann [2], Loomis [12] and G~inzler [8], 

[9]. 

1. Notations and terminology. 

Terminology and notations used are similar to that of  [4] and 
will explained it whenever be necessary in order to make the paper 

self-contained. 

On the set ~ of extended real numbers we adopt the conventions 

a + b  := 0, a-i-b :=  oo if a = - b  e {-oo ,  oo}. We denote 
a v b := max(a, b), a A b := min(a, b) and a fq t := ( am t) V (--t) if 

a, b e ~ ,  O<t  ~R.  

For nonempty set X let ~x  consists of  all functions f : X ---> /I~. 
All operations and relations between functions are defined pointwise. 

For each set A C ~ one has infA,  sup A ~ II~, with the usual 
conventions inf0  := oo and sup0 : = - o o .  We use the abbrevations 

]~+x for the set f > 0, and A_ := { f ; - f  (~ A}. 

A real linear space B C Rx is said to be a vector lattice if 

h (~ B implies Ihl ~ B (then h A k, h v k (~ B, for all h, k 6 B). 

A functional q : lt~ x --+ k is called an upper integral if 

q(O) = O, q(f-i-g) < q(f)-i-q(g) (+-subadditive) and q ( f )  < q(k) 
(monotone) for all f ,  g, k ~ IR x, f < k. 

q, denotes the functional defined on ~ x  by q , ( f )  :=  - q ( - f )  
for all f e k x. One has that q, is +-superadditive and monotone, 
q, < q and (q, ) ,  = q on lt~+x; q, is said to be a lower integral. 

If q is an upper integral then q/~X+ is an integral metric on 
]~+x in sense of [14] or [4], i.e. q(0) = 0, q( f )  < q (g )+  q(k) if 
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f < _ g + k ,  f , g ,  k6RX+. 

Let B C II~ x such that 0 ~ B_ C B, then an upper integral q 

for which q(h) = q.(h) ~ ~ for all h 6 B, is said to be regular on 

B. If additionally B is a linear space of R x, q is regular on B if 

and only if q is linear on B. 

2. q-Integrable functions. 

In the present section we describe the integration with respect 
to an upper integral q or the associated localized functional qe, and, 

under some additional assumptions, we characterize q-integrability in 

terms of the equality of the upper and lower integrals. 

The first notions was presented essentially by Aumann in [2], 

and more generally in [4] & 1. 

DEFINITION 2.1. Let q be an upper integral regular on B. A 

function f ~ Rx is said to be q-integrable if  it belongs to the 
closure o f  B in ~ x  with respect to the integral metric q(I.I), i.e. 
for  all e > 0 there exists h ~ B such that q ( l f  - hi) < e. 

The set o f  q-integrable functions will be denoted by B q. 

The following assertions are easy consequences o f  the defini- 

tions. 

(1) If f ~ B q and (h~) C B such that q ( I f -  hnl) --+ 0 as 
n --+ oo((h , )  is called a defining sequence for f ) ,  then q ( f )  = 
.limq(hn) ~ R, as n --+ oo. 

(2) If f ~ B q, g E ~x  with q(g) ~ R, then q(f-i-g) = q ( f ) + q ( g ) .  

(Note that the inequalities needed here read: for a, b, c e R, 

a < b-i-(a - b) and a < b-i-c if a - b < c). 

LEMMA 2.1. Let q be an upper integral regular on B. Then 

q ( f )  = q . ( f )  E R for  all f E B q. 

Proof Let (h,)n C B a defining sequence for f ~ B q, by (1), 

q ( f )  = limq(hn) = - l i m q ( - h n )  ---- - q ( - f )  - ---q.( f )  ~ II~, since 
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q ( I f  - h,,[) = q ( l ( - f )  - ( -hn) l )  ---> 0 as n ~ ~ ,  implies - f  ~ B q 
and q( -hn)  --+ q ( - f )  as n ---> oo. �9 

(3) A functional p ' / I~  x ---> R is said to be determined by a set of  

functions M C 1I~ x if p ( f )  = i n f { p ( g ) ; f  < g ~ M} for all 
f ~ x .  

Observe that if q is an upper integral regular in B, then q 

is determined by B iff q , ( f )  = sup{q(g) ;g  < f , g  ~ B} for all 

f ~ x .  
Standard assumption in this and the following are B C ]R x such 

that 0 C B_ C B and q an upper integral regular on B. 

B. 

LEMMA 2.2. Let q be a regular upper integral determined by 

If  f ~ ~ x  such that q ( f )  = q . ( f )  ~ R, then f ~ B q. 

Proof. By (3), given any e > 0 there exists h e B such that 

f _< h and 0 < q ( h ) - q ( f )  < e. By (2), q ( ] f - h l )  = q ( h ) - q . ( f )  = 
q(h) - q ( f )  < e, and the result follows. �9 

In view of  the above results, we state an useful q-integrability 

criterion. 

COROLLARY 2.1. Let q be a regular upper integral determined 
by B and f ~ ~x ,  then the following assertions are equivalent: 

i) f E B  q. 

ii) q ( f )  = q . ( f )  ~ IR. 

iii) Given any e > 0 there exist h , k  ~ B such that - h  < f < k 
and q(h) + q(k) < e. 

The following is a simplified version of Sch~ifke's definition [14] 
p. 120. 

DEFINITION 2.3. I f  q �9 ~ x  __~ ~ is any upper integral regular 
on B, the corresponding local upper integral is defined by 

qe( f )  := sup{q ( f  A h); O <_ h ~ B} for all f e ~x+. 
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It is easy to check that qe is again an upper integral, qe = q 

on B, qe < q on I~+ x, q e ( f )  = q ( f )  if f < some h ~ B q, and 
(qe)e = qe on ~ x .  

If f ~ B qt, g ~ ~x+ with qe(g) ~ ]R then q e ( f  + g) = 

q e ( f )  + qe(g). 

B qt denotes the set of qe-integrable functions, i.e. the closure of 
B in I~ x with respect to the integral metric qe([" D. 

(4) With definition 2.3. one has for all f 6 k x 

( q e ) . ( f )  :=  - q e ( - f )  = i n f { q . ( f  v ( - h ) ) ;  0 < h 6 B}. 

Remarks 1. (see [3], [4]). 

For later reference and the benefit of the reader, we collect some 
results and examples mostly given in [3], [4] and [10]. 

1.1. Let B be a vector lattice in ]R x and I �9 B ~ IR linear 
functional with l ( h )  > 0 if h > 0, h ~ B, which is uniformly 
continuous on B with respect, to an upper integral q,  then, theorem 
1 in [4] gives that B q is closed with respect to + ,  ~. (or ~ IR), 
I" I, v ,  A, N; and there exists an unique I q monotone,  linear and q-  
continuous extension of I to B q. B C B q Q B qt and I q = I qt = o n  
B q . 

With q ( f )  = l - ( f )  :=  i n f { l ( g ) ;  f < g ~ B} one has B q = 
Rprop(B, I )  (proper Riemann-l- integrable  functions or the "two-sided 
completion" 7Z of  Loomis [12] p. 170), and q = q.  on B q. 

1.2. Starting with B, I ,  q and qe = I~  as above, one gets 
RI(B,  I )  :=  B qt =closure  of B in ~ x  with respect to the distance 
d ( f ,  g) = ( I - ) e ( I f  - gl) =abstract  Riemann-l- integrable  functions of 
[3], containing the "one-sided completion" of Loomis [12] p. 178. 

We recall that It is the "essential upper functional" associated 
with I -  in sense of Anger and Portenier [1], so that, R1(B, I )  is 
the set of  all the essentially integrable functions (w.r.t. I - ) .  

For RI(B ,  I )  the study of  convergence concepts related to the 
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integrability yields results similar to the classical ones (e.g. the l - -  
closedeness property of RI(B, I)  and the Lebesgue convergence theo- 
rems). 

Finally, it is interesting to note that if B and I are as above 
and I is a -cont inuous  (or with Daniell 's continuity condition) i.e. 

l(hn) ~ 0 whenever  0 < hn ~ B,  hn > hn+I ~ 0 pointwise on 
X, by Aumann [2], 

q ( f ) l ' ~ ( f )  := i n f  l(hn); f < hn, O < hn e B , 
n= l  n= l  

defines a a-subaddi t ive integral metric on I~+. Then, B qt - - -LI (B,  I) 
(usual Danieil- l- integrable functions). 

1.3. We consider now B, I arising from finitely additive set 
function /z, with arbitrary set X. 

f2 is a semiring of sets from X, /~ �9 f2 ~ I~+ is finitely additive 
r 

on f2, B~ =real-valued step functions on f2 and lu(h) :=  ] h d u ,  

n 

h ~ B~, where B~ contains all h = ~ _ a i X A ,  n E N, ai E R Ai E 
i=1 

f n a n d  hdu = Z ailz(Ai)" 
i=1 

For Bn, I u, q = 17 and qe = (l~)e one has B q = Rp,ot,(lz, f2) 
(abstract proper Riemann-/~-integrable functions of Loomis [12]) and 
B q* = Rl(Bf~, If2) = Rl(/z, ~) (Riemann-/z-integrable functions of 
Giinzler [8]), which contains L(X,  ~ ,  lz, I~) of Dunford-Schwartz [6]. 

In particular, X = I~, f2 = {[a,b[;  -cx~ < a < b < ~x~} 
and #( [a ,  bD = b -  a gives the classical proper Riemann-integrable 
functions. 

One has Rprop(~,~,) C RI(// . ,I~)f ' l  R X, and if X ~ f2 then 
RI(~,I~)  = L (X ,  f2, Iz, IR). Finally, if /z is a-addi t ive and fl is 
a a-r ing,  then Rl (# ,  R) =Lebesgue-/z-integrable functions L I (/z, R) 
modulo  null functions ([9], A. 146), and one gets the usual Lebesgue 
convergence theorems. 
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3. Product systems. 

In this section we can apply the general theory of  the section 2, 
to discuss product systems and Fubini 's theorem in an abstract set- 
ting, considering the results peculiar to abstract Riemann integration. 

We shall assume that Xl,  X2 are arbitrary sets and X3 :=  Xi x 

X2. 

For j =  1 ,2 ,3 ,  Bj is a vector lattice CI~  xj and q j '~xJ - -+  
is an upper integral. 

If f 6 I~ x3 and x ~ Xl ,  we define fx(Y) :=  f ( x , y )  for each 

y 6 X2 and (q2f)(x) := q2(fx). 

Let II :=  Bl ~ Ii~ be a nonnegative linear functional which is 
ql( l"  I)-continuous, and 12 : B2 --+ I~ a nonnegative linear functional 

such that l l2( f ) l  < q2(]fl)  for all f 6 B2. 

A system (X3, B3) is called a product system with respect to 
(Xi, Bl) and (X2, B2), whenever for each f 6 B3 the following 
conditions are satisfied: 

i) fx ~ B2 for each x ~ Xl.  

ii) 12f ~- Bl, where (12f)(x) :---- 12(fx), x c= Xi. 

In all that follows (X3, B3) will be a product system. 

We define a nonnegative linear functional on B3 by the rule 

13(f) :=  (ll o 12)(f) = Ii(12f) for each f E B3. 

In view of the definitions involved, it is easily checked that 
(5) If p , q  are upper integral on I~ x, then q,  = (q , ) , ,  q,  < p ,  if 
p < q  and q, < (qe), < qe < q on k x. 

For j = 2, 2, 3, if qj �9 ~ is an upper integral, then ql oq2 is an 

upper integral, (ql o q2), = (ql ) ,  o (q2), and (q3), < (ql ) ,  o (q2)* if 

q3 >-- q l o q2. 

As we have seen in the section 2, B xj, j = 1 ,2 ,3 ,  denotes 
the set of  all the qj-integrable functions and lqJ is the qj-continuous 
extension of lj to Bj qj, again denoted by lj. 

A C Xj is called an qj-null set if qj(XA) = O. 

(6) If f e B qj, g e l~Xj and q j ( l f - g l )  = 0, then g ~ By / and 
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lj ( f )  = lj (g). 

In all the follows we assume, for j = l, 2, 3, that 

(7) qj �9 ~xj ~ ~ is a regular upper integral determined by Bj C 
IRXJ vector lattice, and q3 > ql o q2 on I~ x3. 

Now, using the properties of the integral considered and ha- 
ving in mind the corollary 2.1., we obtain a Fubini's theorem for 
q-integrable functions. 

THEOREM 3.1. I f  f ~ B q3 then 
3 

i) q2f, (q2 ) , f  E B q'. 

ii) There exist Ak C Xl, k ~ N, ql-null sets, such that fx ~ B q2 
oo 

for all x ~ X I -- U Ak. 
k = l  

iii) There exists g ~ B ql defined by 12(fx) if fx e B q2 and such 
that 13(f) = Ii(g). 

Proof i) For f 6 Bg 3, by (2), (3), (5) and lemma 2.1, we have 

(ql o q 2 ) ( f ) =  qt (q2 f )  > Iql[(q2)*f]  l q3(f )  > 

- - | (ql),[q2f] J 

> (qi) ,[(q2), f]  > (q3) , ( f ) ,  

so that, q l ( q 2 f ) =  ( q l ) . ( q 2 f ) E  R, and by lemma 2.2., q 2 f  e B q~. 

Similarly, (q2 ) . f  6 B q~. 

ii) For x 6 Xl ,  set h(x) :=  q2(fx) - (q2).(fx).  One has 0 < h 
B ql and ql(h) = 0. 

I l/ Now, let Ak :=  x ~ X l ; h ( x ) > _ ~  , k ~ N. Since ql(Xak) --< 

kql (h) = 0, Ak are ql-null sets, and by (6) and lemma 2.2., fx ~ B q2 

for all x ~ X l - - U A k .  
k - - I  
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iii) Finally, if g ~ I~ x~ such that h(fx)  <__ g(x) <_ (12),(fx) for 
oo 

all x E X I -  U Ak, then by lemma 2.2., we obtain g ~ B q~ and 
k = l  

l l (g)  = l l ( h f )  = 13(f).  �9 

THEOREM 3.1. contains properly that of Eisner [7] p. 269, for 
which we obtain a simplified proof Adeed, example 2 below shows 
that there exist functions which theorem 3.1. is applicable, but not 
the corresponding results of [7] or [111. 

Remarks 2. 

2.1. In the Bourbaki situation, where the nonnegative linear 
functional I �9 B ~ IR is r-continuous,  i.e. l(h,,) ~ 0 if net 
(hn) C B decreases pointwise to 0, the space L r = L3(B, I) of 
Bourbaki- l- integrable functions and the corresponding integral exten- 
sion 13 �9 L ~ ~ IR are well defined (see for example Pfeffer [13] p. 
44), with Daniel l -Ll(B,  I)  C L 3. 

Here 13 > I [  o I~ and there is an analogue to theorem 2.1. (see 
[13], p. 186). 

Special cases: X = o p e n  sets C R", f2 = {intervals}, 
/z =Lebesgue  measure /z~ on f2. Also, Co(X, R) with arbitrary Hau- 
sdorff space X and any nonnegative linar 1 on Co(X, R), which is 
automatically r-continuous.  

Note that Ii o 12 is a Daniell or Bourbaki integral according to 
whenever 11 and 12 were Daniell or Bourbaki integrals, respectively. 

We recall that, if Ifl ~ B3 whenever f ~ B3 :-- Bi | B2 (= 
"tensor product space"), then B3 is a product system, so the above 
results can be applied to some classical measure product  spaces (see 
[13] & 15). 

2.2. As in remark 1.1., for f ~ Rxi,  j = 1,2,  3, we define the 
Riemann upper integral qj( f )  = I f ( f ) .  Then the set of all the pro- 
per Riemann-l j- integrable functions Rprop(Bj, lj) is the closure of By 
with respect to the integral-seminorm Ij-(I" I). If  f ~ Rprop(Bj, lj), 

l j ( f )  :=  17 ( f )  -- ( I j - ) . ( f )  ~ IR. 

Since, inf{ll(12f);  f < h ~ B3} > inf{li(I2h); I 2 f  < 12h, 
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h ~5 93} > in f{ l l (g);  I z f  < g ~ B1}, one has I f ( f )  > ( l l O I ~ ) ( f )  
for all f c ~x3, and all the above is applicable ((3), (7) hold), 
so that, theorem 2.1. gives the corresponding Fubini theorem for the 
proper Riemann- l-integrable functions Rprop (B3, 13). 

We retain the basic assumptions as formulated in definition 2.3., 
and (7). 

(8) For any f 6 lt~xJ, j = 1,2, 3, qj,e(f)  :---- sup{qj(f A h); 0 < h 
Bj}. 

For f ~ R x3, we define (q2,ef)(x) :=  q2,e(fx) for each x ~ Xi.  

ByJ'~ denotes the set of all the qj,e-integrable functions and I qj,t 

the unique qj,e (1" [)-continuous extension of  lj to B qj'~. 

In all that follows we add two other basic assumptions: 

(9) Given 0 < h ~ Bl, 0 < g ~ B2 there exists k ~ B3 such that 
g(y) < k(x, y) if h(x) > O. 

If 0 < h 6 BI then h A 1 ~ Bl (Stone's c o n d i t i o n ) a n d  
q l ( h A e ) ~ 0 ,  as e ~ 0 .  

(10) 

Observe that the above assumptions are fullfilled in most  appli- 
cations, for example for step functions or continuous functions with 
compact  support (see remark 1.3.). 

LEMMA 3.1. If  (7), (9) and (10) hold, and f ~ ~x3 such that 
the following condition holds 

(.) To f there exists g ~ B q2"~ such that fx < g for each 
x E X I .  

Then, q3,e(f) > (ql,e o q2.e)(f). 

uqz't and e > 0, there exists tE 6 B2 such that Proof. For g a "2 

q2,e(lg - tel) < e. 

Now, with 0 < g < [ g -  tel + ItE[ and (*), we have 

fx = A A g  ~ I g -  t~l A f~ + ItE[ A A -< [ g -  tel + [tE[ A fx. 

By definition, (ql.eoq2,e)(f) = ql,e(q2,ef) :=  sup{ql [(q2,ef)Ah]; 
< h ~ B t } .  
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To 0 <  h a Bi and [tel ~ B2, by (9), there exists l ~ B3 such 
that [tel < Ix on X1, if hx) > O. 

Thus, one gets q2,e(fx) < q2,e(Jg - tel) + q2,e(Itel A fx) < 
e +q2,e(Itel A fx) ,  so that, ql[(q2,ef) Ah]  < ql(e A h )  +ql[q2.e(ItEI A 
fx)  A h] = ql(ql[q2(lt~[ A f~) A h], 

Finally, since f~AItEI < f x A l  if h(x) > 0, one has ql[(q2 ,e f )A 
h] < q l (h  A e) + ql[q2(f.~ A Ix) < ql(h A e) + q 3 ( f  A I) ,  and with 
e ~ 0 we conclude the result. �9 

In lemma 3.1. the boundedness of the section functions is ne- 
cessary by example 1 below. 

We shall now apply the inequality established in lemma 1.3. to 
give the following generalization of theorem p. 141 of  Hoffmann [11] 
(see also Elsner [7], with (7), and [5] theorem 2). 

THEOREM 3.1. (Fubini theorem for qe-integrable functions). I f  
(7), (9) and (10) hold, and f E B q3'' such that Ifxl _< g ~ B q2'' 

for each x ~ XI,  the the following assertions hold: 

i) There exist Ak ~ Xl ,  k ~ N, ql,e-null sets such that fx ~ B q2"t 
o o  

for  each x ~ XI - U Ak. 
k=l  

nql'e defined by q2,e(f) if fx ~ B q2"e, such that ii) There exists k ~ ~l 

ql,e(k) = q3,e(f), i.e. lq3.e(f) = (1 ql.t o ]q2,e)(f). 

Proof The proof  is similar to the one of theorem p. 141 of [11] 
by application of  lemma 3.1. We will denote only the main steps. 

i) For f ~ B q3t and e > 0, there exists t ~ B3 such that 

q3,e(lf - t[) < e. 

For each x e XI set r  :=  in f {q2 ,e ([ fx -h l ) ,  for each h e B2} / ') and set Ak :=  X ~ X l ; 4 ~ ( x ) > - ~ -  , k ~ N. With lemma 1.3. the 

sets A~, k ~ N, are ql,e-null, and i) follows immediatelly. 

ii) It is suffices to see that there is (q2.ekn) C B such that 

ql,e(l(q2,ekn) - kl) < 3 (ql,e o q2,e)(Ikn - f l )  < 3 q3,e(lkn - f l ) ,  
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where (kn) C B3 and q3,e(Jk,,- f l )  ~ 0, as n ~ oo. So that, 

(ql,e o q2,t)(kn) ~ ql,t(k), as n ---* oo, and ql,e(k) = q3.~(f). �9 

Remarks 3. 

3.1. With qi = I~ ,  i = 1,2, 3, of  remark 1.1., according to 

remark 2. 2. (7) holds, and theorem 3.1. gives a Fubini type theo- 
rem for the abstract Riemann-l-integrable functions (see remarks 1.2, 

1.3.). 

3.2. With remark 1.3. for the 3. x/x-finitely additive situation, (9) 

and (10) hold. Here, the Eisner-condition that Ifl be bounded and 

there exists P e ring generated by f22 such that supp ( f )  C Xi x P 
implies that there exists g E Rl(Bn2,l ,2) such that Ifxl _< g for 
each x e XI. So that, theorem 3.2. is applicable and contains Satz 

I0 of  Eisner [7], so, we generalize in this way results analogous to 

the classical case. 

3.3. Let us finally remark that our results can be reformulated 

for Banach space valued functions, using f Ng :=  I l f l l - I( l l f l l  A g ) f ,  
with f �9 X ~ E = Banach space, g e R+, of  [9] p. 327 or [7] p. 

266. 

EXAMPLE 1. (see [7] p. 270, [11] p. 141). 

Let Xl = R, f21 = {]a, b[; a, b e R, a < b}, /XL(]a, bD = b - a,  

X2 = N, f22 = { N -  A; A finite set C N}, k(A) = 0, 3.(N) = 1 and 

X 3 = R x N .  
o o  

Given g = E nx{,lx],,,+l[ one has l~,t(g) = 0 
n = l  

(ILe o l~.t)(g ). 

< O 0  ---- 

EXAMPLE 2. Let X~ = X2 = N, ~2~ = f22 = { N -  A; A finete 

set C N}, /Xl = /1 -2  = //" additive measure /X(A) = 0, /X(N) = 1. 
Let X3 = N x N ,  f2 = { X 3 - A ;  A finite set C X3}, v : fl  --~ R, 

v(A) = O, v(X3) = 1. 

Since I~- > I~• > I~-o I~  =:  13 , we have Rprop(V,R) C 

R,,ro,,(/x •  R)  c . 
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1 
With f ( m , n )  - - - ,  one has f ~ Rprop(lZ x /z,l~) but 

m a n  
m ~ 

f f~ Rprop(V,R), and f ( m , n )  = 1 A - -  gives f ~ B 1• but 
n 

f f~ Rprop(lZ • Iz, R). 
1 

Also, for f ( m , n ) = -  if  n is even and :=  0 i f  n is odd, one 
m 

has f ~ Rprop(lX x / z , R )  with l ~ •  = 0, but for no m ~ Xl is 

f , ,  ~ Rprop(lZ, R), the exceptional set is all of  Xi .  
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