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Abstract

Naive Bayes models have been successfully used in classification problems where
the class variable is discrete. Naive Bayes models have been applied to regres-
sion or prediction problems, i.e. classification problems with continuous class, but
usually under the assumption that the joint distribution of the feature variables
and the class is multivariate Gaussian. In this paper we are interested in regres-
sion problems where some of the feature variables are discrete while the others are
continuous. We propose a Naive Bayes predictor based on the approximation of
the joint distribution by a Mixture of Truncated Exponentials (MTE). We have
designed a procedure for selecting the variables that should be used in the con-
struction of the model. This scheme is based on the mutual information between
each of the candidate variables and the class. Since the mutual information can not
be computed exactly for the MTE distribution, we introduce an unbiased estimator
of it, based on Monte Carlo methods. We test the performance of the proposed
model in three real life problems, related to higher education management.

Key Words: Bayesian networks, mixtures of truncated exponentials, naive Bayes
models, probabilistic prediction.

1 Introduction

The problem of classification consists of determining the class to which
an individual belongs given that some features about that individual are
known. In other words, classification means to predict the value of a class
variable given the value of some other feature variales. Naive Bayes models
have been successfully employed in classification problems where the class
variable is discrete (Friedman et al., 1997). A naive Bayes model is a
particular class of Bayesian network, which is a decomposition of a joint
distribution as a product of conditionals, according to the independencies
induced by the structure of a directed acyclic graph in which each vertex
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corresponds to one of the variables in the distribution (Pearl, 1988), and
attached to each node there is a conditional distribution for it given its
parents. The naive Bayes structure is obtained as a graph with the class
variable as root and whose only arcs are those that aim from the class
variable to each one of the features.

When the class variable is continuous, the problem of determining the
value of the class for a given configuration of values of the feature variables
is called regression or prediction rather than classification. Naive Bayes
models have been applied to regression problems but only under the as-
sumption that the joint distribution of the feature variables and the class
is multivariate Gaussian (Gámez and Salmerón, 2005). If the normality as-
sumption is not fulfilled, the problem of refression with naive Bayes models
has been approached using kernel densities to model the conditional dis-
tibution in the Bayesian network (Frank et al., 2000), but the obtained
results are poor. Furthermore, the use of kernels introduce a high com-
plexity in the model, which can be problematic specially because standard
algorithms for carrying out the computations in Bayesian networks are not
valid for kernels. A common restriction of Gaussian models and kernel-
based models is that they only apply to scenarios in which all the variables
are continuous.

In this paper we are interested in regression problems where some of
the feature variables are discrete while the others are continuous. There-
fore, the joint distribution is not multivariate Gaussian in any case, due
to the presence of discrete variables. We propose a Naive Bayes predic-
tor based on the approximation of the joint distribution by a Mixture of
Truncated Exponentials (MTE). The MTE model (Moral et al., 2001) has
been proposed in the context of Bayesian networks as a solution to the
presence of discrete and continuous variables simultaneously, showing good
features as an exact model as well as an approximation of other probability
distributions (Cobb, Rumı́, and Salmerón, 2005; Cobb, Shenoy, and Rumı́,
2006).

The rest of the paper is organised as follows. In section 2 we review the
necessary concepts of Bayesian networks and explain how they can be used
for regression. The MTE model is introduced in section 3. Afterwards,
we propose the naive Bayes predictor based on MTEs in section 4, and a
variable selection scheme for it in section 5. The application of the proposed
models to three real world problems is described in section 6. The paper
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ends with conclusions in section 7.

2 Bayesian networks and regression

Consider a problem defined by a set of variables X = {X1, . . . ,Xn}. A
Bayesian network (Jensen, 2001; Pearl, 1988) is a directed acyclic graph
where each variable is assigned to one node, which has associated a condi-
tional distribution given its parents. An arc linking two variables indicates
the existence of probabilistic dependence between both of them. An im-
portant feature of Bayesian networks is that the joint distribution over X
factorises according to the d-separation criterion as follows (Pearl, 1988):

p(x1, . . . , xn) =

n
∏

i=1

p(xi|pa(xi)) , (2.1)

where Pa(Xi) denotes the set of parents of variable Xi and pa(xi) is a
configuration of values of them. Figure 1 shows a Bayesian network which
encode the distribution

p(x1, x2, x3, x4, x5) = p(x1)p(x2|x1)p(x3|x1)p(x5|x3)p(x4|x2, x3) .

X1

X2 X3

X4 X5

Figure 1: A sample Bayesian network

A Bayesian network can be used for classification purposes if it consists
of a class variable, C, and a set of feature variables X1, . . . ,Xn, so that an
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individual with observed features x1, . . . , xn will be classified as a member
of class c∗ obtained as

c∗ = arg max
c∈ΩC

p(c|x1, . . . , xn) , (2.2)

where ΩC denotes the support of variable C. Similarly, a Bayesian network
can be used for regression, i.e, when C is continuous. However, in this case
the goal is to compute the posterior distribution of the class variable given
the observed features x1, . . . , xn, and once this distribution is computed, a
numerical prediction can be given using the mean, the median or the mode.

Note that p(c|x1, . . . , xn) is proportional to p(c) × p(x1, . . . , xn|c), and
therefore solving the regression problem would require to specify an n di-
mensional distribution for X1, . . . ,Xn given the class. Using the factorisa-
tion determined by the Bayesian network, this problem is simplified. The
extreme case is the so-called Naive Bayes structure (Friedman, Geiger, and
Goldszmidt, 1997; Duda, Hart, and Stork, 2001), where all the feature
variables are considered independent given the class. An example of Naive
Bayes structure can be seen in figure 2.

Class

Feature 1 Feature 2 Feature n· · ·

Figure 2: Structure of a Naive Bayes classifier/predictor

The independence assumption behind naive Bayes models is somehow
compensated by the reduction on the number of parameters to be estimated
from data, since in this case, it holds that

p(c|x1, . . . , xn) = p(c)
n
∏

i=1

p(xi|c) , (2.3)

which means that, instead of one n-dimensional conditional distribution, n

one-dimensional conditional distributions are estimated.
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3 The MTE model

Throughout this paper, random variables will be denoted by capital letters,
and their values by lowercase letters. In the multi-dimensional case, bold-
faced characters will be used. The domain of the variable X is denoted by
ΩX. The MTE model is defined by its corresponding potential and density
as follows (Moral et al., 2001):

Definition 3.1. (MTE potential) Let X be a mixed n-dimensional random
vector. Let Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the discrete and
continuous parts of X, respectively, with c+ d = n. We say that a function
f : ΩX 7→ R

+
0 is a Mixture of Truncated Exponentials potential (MTE

potential) if one of the next conditions holds:

i. Y = ∅ and f can be written as

f(x) = f(z) = a0 +
m
∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj







(3.1)

for all z ∈ ΩZ, where ai, i = 0, . . . ,m and b
(j)
i , i = 1, . . . ,m, j =

1, . . . , c are real numbers.

ii. Y = ∅ and there is a partition D1, . . . ,Dk of ΩZ into hypercubes such
that f is defined as

f(x) = f(z) = fi(z) if z ∈ Di ,

where each fi, i = 1, . . . , k can be written in the form of equation
(3.1).

iii. Y 6= ∅ and for each fixed value y ∈ ΩY, fy(z) = f(y, z) can be defined
as in ii.

Example 3.1. The function φ defined as

φ(z1, z2) =



























2 + e3z1+z2 + ez1+z2 if 0 < z1 ≤ 1, 0 < z2 < 2

1 + ez1+z2 if 0 < z1 ≤ 1, 2 ≤ z2 < 3
1

4
+ e2z1+z2 if 1 < z1 < 2, 0 < z2 < 2

1

2
+ 5ez1+2z2 if 1 < z1 < 2, 2 ≤ z2 < 3

is an MTE potential since all of its parts are MTE potentials.
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Definition 3.2. (MTE density) An MTE potential f is an MTE density
if

∑

y∈ΩY

∫

ΩZ

f(y, z)dz = 1 .

A conditional MTE density can be specified by dividing the domain
of the conditioning variables and specifying an MTE density for the condi-
tioned variable for each configuration of splits of the conditioning variables.
In (Moral et al., 2001) a data structure was proposed to represent MTE
potentials, which is specially appropriate for this kind of conditional den-
sities: The so-called mixed probability trees or mixed trees for short. The
formal definition is as follows:

Definition 3.3. (Mixed tree) We say that a tree T is a mixed tree if it
meets the following conditions:

i. Every internal node represents a random variable (either discrete or
continuous).

ii. Every arc outgoing from a continuous variable Z is labeled with an
interval of values of Z, so that the domain of Z is the union of the
intervals corresponding to the arcs Z-outgoing.

iii. Every discrete variable has a number of outgoing arcs equal to its
number of states.

iv. Each leaf node contains an MTE potential defined on variables in the
path from the root to that leaf.

Mixed trees can represent MTE potentials defined by parts. Each en-
tire branch in the tree determines one sub-region of the space where the
potential is defined, and the function stored in the leaf of a branch is the
definition of the potential in the corresponding sub-region.

Example 3.2. Consider the following MTE potential, defined for a discrete
variable (Y1) and two continuous variables (Z1 and Z2).
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φ(y1, z1, z2) =











































































2 + e3z1+z2 if y1 = 0, 0 < z1 ≤ 1, 0 < z2 < 2

1 + ez1+z2 if y1 = 0, 0 < z1 ≤ 1, 2 ≤ z2 < 3
1

4
+ e2z1+z2 if y1 = 0, 1 < z1 < 2, 0 < z2 < 2

1

2
+ 5ez1+2z2 if y1 = 0, 1 < z1 < 2, 2 ≤ z2 < 3

1 + 2e2z1+z2 if y1 = 1, 0 < z1 ≤ 1, 0 < z2 < 2

1 + 2ez1+z2 if y1 = 1, 0 < z1 ≤ 1, 2 ≤ z2 < 3
1

3
+ ez1+z2 if y1 = 1, 1 < z1 < 2, 0 < z2 < 2

1

2
+ ez1−z2 if y1 = 1, 1 < z1 < 2, 2 ≤ z2 < 3

A possible representation of this potential by means of a mixed proba-
bility tree is displayed in figure 3.

Z2Z2

Z1

Z2 Z2

Z1

Y1

0 1

0<Z1≤1 1<Z1<2

0<Z2<2 2≤Z2<3

1<Z1<20<Z1≤1

0<Z2<2 0<Z2<2 0<Z2<22≤Z2<3 2≤Z2<3 2≤Z2<3

2 + e3z1+z2

1 + ez1+z2

1
4

+ e2z1+z2

1
2

+ 5ez1+2z2

1 + 2e2z1+z2

1 + 2ez1+z2

1
3

+ ez1+z2

1
2

+ ez1−z2

Figure 3: A mixed probability tree representing the potential φ in example 3.2.

4 The naive Bayes predictor based on MTEs

Our proposal consists of solving the regression problem in which some fea-
ture variables are discrete and some other continuous using a predictor with
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naive Bayes structure, and modelling the corresponding conditional distri-
butions as MTEs. More precisely, we will use a 5-parameter MTE for each
split of the support of the variable, which means that in each split there
will be 5 parameters to be estimated from data:

f(x) = a0 + a1e
a2x + a3e

a4x . (4.1)

We follow the estimation procedure developed by Romero et al. (2006),
which has these main steps:

1. A Gaussian kernel density is fitted to the data.

2. The domain of the variable is split according to changes in concav-
ity/convexity or increase/decrease in the kernel.

3. In each split, a 5-parameter MTE is fitted to the kernel by least
squares estimation.

Once the model is constructed, it can be used to predict the value of
the class variable given that the value of the feature variables is observed.
The prediction is carried out by computing the posterior distribution of
the class given the observed values for the features. A numerical prediction
for the class value can be obtained from the posterior distribution. In the
experiments we have carried out, we have observed that the best results
are obtained using the expected value rather and the median rather than
the mode. In this paper we have computed the posterior distribution using
the Shenoy-Shafer algorithm for probability updating in Bayesian networks,
but adapted to the MTE case as in (Rumı́ and Salmerón, 2005).

5 Selecting the feature variables

An important issue to address in any classification or regression problem
is to choose the feature variables to be included in the model. In general,
it is not true that including more variables increases the accuracy of the
model. It can happen that some variables are not informative for the class
and therefore including them in the model provides noise to the predictor,
besides the increase in the number of parameters to be learnt from data.
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There are different approaches to the problem of selecting variables in
prediction and classification problems:

• The filter approach, which consists of establishing a ranking of the
variables according to some measure of relevance respect to the class
variable, usually called filter measure. Then a threshold for the rank-
ing is selected and variables below that threshold are discarded.

• The wrapper approach, however, proceeds by constructing several
models with different sets of feature variables, and finally the model
with higher accuracy is selected.

• The filter-wrapper approach is a mixture of the former ones. First
of all, the variables are ordered using a filter measure and then they
are incrementally included or excluded from the model according to
that order, so that a variable is included whenever it increases the
accuracy of the model.

The accuracy of a model is measured in this way:

1. The database containing the information for the feature variables and
the class is divided into two parts, Dl and Dt.

2. The model is estimated using database Dl. Usually, Dl contains the
70% of the records in D, chosen at random, while the remaining 30%
is assigned to Dt. This is the choice we have adopted in the case
studies reported in this paper.

3. The accuracy of the model is measured using database Dt, by mea-
suring the rooted mean squared error between the actual values of
the class and those ones predicted by the model for the records in
database Dt. If we call c1, . . . , cm the values of the class for the
registers in database Dt and ĉ1, . . . , ĉm the corresponding estimates
provided by the model, the rooted mean squared error is obtained as

rmse =

√

√

√

√

1

m

m
∑

i=1

(ci − ĉi)2 . (5.1)
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In this paper we have followed a filter-wrapper approach, using as fil-
ter measure the mutual information between each variable and the class.
The mutual information has been successfully applied as filter measure in
classification problems for instance by Pérez et al. (2006). The mutual
information between two random variables X and Y is defined as

I(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y) log2

fXY (x, y)

fX(x)fY (y)
dydx , (5.2)

where fXY is the joint density for X and Y , fX is the marginal density for
X and fY is the marginal for Y .

In the case of using MTEs, each density is expressed as in equation (4.1),
what troubles the computation of the integral in equation (5.2). Therefore,
we have chosen to estimate the value of the mutual information. The
estimation procedure that we have designed is based on the next theorem.

Theorem 5.1. Let X and Y be two continuous random variables with
densities fX and fY respectively, and joint density fXY . Let fX|Y denote
the conditional density of X given Y . Let Y1, . . . , Yn be a sample drawn
independently from distribution fY (y). Let X1, . . . ,Xn be a sample such
that each Xi, i = 1, . . . , n is drawn from distribution fX|Y (x|Yi). Then,

Î(X,Y ) =
1

n

n
∑

i=1

(

log2 fX|Y (Xi|Yi) − log2 fX(Xi)
)

(5.3)

is an unbiased estimator of I(X,Y ).

Proof. According to the way in which samples X1, . . . ,Xn and Y1, . . . , Yn

are obtained, it follows that the joint sample of bivariate points (X1, Y1),. . .,
(Xn, Yn) is actually drawn from the distribution fXY (x, y). Therefore, if we
denote by EfXY

the expected value with respect to density fXY , we have
that

E[Î(X,Y )] = EfXY

[

1

n

n
∑

i=1

(

log2 fX|Y (Xi|Yi) − log2 fX(Xi)
)

]

=
1

n

n
∑

i=1

EfXY

[

log2 fX|Y (Xi|Yi) − log2 fX(Xi)
]
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=
1

n

n
∑

i=1

EfXY

[

log2

fX|Y (Xi|Yi)

fX(Xi)

]

= EfXY

[

log2

fX|Y (X|Y )

fX(X)

]

=

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y) log2

fX|Y (x|y)

fX(x)
dydx

=

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y) log2

fXY (x, y)

fX(x)fY (y)
dydx

= I(X,Y ) .

The consistency of estimator Î(X,Y ) is guaranteed by the next propo-
sition.

Proposition 5.1. Let În(X,Y ) denote estimator Î(X,Y ) when it is com-
puted from a sample of size n. The succession {În(X,Y )}∞n=1 is consistent.

Proof. It is enough to show that

(i) lim
n→∞

E[În(X,Y )] = I(X,Y ) and

(ii) lim
n→∞

Var(În(X,Y )) = 0.

The proof of (i) is trivial, since according to theorem 5.1, E[În(X,Y )] =
I(X,Y ) for all n > 0 and therefore the limit is equal to I(X,Y ) as well.

In order to prove (ii), we need the expression of the variance of the
estimator.

Var(În(X,Y )) = Var

(

1

n

n
∑

i=1

(

log2 fX|Y (Xi|Yi) − log2 fX(Xi)
)

)

=
1

n
Var

(

log2 fX|Y (X|Y ) − log2 fX(X)
)

where Var
(

log2 fX|Y (X|Y ) − log2 fX(X)
)

does not depend on n and is fi-
nite whenever distributions fX|Y and fX are positive. Therefore, we can
conclude that
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lim
n→∞

Var(În(X,Y )) = 0 .

Now we have the necessary tools for giving a detailed algorithm for
constructing the selective naive Bayes predictor.

Algorithm 5.1 (Selective naive Bayes predictor).

INPUT:

• The class variable C.

• The feature variables X1, . . . ,Xn.

• A database D for variables X1, . . . ,Xn, C.

OUTPUT:

• The selective naive Bayes predictor for variable C.

1. For i := 1 to n

• Compute Î(Xi, C).

2. Let X(1), . . . ,X(n) be a decreasing order of the feature variables ac-

cording to Î(X(i), C).

3. Divide the database into two sets, one for learning the model (Dl) and
the other for testing the accuracy of the learnt model (Dt).

4. Construct a naive Bayes predictor, M , for variables C and X(1):

(a) Estimate a marginal MTE density for C, fC, from database Dl.

(b) Estimate a conditional MTE density for X(1) given C, fX(1)|C ,
from database Dl.

(c) Let rmse(M) be the estimated accuracy of model M using database
Dt, according to formula (5.1).

5. For i := 2 to n
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(a) Let M1 be the naive Bayes predictor obtained from M by adding
variable X(i), i.e., by estimating a conditional density for X(i)

given C, fX(i)|C , from database Dl.

(b) Let rmse(M1) be the estimated accuracy of model M1 using
database Dt, according to formula (5.1).

(c) If (rmse(M1) ≤ rmse(M))

• M := M1.

6. Return (M)

6 Case studies

We have tested the performance of the selective naive Bayes predictor in
three practical problems related to higher education management. More
precisely, we will use data regarding the University of Almeŕıa.

Problems 1 and 2 consists of predicting the performance rate and success
rate, respectively, for a given degree program. The study is restricted to a
database with information about all the degree programs in the university
of Almeŕıa in years 2001 to 2004.

The performance rate is defined as

pr =
no

ns

(6.1)

where ns is the number of credits1of all the subjects selected by the students
in a given year, and no is the number of credits actually obtained by the
students at the end of the same year.

The success rate is defined as

sr =
no

ne

(6.2)

where no is as defined above and ne is the number of credits for which the
students have actually went to the final exam.

In problems 1 and 2, we have the following feature variables:

1Spanish university subjects are measured in credits. One credit corresponds to ten
hours of lectures.
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• Degree: The degree program.

• OptRate: Rate of credits that can be obtained with subjects freely
chosen by the student.

• OptOffer: Number of free-election subjects offered (in credits) di-
vided by the number of free-election credits that the student has to
obtain to complete the degree.

• Prt: Ratio between the amount of practical credits and total amount
of credits required in a degree program.

• SmallGroups: Ratio between the number of classes with no more
than 20 students and the global number of classes in each subject.

• BigGroups: Ratio between the number of classes with not less than
80 students and the global number of classes in each subject.

• Dedication: Number of credits coursed by the students divided by
the number of students.

• Give-upRate: Rate of students that leave the university without
having finished the degree program.

• Rate S-L: Number of students per lecturer.

• PhD: Fraction of credits in the degree taught by lecturers owning the
PhD degree.

Problem 3 consists of predicting the number of students in a given
subject. In this case, we have a database containing information about all
the subjects offered at the University of Almeŕıa from years 2001 to 2004.
The variables considered in problem 3 are:

• Degree: The degree program.

• Period: Part of the degree (first or second half) in which the subject
is located.

• Subject.

• Course: The course (year) in which the subject is located.
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Table 1: Estimated mutual information between each variable and the class for

problem 1 (predicting the performance rate)

Variable Mutual Information

OptOffer 0.1998
Prt 0.1791
SmallGroups 0.1361
OptRate 0.1357
Dedication 0.1119
Give-upRate 0.1033
Rate S-L 0.0692
Degree 0.0428
BigGroups 0.0235
PhD 0.0169
AccessMark 0

Table 2: Estimated mutual information between each variable and the class for

problem 2 (predicting the success rate)

Variable Mutual Information

Prt 0.1400
SmallGroups 0.1026
Dedication 0.0939
OptRate 0.0583
OptOffer 0.0544
Rate S-L 0.0497
Degree 0.0262
Give-upRate 0.0253
BigGroups 0.0126
PhD 0.0098
AccessMark 0

• AXX: Number of students in the given subject in year XX, ranging
from 01 to 04.

• prXX: Performance rate for the given subject in year XX, ranging
from 01 to 04.
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Table 3: Estimated mutual information between each variable and the class for

problem 3 (predicting the number of students)

Variable Mutual Information

S04 0.8338
S03 0.6853
S02 0.5795
S01 0.4953
Degree 0.0865
Period 0.0630
pr01 0.0526
pr04 0.0520
Subject 0.0516
pr03 0.0470
pr02 0.0450
Course 0.0257

The goal of problem 3 is, therefore, to predict the number of students
in year 2005.

In the three problems, we have tested the following models:

• NB(mean): Naive Bayes predictor including all the feature variables
and predicting with the mean of the posterior distribution.

• NB(median): Naive Bayes predictor including all the feature vari-
ables and predicting with the median of the posterior distribution.

• SNB(mean): Selective naive Bayes predictor obtained by algorithm
5.1 and predicting with the mean of the posterior distribution.

• SNB(median): Selective naive Bayes predictor obtained by algo-
rithm 5.1 and predicting with the median of the posterior distribu-
tion.

• Linear model: A linear regression model including all the variables,
and considering the discrete variables as continuous.

The estimated mutual information for the considered variables in prob-
lems 1, 2 and 3 can be seen in tables 1, 2 and 3 respectively. The results
obtained in the three problems are summarised in tables 4, 5 and 6.
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Table 4: Results for problem 1 (predicting the performance rate)

Method rmse No. variables

NB(mean) 0.0884 11
NB(median) 0.0921 11
SNB(mean) 0.0818 9
SNB(median) 0.0814 6
Linear model 0.1154 11

Table 5: Results for problem 2 (predicting the success rate)

Method rmse No. variables

NB(mean) 0.0462 11
NB(median) 0.0471 11
SNB(mean) 0.0383 8
SNB(median) 0.0381 8
Linear model 0.0476 11

Table 6: Results for problem 3 (predicting the number of students)

Method rmse No. variables

NB(mean) 31.1731 12
NB(median) 31.7893 12
SNB(mean) 23.6530 7
SNB(median) 23.6138 7
Linear model 16.4054 12

6.1 Results discussion

In two out of the three problems, the selective naive Bayes predictor pro-
vides the best results. Only in problem 3 the linear model is better. It
is not surprising, since it is known that Bayesian networks are of special
interest when representing nonlinear systems.

The variable selection procedure always provides significant improve-
ments, which are specially remarkable in problem 3. It can also be noticed
that using the median instead of the mean for the numerical prediction
results in more accurate estimations, probably due to the robustness of
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the median. However, the differences between both are minor. We have
not reported results of the mode, since they were far away from the ones
provided by the mean and the median.

An added value of NB and SNB with respect to the linear model is
that they do not only provide numerical prediction, but they also give the
posterior distribution of the class variable, which allows to make other types
of inferences like answering queries as what is the probability of the number
of students being between 100 and 150.

7 Conclusions

In this paper we have introduced a framework for approaching regression
problems where some of the feature variables are discrete, based on the
Bayesian network methodology and using mixtures of truncated exponen-
tials as underlying probabilistic model. We have also proposed a variable
selection scheme according to the mutual information, and adopting a filter-
wrapper strategy.

We have applied the developed models to three practical problems,
showing reasonably good behaviour, except for the case of predicting the
number of students in which the linear model outperformed the predictors
proposed here.

In future works, we plan to test the models in more real-world and syn-
thetic datasets, and compare the performance of the selective naive Bayes
predictor versus the Gaussian model developed by Gámez and Salmerón
(2005). Furthermore, more sophisticated variable selection strategies can
be considered.
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