A distinct subfamily of papain-like cystein proteinases regulated by senescence and stresses in *Glycine max*

Belén Esteban-García, José Antonio Garrido-Cárdenas, Diego López Alonso, Federico García-Maroto*

Grupo de Biotecnología de Productos Naturales (BIO-279), Facultad de Ciencias Experimentales, Universidad de Almería, 04120 Almería, Spain

A R T I C L E I N F O

Article history:
Received 22 January 2010
Received in revised form 3 March 2010
Accepted 3 March 2010

Keywords:
Nonsense-mediated mRNA decay
Papain-like protease
Plant stress
Senescence
Soybean

A B S T R A C T

GMCP3 encodes a cystein proteinase of *Glycine max* belonging to the papain-like family (C1A in MEROPS database) that was previously found to be involved in the mobilization of protein reserves during seed germination. Here, we report that GMCP3 is induced by senescence and diverse stresses in non-seed tissues, thus indicating a more general function in plants. Cladistic analysis of papain-like proteins of plants indicated that GMCP3, along with related proteases of other species, belongs to a distinct new group within the C1A family, which can also be distinguished by the four-exon structure of the gene. We also describe the genomic organization of GMCP3 revealing the presence of two closely related copies that are transcriptionally regulated in a similar way, although only one appears to be functional.

© 2010 Elsevier GmbH. All rights reserved.

Introduction

Proteinase enzymes catalyze either limited site-specific or complete hydrolysis on their substrates, acting in coordination with other post-translational modifications to regulate turnover, direction and activity of proteins. Among these, cysteine (sulfhydryl) proteinases (CPs) are currently receiving much attention due to their involvement in very diverse aspects of plant physiology and development. They play a role in protein storage and mobilization, senescence, programmed cell death, and are regulated by various types of environmental stresses (revised in Grudkowska and Zagdanska, 2004; Schaller, 2004). Involvement of proteolytic enzymes, including CPs, in the ubiquitin (Ub)/26S proteasome proteolytic pathway is shedding light on the connection of these components to many aspects of plant biology including senescence, cell-cycle, embryogenesis, flower morphogenesis, hormone signaling, and defense (Avcı et al., 2008; Vierstra, 2009).

The most investigated CPs are members of the papain-like group (C1A subfamily in the MEROPS catalogue http://merops.sanger.ac.uk). Along with legumains (C13 family), papain-like enzymes are the major CP in plants. C1A proteases are synthesized as relatively inactive precursors (40–50 kDa) containing an N-terminal signal peptide responsible for endoplasmic reticulum (ER) translocation, a variable pro-sequence with regulatory functions in folding and activity, and a 22–35 kDa mature enzyme. Protease activation takes place through limited intra- or inter-molecular proteolysis (Wiederanders, 2003). The structure of proteins from the C1 family exhibits the typical papain-like fold (Drenth et al., 1968), composed of two domains, an α-helix-rich (L) domain and a β-barrel-like (R) domain, separated by a groove containing the catalytic dyad formed by residues Cys25 and His159 (papain numbering), each one on each domain. Two other residues also seem to be important Gin19 aids the formation of the ‘oxyanion hole’ and Asn175 is important for proper orientation of the His imidazolium ring (Beers et al., 2004).

A number of genes encoding C1A peptidases have been identified in diverse plant species. In *Arabidopsis thaliana*, for instance, the papain-like family comprises 30 genes that have been classified into eight distinct groups (C1A-1 to C1A-8) according to their gene structures and phylogenetic relationships (Beers et al., 2004). Although information about the roles of individual genes is still fragmentary in this plant, the available data indicate that they are regulated by senescence (SAG2 and SAG12, Hensel et al., 1993; Gan and Amasino, 1995), both drought stress and senescence (RD19 and RD21, Koizumi et al., 1993), programmed cell death (CEP genes, Gietl and Schmid, 2001), and during xylogenesis (XCP genes, Funk et al., 2002). More recently, involvement of RD19 in pathogen resistance response has been demonstrated (Bernoux et al., 2008).

GMCP3 is a papain-like protease previously identified in *Glycine max* (Nong et al., 1995). Preliminary gene expression studies showed that the GMCP3 transcript is stored in the dry seeds, and fur-
ther degraded very early during germination. A possible role in the initiation of storage protein mobilization has been suggested (Nong et al., 1995). Here, we report further characterization of GMCP3, including data about the genomic organization and gene structure, as well as relationships to other papain-like proteases. Expression analysis results also showed regulation of GMCP3 by senescence and different stresses, thus indicating a more general role in the plant.

Materials and methods

Biological material and plant treatments

The Osumi variety of Glycine max was used in all the experiments. Seedlings (2–4 true leaves stage) were grown at 25°C under the controlled conditions of culture cabinets with a 16 h light/8 h dark photoperiod and 70% relative humidity. Leaf material from etiolated seedlings was used as a source of genomic DNA. The different organs analyzed were sampled from mature plants cultivated under greenhouse conditions. The plant treatments were performed using plantlets grown in soil up to the stage of two to four developed true leaves. For dehydration experiments, plantlets were collected, pooling three plants for each experimental point, frozen in liquid N2 and stored at −70°C until RNA extraction.

Experiments performed with transgenic tobacco plants containing the GMCP3 promoter fused to the GUS gene were performed with plants developed to 8–10 visible leaves stage, except for the assay of senescent leaves, which was carried out on adult plants. Leaf discs, pooled from three plants, were collected and analyzed for GUS activity as indicated below. Stress treatments were performed as in soybean. The results shown correspond to a representative transgenic line, but the same regulation was confirmed in at least two other lines, depending on the treatment.

Cloning of the GMCP3 and GMCP3-like genes

The genomic sequence comprising the whole coding region of GMCP3 was assembled from two overlapping clones obtained by PCR on genomic DNA. The two DNA fragments of 1.5 kb and 1.3 kb were generated using the oligonucleotide pairs

OCEP-1 (5′-ATGAGGCAAAAGGAGCAGCTGCTCTCAT-3′)/OCEP-2 (5′-TTGTGTCTACAGTCAGGAGCGTTGCTAC-3′), and

OCEP-3 (5′-GTGCGAGATATGTTAGAGAACAGAGCT-3′)/OCEP-4 (5′-CAGAATCAAGAAACACAGGAGATGC-3′), respectively. PCR amplification was conducted using a proofreading polymerase (Pfx®, Invitrogen) and a program consisting of a denaturation step of 2 min at 94°C, followed by 25–36 cycles of 15 s at 94°C, 30 s at 58°C and 1 min at 72°C, ending with a 5 min step at 72°C. Identity of the respective amplification products was confirmed by direct sequencing of the fragments.

Similarly, relative expression of GMCP3 and GMCP3-like genes in plantlets subjected to dehydration (experiment in Fig. 5C) was estimated by RT-PCR using either UP-N or UP-Ψ as the upstream specific primers in combination with C11 primer (5′-GAGAAAAGGACGTCTACAGGTAAG-3′), common to both genes and located at the end of the first exon. PCR conditions were as described above, using 32 cycles. As a loading control, amplification of the actin-2 was carried out in parallel on equivalent samples using the oligonucleotide primers ACT2-F (5′-GAGAAAAGGACGTCTACAGGTAAG-3′) and ACT2-R (5′-GACCTGCTACATACATCTCCTTC-3′). RT-PCR and 3′-RACE analysis

The total RNA, employed for RT-PCR and RACE analysis, was purified from different soybean tissues (leaves and developing seeds) using the RNeasy Plant Mini Kit (QIAGEN). Elimination of contaminating genomic DNA was performed using DNAse-I (RQ1 RNase-Free DNase, Promega). The cDNA for RT-PCR was synthesized from 1 to 8 μg of RNA from developing seeds, using a hot-start Taq polymerase (Taq Platinum®, Invitrogen) and a program consisting of a denaturation step of 2 min at 94°C, followed by 25–36 cycles of 15 s at 94°C, 30 s at 58°C and 1 min at 72°C, ending with a 5 min step at 72°C. Identity of the respective amplification products was confirmed by direct sequencing of the fragments.

The PCR reactions were performed in 25 μL containing cDNA derived from 0.5 μg of RNA from developing seeds, using a hot-start Taq polymerase (Taq Platinum®, Invitrogen) and a program consisting of a denaturation step of 2 min at 94°C, followed by 25–36 cycles of 15 s at 94°C, 30 s at 58°C and 1 min at 72°C, ending with a 5 min step at 72°C. Identity of the respective amplification products was confirmed by direct sequencing of the fragments.

3′-RACE was performed using the SMART RACE kit (Clontech), following manufacturer’s protocols. 1–2 μg of total RNA from developing seeds (Fig. 4C and Suppl. Fig. 2), or leaves from normal and dehydrated seedlings (Suppl. Fig. 2) were used for the synthesis of the oligo(dT) primed cDNA linked to an appropriate 5′-flanking region.

The differences and species-specific primers for PCR amplification, as indicated in the experiments. The
PCR program comprised 30 cycles of 30 s at 94 °C, 30 s at 68 °C and 3 min at 72 °C.

RNA and DNA gel blot analysis

Total RNA was extracted from different soybean tissues using the Concert® Plant RNA Reagent (Invitrogen) following the protocol provided by the manufacturer. About 10 μg per lane of total RNA were loaded onto an agarose/formaldehyde gel, separated electrophoretically, and transferred to Hybond®-N+ membranes. Filters were UV-crosslinked, pre-hybridized at 50 °C for 5 h in the 50% formamide/high SDS buffer recommended by the digoxigenin (DIG) manufacturer (Roche), and hybridized at the same temperature and same buffer solution (stringent conditions). A DIG-labeled GMPC3-specific probe was generated by random primed labeling of a 300 bp fragment corresponding to the 5’-end of the GMPC3 coding sequence. High-stringency washes were performed twice at 68 °C for 15 min in buffer containing 0.1 × SSC, 0.1% SDS, and the luminogenic substrate CSPD® was used for the detection, following the instructions provided with the DIG detection kit. Images were registered using a Chemie Genius2 detection system (SynGene).

DNA gel blot of the PCR products obtained in the 3′-RACE analysis was conducted using the same DIG-labeled probe as above and following a similar protocol. In this case, pre-hybridization and hybridization were performed in 50% formamide/high SDS buffer at 42 °C, and washes were performed at 65 °C.

Cladistic analysis

A search for CPs of the C1A family (MEROPS catalog) was performed in GenBank using the CP of Arabidopsis representative of the different subfamilies previously defined (Beers et al., 2004) as inputs for independent searches. A total of 165 CPs from dicotyledonous species were gathered and further aligned, using the program Clustal X v.1.7 (Thompson et al., 1997) under the default settings. The alignment output was used to generate an unrooted phylogenetic tree based on the Minimum Evolution method (Rzhetsky and Nei, 1992), as implemented in the MEGA package v4.0 (Tamura et al., 2007). The Poisson correction metric was used together with the pairwise deletion option, and confidence of the different subfamilies previously defined (Beers et al., 2000; Muntz et al., 2001; Muntz and Shutov, 2002). To further analyze relationships of GMPC3 with other CPs, we performed an extensive cladistic analysis including 165 plant proteinases available in GenBank and belonging to the C1A family. The unrooted Minimum Evolution tree from this analysis is depicted in Fig. 2. A search for CPs of the C1A family was completed with 20 μL of extraction buffer and mixed with 25 μL of pre-warmed (37 °C) GUS assay solution (2 mM methyl-4-umbelliferyl-β-D-glucuronide in extraction buffer). The mixture was incubated at 37 °C for 1 h, and 15 μL were withdrawn and added onto 1 mL of stop buffer (0.2 M Na2CO3). Stop buffer and 10–100 nM 4-methylumbelliferone (4-MU) were used for calibration and standardization. The fluorescence was determined using a microtiter plate reader fluorometer (Mod. FLX800, BIO-TEK Instruments Inc) at 360 and 465 nm as excitation and emission filter wavelengths, respectively. The protein concentration of the extracts was estimated by the Lowry method (Lowry et al., 1951). GUS-specific activity in the experiments was expressed as nmol of released 4-MU per min and mg of protein extract under our standard conditions.

Results

Structure and genomic organization of the GMPC3 gene

The sequence of the GMPC3 gene, spanning about 2.5 kb of genomic DNA, was obtained as described in ‘Materials and methods’ section. The nucleotide sequence deduced for the coding region was identical to that of the cDNA (Acc. No. GU452503). Gene structure, obtained by comparison to cDNA, revealed the presence of four exons (Fig. 1A). Sequences around intron/exon boundaries were found to conform the usual consensus splice sites, and are in good agreement to those predicted by software tools such as GENSCAN (Burge and Karlin, 1997).

GMPC3 encodes a protein of 380 residues, with a predicted molecular mass of 41.6 kDa. Both the signal peptide (residues 1–29) and propeptide (30–139) were encoded within the first exon of the gene, while the mature protein was contained mainly (except for the first 19 residues) in exons 2–4 (Fig. 1A).

In the course of cloning GMPC3, a closely related gene was also detected and was studied further. The genomic sequence obtained for this gene (see ‘Materials and methods’ section) shares 95% of identical nucleotides of the putative coding sequence with that of GMPC3. According to the existence of two closely related GMPC3 genes, DNA gel blot analysis revealed the presence of multiple hybridization bands under stringent conditions (results not shown), as also shown in a previous report (Nong et al., 1995). A detailed characterization of the GMPC3-related gene, hereafter designated GMPC3Ψ, revealed a 17 nts deletion at the end of the first exon (Fig. 1B). This generates a premature termination codon (PTC) placed 358 nts downstream the ATG, and 100 nts from the predicted splicing site located downstream (Fig. 1A).

GMPC3 defines a distinct subgroup within the C1A family of proteases

GMPC3 encodes a cistein proteinase belonging to the C1A family (MEROPS catalogue), which groups papain-like proteases with a catalytic dyad composed of Cys134 and His307 residues (Beers et al., 2004). A database search showed similarity of GMPC3 to CPs CPR4 of Vicia sativa (Acc. No. Z99172) and Phaseolus vulgaris (Acc. No. Z99955), which are involved in seed development and globulin mobilization during early germination stages (Fischer et al., 2000; Muntz et al., 2001; Muntz and Shutov, 2002). To further analyze relationships of GMPC3 with other CPs, we performed an extensive cladistic analysis including 165 plant proteinases available in GenBank and belonging to the C1A family. The unrooted Minimum Evolution tree from this analysis is depicted in Fig. 2. As shown in this figure, GMPC3 and CPR4 group together with two other uncharacterized proteins from Vitis vinifera (CAN64491) and Arabidopsis thaliana (AAL49820), making up a clade (99% bootstrap
Fig. 1. (A) Deduced genomic structures for the GMCP3 genes. The position of the PTC within the first exon of GMCP3\(^\mathrm{W}\) is indicated. Correspondence to the protein sequence (dark shadowed), as well as critical Q, C, H and N residues for proteolytic activity (see ‘Introduction’ section) are also shown. (B) Sequence alignment around the PTC in GMCP3\(^\mathrm{W}\) and GMCP3 genes. The PTC is generated by a 17 nts deletion in GMCP3\(^\mathrm{W}\).

Fig. 2. Unrooted Minimum Evolution cladogram of plant cystein proteinases from the C1A family. Amino acid sequences retrieved from the GenBank were analyzed as described in ‘Materials and methods’ section, and the different clades designated according to the eight groups (C1A-1 to C1A-8) previously described in Arabidopsis (Beers et al., 2004). Sequences from Arabidopsis are identified by their accession numbers. Also five different sequences identified in soybean are designated as G. max-1. Putative GMCP3 orthologues within the GMCP3 group are identified by the name of their respective species. Bootstrap values supporting the different groups are indicated on relevant nodes.
Fig. 3. RNA gel blot analysis of GMCP3 in different soybean organs. Equivalent amounts (about 10 μg) of total RNA from green leaves (L), developing seeds (Se), stems (St), flowers (F), roots (R) and senescent leaves (Ls), collected from adult plants at anthesis, were subjected to electrophoresis in an agarose/formaldehyde gel and analyzed by RNA gel blot as described in ‘Materials and methods’ section. Hybridization was performed using a DIG-labeled GMCP3 probe under high-stringency conditions and the detection with CSPD. The ethidium bromide (EtBr) staining of the gel is shown below as a loading control.

support) clearly differentiated from the eight groups (C1A-1 to C1A-8) previously described in Arabidopsis (Beers et al., 2004, Fig. 2). In this tree, the GMCP3 clade appears as a sister group of the C1A-6 subfamily that includes two other papain-like proteins of soybean (designated G. max-2 and G. max-3 in Fig. 2) and the RD19 protein, which is induced by drought in Arabidopsis (Koizumi et al., 1993) and is involved in pathogen resistance (Bernoux et al., 2008). Differentiation of the GMCP3 and the C1A-6 groups is also supported by their gene structures. While GMCP3 and their putative orthologues of Arabidopsis (NC_003075), Vitis (NC_012009), Populus (NC_008475), and Ricinus (NW_002994282) share a common gene structure comprised by four exons, members of the CA1-6 group in their respective species have three or four (Beers et al., 2004).

Alignment of C1A and GMCP3-related proteins revealed strong similarity between the two groups (Suppl. Fig. 1), with long stretches of conserved residues, including critical residues. However, conspicuous differences were apparent, mainly in a region before the processing site for the propeptide. Thus, a glycine-rich sequence is present at the end of the propeptide in GMCP3-like proteases, while charged residues predominate in the same region of CA1-6 proteins (Suppl. Fig. 1). Divergence within this region might be responsible for differences in the processing of the two groups of CPs.

GMCP3 expression in different organs of the soybean plant

The expression of GMCP3 in different organs of the soybean plant was investigated by RNA gel blot analysis. As shown in Fig. 3, the GMCP3 transcript was detected only in developing seeds of normal plants. Interestingly, a high expression level was also observed in senescent leaves, while it was not detectable in green leaves sampled from equivalent positions (same leaf number) of a younger plant (Fig. 3). Since cross-hybridization of the DNA probe was expected from the high similarity of the two related GMCP3 genes, an evaluation of the individual expression of each gene was carried out using semi-quantitative RT-PCR analysis. When PCR was performed using cDNA from developing seeds together with appropriate specific primer combinations (Fig. 4B), a much lower amount of the amplification product was always obtained for GMCP3Ψ as compared to GMCP3, a difference that was particularly apparent at lower cycle numbers (Fig. 4B). Similar results were obtained using two other primer combinations (results not shown), indicating that the expression level of GMCP3Ψ in the seed tissues was much lower relative to that of the GMCP3 gene. A low relative expression of GMCP3Ψ was also found when RT-PCR was performed on mRNA from senescent leaves (not shown).

To further investigate gene expression and the size of transcripts derived from each gene, 3′-RACE was performed using the seed cDNA (Fig. 4C). Different specific combinations of a gene-specific upstream primer with the common downstream anchor primer were assayed (Fig. 4A). Amplification using the GMCP3-specific primer UP-N produced a 1.4 kb band of the expected transcript size that hybridized with a GMCP3 probe. Sequencing of this fragment confirmed the identity of the GMCP3 transcript, and allowed the identification of a polyadenylation site 256 nts downstream from the stop codon (Acc. No. GU452501). However, no detectable product hybridizing with the GMCP3 probe was obtained from the same cDNA using either the UP-Ψ or the C17-specific primers for GMCP3Ψ (Fig. 4C). Although two bands (of 0.4 and 1 kb) were apparent after PCR with the C17 primer, cloning and sequencing of these fragments showed that they were not related to any of the GMCP3Ψ genes. RACE amplification with C16, a common primer for both genes, produced a 1.2 kb band of the expected size, although further analysis of the product revealed that it corresponded exclusively to GMCP3.

The reduced transcript level for GMCP3Ψ is in agreement with the presence of a PTC on the first exon of this gene, and indicates that it could be down-regulated through a nonsense-mediated mRNA decay (NMD) mechanism (Hori and Watanabe, 2007).

Regulation of GMCP3 and GMCP3Ψ by plant stresses

We examined the possible regulation of the GMCP3 gene in soybean seedlings subjected to different stresses. RNA gel blot analysis showed a clear induction of GMCP3 in plantlets that were dehydrated over 24 or 48 h (Fig. 5A), while expression was not detectable at 12 h or in control plants. Pulverization treatment of plants with 100 μM ABA, a well-known mediator of the drought stress, was also able to trigger a similar response of GMCP3 (Fig. 5B).
RT-PCR performed with specific primers to individually determine the regulation of GMCP3 and GMCP3̲ indicated that dehydration increases the expression of both genes, though the transcript level in soybean plantlets subjected to dehydration was again higher than the levels attained by GMCP3̲ (Fig. 5C). 3′-RACE experiments using specific primers were in agreement with these results and, in addition, they showed that transcripts generated upon stress induction of GMCP3 were the same size as those present in normal developing seeds (Suppl. Fig. 2).

Regulation of GMCP3 by wounding and related regulatory molecules was also investigated. As shown in Fig. 6A, induction of GMCP3 was detected by RNA gel blot analysis from 24 h after leaf wounding. Treatment of plants with MeJa, a key mediator of the octadecanoid pathway MeJa, thus linking its expression to the plant defensive pathway, was also observed for prGMCP3̲::GUS plantlets subjected to wounding (Fig. 7B) or drought stress (Fig. 7C). Similarly, pulverization with MeJa and ABA regulators induced GUS activity (Fig. 7D).

Discussion

In a previous study, a cDNA encoding a papain-like protease in soybean, called GMCP3, was reported (Nong et al., 1995). The initial characterization of GMCP3 indicated seed-specific expression and a possible role during protein storage mobilization. Data presented here suggest a more general function. We have shown that GMCP3 is also highly expressed during leaf senescence. Regulation by senescence has been also reported for CPs from diverse subfamilies of papain-like proteinases (Fig. 2), including, for example, SAG2, SAG12, RD19 and RD21 in Arabidopsis (Hensel et al., 1993; Koizumi et al., 1993; Gan and Amasino, 1995). These proteases have been classically recognized as effectors in protein remobilization, allowing recycling to other parts of the plant (Smart, 1994; Buchanan-Wollaston, 1997), although a regulatory role in the programmed cell death established during senescence has been more recently proposed (revised in Schaller, 2004). GMCP3 is also induced by drought stress, similarly to what has been reported for other CPs including RD19 and RD21 (Koizumi et al., 1993). Accordingly, up-regulation by ABA, a key hormonal regulator of the hydraulic stress pathway, was also observed for GMCP3. Although the protein substrates of CPs induced by water deficiency have not been defined, their involvement in rebuilding of damaged or misfolded proteins is generally assumed. We have shown that GMCP3 is also induced by mechanical wounding and the regulator of the octadecanoid pathway MeJa, thus linking its expression to the plant defensive response. Evidence is emerging that papain-like CPs play crucial roles in the regulation of protein degradation in plant cells.
roles in plant–pathogen/pest interactions. Some examples are the papain from papaya and Mir1 (maize inbred resistance 1) from maize, both extracellular secreted proteins acting against insect larvae (see Shindo and Van Der Hoorn, 2008 for a review). It has recently been reported that RD19, a CP from the sister clade to the GMCP3 group, is required for the R-protein-mediated resistance to the bacteria *Ralstonia solanacearum* in *Arabidopsis* (Bernoux et al., 2008).

We cloned the genomic sequence of GMCP3, revealing a gene structure composed of four exons. Comparison of GMCP3 to other plant CPs allowed the detection of highly related sequences in *Arabidopsis*, *Vitis*, *Populus* and *Ricinus* (Suppl. Fig. 1) making up a well-supported separate cluster. All of these genes shares the same structure, and they likely represent GMCP3 orthologues. This notion is reinforced by the existence, in the same organisms (also in soybean), of related CPs within the C1A-6 sister clade, and suggests an early divergence of these two lineages in dicots. Previous analysis allowed the identification of eight groups within the C1A family based on sequence similarity and gene structure (Beers et al., 2004). Our cladistic analysis indicated that GMCP3–related proteins make up a separate group within the C1A family for which little information is available from any of these organisms. In *Arabidopsis*, for instance, a cDNA (CAB41090) was annotated encoding a possible orthologue of GMCP3, but it was assumed to be seed-specific (Gruis et al., 2002). However, a more detailed analysis, using the Genevestigator software (Hruz et al., 2008) on available transcriptional profiling data for the *Arabidopsis* gene, indicated similar regulation to GMCP3 by diverse plant stresses (including drought and wounding) as well as related hormonal signals (ABA and MeJa) (Suppl. Fig. 3), in addition to seed-specific expression under normal conditions (Suppl. Fig. 4).

A search for cis-acting DNA motifs in promoters of the GMCP3 group is also in agreement with a similar regulation for these genes. Thus, element complexes containing RY and G boxes, which are involved in seed-specific expression and ABA response (Ezcurra et al., 1999), are present within the proximal 5′–regulatory region of the genes (Suppl. Table 1). In addition to G elements, multiple W-boxes classically involved in defense-related processes (Chakravarthy et al., 2003) might be related to the wounding/MeJa response.

We found a closely related copy (GMCP3Ψ) of the GMCP3 gene in soybean. The presence of a PTC at the end of the first exon, in addition to a reduced level of the GMCP3Ψ transcript, suggests that this gene represents a ‘non-functional’ copy (pseudogene) of GMCP3. Analysis of the 5′–regulatory region of GMCP3Ψ showed that it is able to direct high expression of a reporter gene with a similar regulation pattern to that of GMCP3. This indicates some kind of post-transcriptional regulation. It has been found that genes containing a PTC located more than 50 pb of the next intron–exon boundary are subject to down-regulation through a NMD mechanism (Hori and Watanabe, 2007; Wu et al., 2007). Since this is the case for GMCP3Ψ, it is likely that reduced expression of the pseudogene is caused by selective degradation of its transcript via NMD.

However, a possible role for GMCP3Ψ cannot be excluded, even though its transcript level is largely reduced compared to GMCP3. It is important to note that eventual translation of the GMCP3Ψ mRNA would result in a truncated protein containing the whole propeptide. Given the inhibitory activity described for this domain

![Fig. 7. GUS activity in GMCP3Ψ::GUS transgenic tobacco plants under different conditions: (A) leaves from four adult primary transformant plants collected at different senescence states (dark green non-senescent, light green starting senescence, or fully senescent yellow leaves); (B) plants collected at different times (12–72 h) after mechanical wounding. Unwounded plants were taken at the same time as a control. (C) Plants kept without watering for 6–30 days. Watered plants grown in the same conditions were used as a control; (D) plants pulverized with 0.1 mM ABA, MeJa, or just water as a control. GUS measurements were performed on protein extracts as described in ‘Materials and methods’ section, and the values expressed as specific activity (4-MU nmol min⁻¹ mg⁻¹).](image)
(Taylor et al., 1995; Chagas et al., 1996), it is tempting to speculate a possible function of the GMCP3 parologue to trans-regulate the protease activity of GMCP3.

Acknowledgements

This work was supported by grants from the Ministerio de Ciencia y Tecnología (MCYT, AGL2005-01498/AGR) and Junta de Andalucía (P05-189-AGR). Belén Esteban-García was recipient of a postgraduate fellowship from the Junta de Andalucía.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jplph.2010.03.012.

References

