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La Cañada de San Urbano s/n
04120 Almeŕıa (Spain)
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Summary. In this paper we propose a methodology for the imputation of qualita-
tive missing data using Bayesian networks. The idea is to learn a Bayesian network
from the available complete data and use it to simultaneously impute all the miss-
ing cells in a register by means of abductive inference. The proposed methodology
is experimentally tested and compared with the use of classification trees.

1 Introduction

Missing or incomplete data conform a serious problem that can be found very
frequently in all kinds of surveys. The presence of missing data complicates
the data analysis process, since most of the statistical procedures require com-
plete samples. In many cases, the decision adopted by the analysts consists of
discarding the registers with missing values and performing the analysis using
only complete registers. The drawback of this approach is that the sample size
can be significantly reduced and furthermore, much information contained in
the sample can be lost; Namely, the information provided by the records with
missing data.

When these records are discarded, it is assumed that the missingness mech-
anism is completely at random (MCAR), which means that it does not depend
on the data (neither missing nor observed). A more realistic assumption is to
consider that the missing data are missing at random (MAR), indicating that
they depend on the observed values but not on the missing ones themselves.
These issues are discussed in [13].

Most of the modern methods for missing data assume the MAR condition
[16], and usually the missing values are imputed by first fitting a regression
model to the observer variables that are correlated to the missing ones. When
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the missing variables are qualitative, instead of regression models, in the last
years classification trees have been successfully applied as imputation tools
[1, 4].

Another commonly used approach is based on iterative algorithms that
start from an initial rough model and impute the missing values using it.
Afterwards, the model is improved taking into account the imputed values.
The process is repeated until a steady state is reached. Examples of these
methods are the EM algorithm [8], the methods based on Gibbs sampling [9]
and the stochastic EM algorithm [3].

The rest of the paper is organised as follows. The problem of imputation
of missing values is stated in section 2. We propose an iterative imputation
algorithm in section 3. An incremental method is presented in section 4. The
performance of the proposed method is experimentally tested in section 5 and
the paper ends with a discussion of the results in section 6.

2 Imputation of missing values

Along this paper we assume a sample S = {X(1), . . . ,X(n)} of qualitative
random vectors (i.e. discrete random vectors with finite support). For each
vector X(i), some of its coordinates may be missing, and will be denoted by

X
(i)
m . The observed coordinates will be denoted by X

(i)
o .

In general, the way in which imputation algorithms operate can be di-
vided into two steps: (1) Learning a model from the data, and (2) imputing
the missing values using the learnt model. These two steps can be repeated
so that it is possible to start off with a rather easy model (for instance a
uniform distribution) that is iteratively improved according to the observed
data. For instance, the EM algorithm begins with an initial configuration of
the parameters in the model and then imputes the missing values using the
initial model. The parameters are then re-calculated as those that maximise
the expected value of some sufficient statistic used to estimate them. The
process is repeated until convergence is reached.

A similar behaviour is shown by the data augmentation (DA) algorithm,
that is based on Gibbs sampling [9]. It starts from some initial assignment to
the missing values and then iterates changing the values of the missing vari-
ables simulating from the distribution of each missing variable given the other
ones (observed and missing). The simulation is repeated until an equilibrium
is reached.

In the case of qualitative random vectors, in both algorithms it is fun-
damental the way in which the learnt model is represented. First of all, the
number of parameters to estimate when learning a joint probability distribu-
tion for a set of qualitative variables grows exponentially with the number of
variables. Furthermore, simulating from such a distribution can be a difficult
task: It requires an initial configuration of the variables with positive proba-
bility and, besides, it is possible to reach a configuration that can be difficult
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to change. These problems have been deeply studied within the context of
Bayesian networks [10, 15].

3 Imputation using Bayesian networks

Bayesian networks have been successfully employed as efficient representa-
tions of joint distributions [6, 11]. A Bayesian network for a set of variables
X = {X1, . . . , Xk} is an acyclic directed graph where each node represents a
random variable and such that there is a conditional distribution p(xi|xpa(i))
for each variable Xi given its parents in the graph, Xpa(i). A key property of
Bayesian networks is that the joint distribution over X factorises as

p(x) =

k∏

i=1

p(xi|xpa(i)). (1)

The fundamental of the algorithm we propose in this paper consists of
using a Bayesian network as a model for the data, which is learnt from the

observed variables X
(i)
o , i = 1, . . . , n. Once the model is obtained, a value for

each X
(i)
m , i = 1, . . . , n is simulated from it:

Algorithm IMPUTE BN(S, N)

Input: A sample (database) S = {X(1), . . . ,X(n)} with missing data, and the
number of iterations (N).
Output: A database S′ where the missing values have been imputed.

1. Sm := {x ∈ S | x contains missing values} ; So := S \ Sm.
2. FOR i := 1 to N

a) IF (i = 1), Sl := So ELSE Sl := So ∪ Sm.
b) Learn a Bayesian network G from Sl.
c) For each x = (xm,xo) ∈ Sm

i. Generate a new value xm for Xm from the distribution p(xm|xo)
computed from G.

ii. Replace xm in x.
3. RETURN S′ := So ∪ Sm.

Note that, in the first iteration, the network is learnt using only the com-
plete registers in the database. In the next iterations, the imputed values are
used as well. It is aimed at improving the quality of the database in each it-
eration. Another important feature of this algorithm is that the initial model
(network) is not chosen at random, but trying to extract the best represen-
tation of the observed data. We describe now how the network is learnt (step
2b), as well as the generation of the values to impute (step 2(c)i).
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3.1 Learning a Bayesian network from data

Several methods for learning Bayesian networks can be found in the literature
(see [2] for instance). In this paper we have chosen the so-called K2 algorithm
[5]. This method searches amongst the space of possible Bayesian networks for
a given set of variables. The search starts with a network without arcs, and
from then on, the network is completed inserting each time the arc that best
increases its quality, as long as it does not make a cycle. The quality of the
network is measured in terms of the likelihood of the data for such network.
The algorithm ends when the inclusion of any new arc does not increase the
quality of the network.

The reason to choose the K2 algorithm is that it is fast and produces
accurate networks. However, any other algorithm can be employed.

3.2 Obtaining the values to impute from the learnt network

In step 2(c)i of algorithm IMPUTE BN, a value xm for the missing variables
in a record is generated from the conditional distribution of the missing vari-
ables given the observed ones, p(xm|xo). This distribution is not explicitly
contained in the Bayesian network G, but can be computed from it. However,
if the number of variables is high, dealing with that distribution may be in-
feasible, since the amount of probability values required to represent it grows
exponentially with the number of variables.

We have approached this problem realising that, in practice, it may be un-
necessary to manipulate all the probability values of p(xm|xo). For instance,
we could choose to impute the missing values using the mode of the distribu-
tion. The mode can be obtained from the Bayesian network using abductive

inference, which consists of computing

x∗

m = arg max
xm

p(xm|xo) . (2)

This value can be computed from the network without explicitly obtaining
the joint distribution for Xm [14]. Nevertheless, imputing using the mode has
some drawbacks. It is known that this technique does not preserve the distri-
bution of the data, but rather increases its peaks. Besides, there are situations
in which the mode has a probability value very close to other configurations
of Xm. For instance, if the mode has probability 0.201 and another configu-
ration has probability 0.2, the last one would never be imputed. However, the
difference between both probabilities could be due to estimation error.

One alternative approach could be to simulate a value xm from p(xm|xo),
but again the problem of efficiency arises, since it would be necessary to
handle all the values in the distribution. We have decided for a compromise
between efficiency and precision, which consists of computing the M most
probable values of xm given xo and then draw one of them according to their
probabilities. The M configurations are obtained using Nilsson’s algorithm
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[14]. But still it is possible to find problems in which the computation of the
M most probable configurations is not feasible. In order to deal with this
situation, an approximate abduction algorithm can be used [7].

4 Incremental register imputation

In algorithm IMPUTE BN, for each iteration a network is constructed and
all the missing data are imputed from it. This approach can be refined if, at
first, registers with few missing cells are completed, since they might contain
valuable information to improve the quality of the learnt network. Then the
network can be re-constructed and used to impute the rest of the missing
data. The details of the algorithm incorporating this approach are as follows.

Algorithm INCR IMPUTE BN(S)

Input: A sample (database) S = {X(1), . . . ,X(n)} with missing data.
Output: A database S′ where the missing values have been imputed.

1. Let k be the number of variables in each item of the sample.
2. Sm := {x ∈ S | x contains missing values} ; So := S \ Sm.
3. FOR i := 1 to k

a) Si := {x ∈ Sm | x has i missing values}.
b) Sm := Sm \ Si.
c) Learn a Bayesian network G from So.
d) For each x = (xm,xo) ∈ Si

i. Generate a new value xm for Xm from the distribution p(xm|xo)
computed from G.

ii. Replace xm in x.
e) So := So ∪ Si.

4. RETURN S′ := So.

Observe that this algorithm, unlike the former one, is incremental rather
than iterative. Of course, the process could be repeated but the trials we have
carried out over several examples suggest that the effort invested is not worth.

5 Experimental evaluation

We have carried out a series of experiments in order to test the performance
of the algorithms proposed in this paper. We have considered three databases:

• chest: A database with 8 variables and 2000 registers generated using
forward sampling from the chest clinic network used in [12].
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• water: A 32-variable database with 4000 registers generated by forward
sampling from the water network borrowed from the Decision Support
Systems group at Aalborg University
(http://www.cs.auc.dk/research/DSS/Misc/networks.html).

• housing: A database with 13 variables and 506 registers taken from the
UCI Machine Learning Repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html).
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Fig. 1. Results of algorithm IMPUTE BN for database chest with 10 iterations
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Fig. 2. Results of algorithm IMPUTE BN for database housing with 10 iterations

In each database, a 60% of their registers have been selected at random
and, in the selected registers, each cell is set as missing with probability equal
to 0.4.

We have tested algorithms IMPUTE BN and INCR IMPUTE BN, and
compared their performance with an algorithm based on classification trees.
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Fig. 3. Results of algorithm IMPUTE BN for database water with 10 iterations

Table 1. Comparative results of imputation using classification trees, algorithm
INCR IMPUTE BN and IMPUTE BN after 10 iterations

Classification tree INCR IMPUTE BN IMPUTE BN

chest 0.0328 0.0051 0.0058
housing 0.0371 0.0157 0.0278
water 0.0328 0.0051 0.0058

All these methods have been implemented within the Elvira system, which is
available from http://leo.ugr.es/~elvira.

The accuracy of the imputation is measured in terms of the mean squared
error (MSE) of the marginal distribution of each imputed variable (computed
from the imputed database) with respect to its exact distribution (computed
from the original database). The results of algorithm IMPUTE BN for 10
iterations are displayed in figures 1, 2 and 3, while in table 1 the proposed
algorithms are compared with the use of classification trees.

6 Discussion

According to the experimental results, the proposed algorithms outperform
the one based on classification trees, which produces very good results as well.
It was expectable since Bayesian networks are known to be more a powerful
tool for classification than trees. With respect to the two proposed methods,
incremental imputation seems to be the best choice rather than the iterative
algorithm.

The reason why the results do not improve very much as the number
of iteration increases (even in the experiment with the housing database
the error increases in the second iteration) is that the initial model is very
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accurate, due to the refinement of existing learning procedures for Bayesian
networks.

As future works, we plan to extend the methods to continuous variables
and study their performance in presence of functional dependencies, where
the representation power of Bayesian networks should make a difference.
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