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FUBINI-TONELLI THEOREMS WITH LOCAL
INTEGRALS

E. de AMO and M. DIAZ CARRILLO (Granada)

In [3] an integral extension of Lebesgue power is stated. There the ex-
tended function class Ry(B,I) is defined, using a suitable “local convergence
in measure”, which can be traced back to Loomis [10] and Schafke [12). It
works for arbitrary Loomis systems (X, B, I), where B is a vector lattice of
real-valued functions on a set X and I is a nonnegative linear functional on
B, which need not be continuous in any sense. Riemann-y [7], Loomis’s ab-
stract Riemann [10], Dunford-Schwartz [5] integrals and essential integration
of [1] with respect to an upper integral, are subsumed.

Since Fubini theorem for finitely additive integration is, in general, false
(the existence of the abstract Riemann integral does not always imply the
existence of the repeated integrals in the sense of Riemann), it seems there-
fore natural to ask for conditions under which the repeated integrals will
exist and be equal. Conditions of this type were given by several authors
in [6], [9] and [2]. The object of this paper is to give a more general suffi-
cient condition concerning the boundedness of the section functions, in order
that Fubini theorem still hold. Indeed, using a notion of measurability in the
sense of Stone, we establish new integrability criteria of the integration in the
abstract Riemann sense; also a proof for an analogue of the Fubini—Tonelli
theorem is given.

Tt is interesting to note that the assumptions here considered may be
viewed as a natural generalization of the corresponding results of Hoffmann
[9] and Elsner [6].

In Section 1 product systems and relations between certain upper func-

. tionals, which will be used later, are discussed; we also summarize the ab-

stract Riemann integration theory. In Sections 2 and 3, Fubini and Tonelli
theorems for the abstract Riemann integrable functions are obtained.

The results are specialized and discussed in the A X p-finitely additive sit-
uation, and no continuity conditions (e.g. of Daniell type [11] §4, or “starke
integralnorm” of Schéfke [12]) are needed.

1. In what follows we adhere to the notation and terminology of [11], [2]
and [3], we will explain it whenever be necessary in order to make the paper

self contained.
We extended the usual + to R x Rbyr+s:=0if r=—-s€ (00, —00),

r—s:=r+(—s). Ry :=[0,00], R:={-c0} URU {o0}.

0236-5294/96/$5.00 © 1996 Akadémiai Kiadé, Budapest



222 E. de AMO and M. DIAZ CARRILLO

(1) For j = 1,2, X; is an arbitrary nonempty set, B; is a function vector
lattice C R%> and I;: B; — R is a nonnegative linear functional, i.e. B; is
closed under the operations and relations +, a.,=, A, V, || (e € R) and
I;(h) 2 0if 0 < h € B;. Here (f A g)(z) := min( f(z),g(z)) (similarly for v
with max) and | f|(z) := | f(z)] for all z € X].

Let X3 :; X; X X, and Bz C R*3 be a vector lattice.

If fe R and = € X;, we define the function f.(y):= f(z,y) for each
Y (S X2.

A system (X3, B3) is called a product system with respect to (X1, By)
and (X3, By) whenever for all f € Bs the following conditions are satisfied:

(i) fr € B, for each z € X3,

(ii) Iof € By, where (I f)(z) := Lx( fz).

In all the following (X3, B3) will be a product system.

We define a nonnegative linear functional on Bz by the rule I3(f)
:= I(I2f) for each f € Bs.

For f € ﬁxj, j = 1,2,3, the Riemann upper and lower integrals are de-
fined by I7(f):= inf{I;(h); f £ h€ B;} with inf@:=00 and I]?L(f)
= _I]_(—f)

The corresponding local integral is defined by

Iy o= sup{Ij"(f/\h); 0L heB;}.

Js

I and I, are positively homogeneous, monotonous and subadditive on

_._XJ
R, .

For any f € ﬁxa, we define as usual (I f(z) := I; (fz) and (I, ,f)(z)
1= I ,(fz) for all z € X;.

The following relations are easy consequences of the definitions.

Forall f € R, IT (I f) € I3 (f). Forall f e R, I7,(f) £ I; (f) and
I (f) = I7(f) if there exists h € B; with f < h.

We shall next give a brief introduction to the abstract Riemann integral
(or R;-integration). A general study of the integration used here is developed

in [3], and in a more general setting (with local integral metrics) in [4].
(2) For j =1,2,3, the extended function class Ry = R1(Bj,I;) of Ij-

s =X; .
integrable functions is defined as the set of those functions f € R ’ for \'Vthh
there exists a sequence (h,) C B; with Ij_,g(lf —hp|) = 0asn — oo, ie f
belongs to the closure of B; in R with respect to the integral seminorm
et ) . .

R, is closed with respect to %, a., ||, A, V, and there exists a unique
I -continuous extension of I|B; to R1(Bj, I;), which we denote also by I;.
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(3)If f € R1(Bj,1;) and there exists g € B; such that |f| < g, then If(f)
= I;(f) = I;,(f) € R (in this case f is called a proper Riemann integrable
function of Loomis Rprop(Bj, I;), see for example [3], [10], p. 170).

A subset A of X is said to be I;,-null if I;,(x4) = 0.

Looking for applications we consider the finitely additive space situation:

(4) Let Q be a semiring of sets from X and let p: — Ry be a finitely
additive measure on Q. With B = Bgq := real-valued p-step functions over
and I = I, := [.du on Bq, (Bq,I,) satisfies the assumptions in (1). Then,
by using the above methods, we obtain that the space of abstract Riemann-
p-integrable functions Ry(u, R) of [7] pp. 70, 199, which generalizes the space
L(X,Q,u,R) of p-integrable functions of Dunford-Schwartz of [5] p. 112, is
a special case of Ry(B,I) (see [8] and [4], 3.B).

In general, the functional I: B — R is not monotonely continuous, and
therefore it is not an abstract Lebesgue integral; however, in the mea-
sure space situation, i.e. if Q is a o-ring and p is o-additive, with I7(f)
=inf{I,(R); f £ h € Ba},onehas Ry(p,R) = L}(p, R) (=Lebesgue-p-inte-
grable functions modulo nulfunctions) by [8] p. 265.

If ©; and Q, are semirings of sets from X; and X, and A and p are
finitely additive measures on €, and Q2, respectively, it is possible to build a
product additive measure A X p in the set X; x Xo and the induced integral
Iy, as follows: Iny,(Xa;xa,) = (AX p)(Ar X Ag) forall Ay X Az € @1 X Qa.

2. In [2] an analogue to the classical Fubini theorem for the proper ab-
stract Riemann integrable functions Rprop(Bs, I3) is obtained, which gener-
alizes the corresponding results of Elsner [6] and Hoffmann [9]. In this paper
we extend those results of [2] to the abstract Riemann integrable functions
Ry(Bs3, I3), with a weaker boundedness for the section function.

In the references which we know, in order to obtain Fubini’s theorems
for abstract Riemann integrable functions (or for corresponding to the ana-
logues of the Daniell extension process, but without monotone continuity
assumption on the elementary integral I), it is necessary to assume certain
- conditions of boundedness for the section functions. For example, Elsner
in [6], p.270, gives a function f € Ri(Bs, I3) such that IT4(I5,f) = oo and
I3,(f) = 0 (see also [9], p. 141). In this case, Fubini theorem in [9] and The-
orem 1 below are false, here sup, |f| is not majorized by a function of By,

neither by an integrable function, respectively. .
In the sequel we will assume a product system (X3, B3) with the following

conditions:
(5) Given any 0 < h € By and 0 < ¢ € B, there exists k € B3 such that

@(y) < k(z,y) if h(z) >0, (z,9) € X3.
Stone’s condition on By (if 0 S h€ By then hA1E€E B;) and Ii(h N¢)
— 0 ase — 0.
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Observe that the above assumptions are fulfilled in most applications, for
example for step functions or continuous functions with compact support.

Now, when the usual Bz-boundedness of f, is replaced by the more gen-
eral Ri(B,,I;)-boundedness the following key lemma is proved.

LEMMA 1. Let (X3, Bs) be a product system satisfying (5) and let f €

® be such that the following condition holds:

(*) There exists g € Ry(Bs, I3) such that f, < g for each z € X;.
Then I;z(jzz_,ef) < I (f)- .
Proor. For g € Ri(B2,12) and € > 0, there exists ¢, € By such that

Iz_,e(lg = ‘Pe') <e
Now, with 0 < g < |g — @] + |¢e| and (), we have

fe=Fo NG S |9 — @e| A fo+ |@el A fo £19 = @] + |@e| A fr for each z € X;.

By definition, Iy (I, ,f) := sup{ 7 L f) A h); 0<he Bl}.

For 0 £ h € By and |¢.| € Bz, by (5), there exists k € Bz such that |¢|
< kr on X, if h(z) > 0.

Thus, one gets

(Iz_,ef)(x) o I{,l(fx)

< I; (19 = 0el) + I (Il A f2) < e+ Iyl A £2).-

Therefore
ID (I fYAR) SIT(e AR)+I7(I; fAK) S (e ANR)+ I (f A K),

~and with ¢ — 0 we conclude the proof. O
Without (%), Lemma 1 becomes false by the above comments.
To obtain the main result, applying the inequality established in Lemma
1, we need to impose the following assumption.
(6) For all g € B3 there ezists t € Ry1(B2,13) such that |g-| <t for each
z € X;.

TuEOREM 1 (Fubini). Let (X3, B3) be a product system satisfying (5)
and (6), and let f € Ry(Bs,I3) be such that |f;| £ ¢ € R1(B3, I2), for each
z € Xy. Then the following assertions hold:

i) There exist I ,-null sets A, C X1, n € N such that f; € Ry(B2, I2)

for each z € X1 — ollen.
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ii) There ezists F ¢ Ry(B1,11) defined by F(z)= L (f:) if
fo € B1(Bs, 1), and IT(F) = I3 (), i.e. I3 (f) = I (I3, f).

The proof is obtained in a similar way as the one of Satz in [9], p. 141,
by application of Lemma 1. The scheme of the proof is:
i) By (2), for f € R1(B3, I3), given € > 0, there exists g € B3 such that

I(If —gl) <e. Forze Xy, set ¢(z) := inf{fge(;fz —h));0<he 32}
and A, :={z € X;; ¢(z) 2 1/n}, n€ N. By Lemma 1, 0 = Il_;f(XAn)
< nlg,(|f — gl) < ne, and the result follows.

ii) Set F(z) := 2.0(2)If fz € Ri(B2, ). By (2),for f € Ry(Bs3, I3) there
exists (g,) C Bj such that 13—’2(|gn — f]) = 0, as n — co. One checks easily
that I /(|15 ,9n — k| < 3I?:Z(|gn — f|) and the result follows. (Note that, by

(6), for all g € By, |g, — fo| < |t| + l¢| € R1(Bg, 1) for each z € X7.)

Let us remark that part of Hoffmann’s results [9] (see also [6]) could be
improved by using the corresponding ones in this paper, which are obtained
for the localized seminorm integrals I Y (i)

3. In the context of the above R;-integration theory, a notion of mea-
surability in the sense of Stone is obtained in [4]. The results needed here
to prove a partial converse of Fubini’s theorem can be summarized briefly as
follows.

Let us suppose arbitrary X, B and I are given as before (1).

A function f € R”* is said to be I-measurable (with respect to (X, B))
if its “truncation” by any nonnegative h € B is I-integrable, i.e. fNh
€ Ri(B,I) for all 0 < h € B, where fNh:=(fAh)V (—h). We denote by
M the set of all I-measurable functions.

The next assertions are immediate consequences of the definitions:

_ JEM &S fAheMforal 0SheBe fH f-e M.
(7)

I (fAR)=T"(fAR)forall fe R} and 0< h e B.

Notice that for any f € M, we have |f Nh| = |f| Ah € Ry(B,I) for each
0 < h € B, hence, by (2), fNhis a proper Riemann integrable function with

IH(1fIAR) = I-(IfI A k) < T*(I£1), s0 I (I£1) S T+(111).

We also recall that always It < I, < I~ on R
Now we obtain the following lemma, which characterizes the R;-integra-
tion.

LﬁMMA 2. Let f be a I-measurable function such that It (|f]) < +oo.
Then f is an I-integrable function, and I*(|f]) = Ry-integral I(l1]).
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Proor. By (7) we can assume f 2 0. If I*t(f) < oo then there is an I-
Cauchy sequence (h,) C B such that 0 < h, < hyyq < f and I(hy) — IT(f)
as n — oo.

Forany 0 £ h € B, we have |h, — f]AR S fA(hy+h)—hy,. Set t, := f
A (hn + h), with t,, € Ry(B,I) and I't(t,) = I () € R.

Now, given ¢ > 0, there exists k¥ € B such that ¢, < k and I(k) < It(f)
+¢. So I(lhy — fIAR) £ I(k—hy,) — 0, and by (2), the result follows. O

THEOREM 2 (Tonelli). If f is an I3-measurable function with respect
to the product system (X3, Bs), such that there ezists the iterated integral

11 (Iglfl), then f € RI(B3,I3).
Proor. By assumption I1|f| € Ry(By,I;). Now, we have

I3 (1£1) = sup{ [1(L2, k); | f| 2 k € B3}
< sup{ I1(I2k); L|f| 2 Lk, k € B3} < sup{Li(h); L|f| 2 h € B}
=: I (L|f]) = L(L|f]) < oo,

and by Lemma 2 the result follows. O

Observe that if in Theorem 2 the assumptions of Theorem 1 are satisfied,
then there also exist the two integrals in the equation I3(f) = I; (I3, f), and
the equation holds.

REMARKS. a) The Example below shows that a Fubini theorem is in
general false in the form [;(Iof) = L(L1 f).

Also, this example (with By and B, interchanged) shows that, in gen-
eral, the By-boundedness for Bs (i.e. if f € B3 then |f;| £ g € B, for each
z € X1), does not imply B;-boundedness for R;(Bs, I3).

b) With (4), for the A X p-finitely additive situation, we have that (5)
holds and the By-boundedness for f, means that |f| is bounded and there ex-
ists P in the generated ring R(2;) such that supp(f) C X; X P. Thus, with
- (6) satisfied all our results are applicable; for example, Theorem 1 contains
Satz 10 of [6].

c¢) Using Lemma 2 it can be proved that f € Ry(B,I), if and only if, for
all 0 S h € B, fNhis proper Riemann integrable and limy<ep IH(f NA)
exists. In particular, given p and § as in (4), the Riemann-p-integrable func-
tions are exactly the improper integrable functions with respect to the proper
integrable functions Rpyyop(B,I) (see for example [7] p. 216 or [6] p.275). For
Q) = {intervals C R"}, u-Lebesgue measure pr, in Q, Rprop(Ba,l,) is the
classical Riemann integrable function space.

Finally, the upper Riemann integral I~ is an upper functional in the
sense of Anger and Portenier [1]; in this paper, with the notations of [1],
v = I~ is admissible and v® = I is the essential upper functional associated
with 7~, so that, Ry(B,I)=Z°(I") = the set of all essentially integrable
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functions (with respect to /). Consequently, a new integrability criteria of
R, is obtained, by applying Corollary 3.7 in [1], and the results of the above
sections apply to Z°(17).

ExaMpPLE ([6], p.270). Let X; =R, Q= {]a,b]; a,6 € R, a Lb},
pr(la,b]) =b—a, X2 =N, Qy = {A C N; Afinite or N — A finite}, A(4) = 0
if A finite, = 0 elsewhere. X3 = X; X Xs.

Let [ =1,,, I, = I\, By = Bq,, B2 = Bg,, B3z = Bq,xq,, I3 =11 ol
= Tadlar < 3.

Let f:= Y Xjnnt1]x{n}- Forallz € R, fz € By, [2(fz) =0 and L(I2f)
n=1

= 0.
Foralln € N = X, f* € By, L(f*) =1 and L(L; f) = 1.
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