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The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Calabi-Yau categories

The bounded derived category of coherent sheaves on a
Calabi-Yau manifold has a Serre functor which is isomorphic
to a power of the shift functor.

A triangulated category satisfying this condition was defined
to be a Calabi-Yau category by Kontsevich.

Now Calabi-Yau categories appear in

mathematical physics;

representation theory of finite dimensional algebras;

...
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Calabi-Yau algebras

Throughout, we fix an algebraically closed field k with
characteristic 0. All Hopf algebras mentioned are assumed to
be Hopf algebras with bijective antipodes.

(Ginzburg) An algebra A is called a Calabi-Yau algebra of
dimension d if

(i) A is homologically smooth. That is, A has a bounded
resolution of finitely generated projective A-A-bimodules.

(ii) There are A-A-bimodule isomorphisms

ExtiAe (A,Ae) ∼=

{
0, i 6= d ;

A, i = d .

In the following, Calabi-Yau will be abbreviated to CY for
short.
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Lemma 1 (Keller)

If A is a CY algebra of dimension d, then the category Db
fd(A) is a

CY category, where Db
fd(A) is the full triangulated subcategory of

the derived category D(A) of A consisting of complexes whose
homology is of finite total dimension.
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Examples of CY algebras

Let A be a finite dimensional algebra. Then A is CY if and
only if A is semisimple and symmetric.

The polynomial algebra k[x1, · · · , xn] is CY of dimension n.

(Berger) The Weyl algebra
An = k[x1, · · · , xn, y1, · · · , yn]/ < xiyj − yjxi − δij >
is CY of dimension 2n.
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Dualizing complexes

CY algebras are closely related to algebras having a rigid
dualizing complex.

(Yekutieli) Let A be a Noetherian algebra. Roughly speaking,
a complex R ∈ Db(Ae) is called dualizing if the functor

RHomA(−,R) : Db
fg (A)→ Db

fg (Aop)

is a duality, with adjoint RHomAop(−,R).

Here Db
fg (A) is the full triangulated subcategory of the derive

category D(A) of A consisting of bounded complexes with
finitely generated cohomology modules.
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Rigid Dualizing complexes

(Van den Bergh) Let A be a Noetherian algebra. A dualizing
complex R over A is called rigid if

RHomAe (A, AR ⊗RA) ∼= R

in D(Ae).

An algebra A is CY of dimension d if and only if A is
homologically smooth and has a rigid dualizing complex A[d ].
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Hopf CY algebras

Let g be a finite dimensional semisimple Lie algebra. Chemla
computed the rigid dualizing complex of the quantized
enveloping algebra Uq(g) is Uq(g)[d ], where d = dim g.

The algebra Uq(g) is a CY algebra.

Brown and Zhang used homological integral to give the rigid
dualizing complex of an AS-Gorenstein Hopf algebra.

He, Van Oystaeyen and Zhang used homological integral to
give a necessary and sufficient condition for a Noetherian
Hopf algebra to be a CY algebra.
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AS-Gorenstein algebras

Let A be a Noetherian augmented algebra with a fixed
augmentation map ε : A→ k. A is said to be AS-Gorenstein
if

(i) injdim AA = d <∞,

(ii) dim ExtiA(Ak, AA) =

{
0, i 6= d ;

1, i = d ,

(iii) The right A-module versions of conditions (i) and (ii) hold,

where injdim stands for injective dimension.

An AS-Gorenstein algebra A is said to be regular if in
addition, the global dimension of A is finite.

Remark: Let A be a Noetherian algebra. If the injective
dimension of AA and AA are both finite, then these two
integers are equal. We call this common value the injective
dimension of A.
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Homological integrals

(Lu, Wu and Zhang) Let A be an AS-Gorenstein algebra with
injective dimension d . Then ExtdA(Ak, AA) is a 1-dimensional
right A-module. It is called the left homological integral
module of A. Any non-zero element in ExtdA(Ak, AA) is called

a left homological integral of A. We write
∫ l
A for

ExtdA(Ak, AA).

Similarly, the 1-dimensional left A-module ExtdA(kA,AA) is
called the right homological integral module of A. Any
non-zero element in ExtdA(kA,AA) is called a right
homological integral of A. Write

∫ r
A for ExtdA(kA,AA).
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Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Pointed Hopf algebras

A Hopf algebra A is called pointed, if all its simple left or right
comodules are 1-dimensional. This is equivalent to saying that
the coradical of A is a group algebra.

For a pointed Hopf algebra A, its coradical filtration is a Hopf
algebra filtration.

Let Gr A be its associated graded Hopf algebra.

Gr A ∼= R#kΓ,

where kΓ is the coradical of A and R is a braided Hopf
algebra in the category of Yetter-Drinfeld modules over kΓ.
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Nichols algebras

Let V be the vector space consisting of primitive elements of
R. It is a Yetter-Drinfeld module over kΓ.

The algebra B(V ) generated by V is a braided Hopf
subalgebra of R. It is called the Nichols algebra of V .

The algebra structure and coalgebra structure of B(V )
depend only on the braiding of V .
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The Calabi-Yau property of Nichols algebras of finite Cartan type
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Pointed Hopf algebras U(D, λ)

The pointed Hopf algebras U(D, λ) constructed by
Andruskiewitsch and Schneider constitute a large class of
pointed Hopf algebras with finite Gelfand-Kirillov dimension,
whose group-like elements form an abelian group.

Such an algebra U(D, λ) is viewed as a generalization of the
quantized enveloping algebra Uq(g), g a finite dimensional
semisimple Lie algebra.
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Background
The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Γ: a free abelian group of finite rank s;

D(Γ, (gi )16i6θ, (χi )16i6θ, (aij)16i ,j6θ): a datum of finite
Cartan type for Γ.

(aij) ∈ Zθ×θ is a Cartan matrix of finite type, where θ ∈ N; Let
X be the set of connected components of the Dynkin diagram
corresponding to the Cartan matrix (aij). If 1 6 i , j 6 θ, then
i ∼ j means that they belong to the same connected
component;
g1, · · · , gθ are elements in Γ and χ1, · · · , χθ are characters in Γ̂
such that

χj(gi )χi (gj) = χi (gi )
aij ,

χi (gi ) 6= 1, for all 1 6 i , j 6 θ.

A datum D is called generic if each χi (gi ) is not a root of
unity. For simplicity, we define qij = χj(gi ), 1 6 i , j 6 θ.

λ: a family of linking parameters for D. That is,
λ = (λij)16i<j6θ is a family of elements in k such that λij = 0
if gigj = 1 or χiχj 6= ε.
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The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Given a datum D, we define a braided vector space V of
diagonal type with basis x1, · · · , xθ whose braiding is given by

c(xi ⊗ xj) = qijxj ⊗ xi , 1 6 i , j 6 θ.

The braiding is called generic if qii is not a root of unity for all
1 6 i 6 θ.

The algebra U(D, λ) is defined to be the quotient Hopf
algebra of the smash product k〈x1, · · · , xθ〉#kΓ modulo the
ideal generated by the following relations

(adc xi )
1−aij (xj) = 0, 1 6 i , j 6 θ, i 6= j , i ∼ j ,

xixj − χj(gi )xjxi = λij(1− gigj), 1 6 i < j 6 θ, i � j ,

where adc is the braided adjoint representation.

Gr U(D, λ) ∼= U(D, 0) ∼= B(V )#kΓ.
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The Calabi-Yau property of Nichols algebras of finite Cartan type
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Let D(Γ, (gi )16i6θ, (χi )16i6θ, (aij)16i ,j6θ) be a generic datum
of finite Cartan type, Φ the root system of the Cartan matrix
(aij) and {α1, · · · , αθ} a set of simple roots.

Assume that w0 = si1 · · · sip is a reduced decomposition of the
longest element in the Weyl group W as a product of simple
reflections.

Then

β1 = αi1 , β2 = si1(αi2), · · · , βp = si1 · · · sip−1(αip)

are the positive roots.

If βi =
∑θ

j=1 mjαj , 1 6 i 6 p, then we define

g
βi

= gm1
1 · · · g

mθ
θ and χ

βi
= χm1

1 · · ·χ
mθ
θ .
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Background
The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

The homological integral of U(D, λ)

Theorem 2

Let D be a generic datum of finite Cartan type for a free abelian
group Γ of rank s, λ a family of linking parameters for D, and A
the Hopf algebra U(D, λ). Then A is Noetherian AS-regular of
global dimension p + s, where p is the number of the positive roots
of the Cartan matrix in D.
The left homological integral module

∫ l
A of A is isomorphic to kξ,

where ξ : A→ k is an algebra homomorphism defined by
ξ(g) = (

∏p
i=1 χβi )(g) for all g ∈ Γ and ξ(xi ) = 0 for all 1 6 i 6 θ.
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The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

The CY property of U(D, λ)

Theorem 3

Let D be a generic datum of finite Cartan type for a free abelian
group Γ of rank s, and λ a family of linking parameters for D.

(1) The rigid dualizing complex of the Hopf algebra A = U(D, λ)
is ψA[p + s], where p is the number of the positive roots and
s is the rank of Γ. The algebra automorphism ψ is defined by
ψ(xk) =

∏p
i=1,i 6=jk

χ
βi

(gk)xk , for all 1 6 k 6 θ, and

ψ(g) = (
∏p

i=1 χβi )(g) for any g ∈ Γ, where each jk is the
integer such that βjk = αk .

(2) The algebra A is CY if and only if
∏p

i=1 χβi = ε and S2
A is an

inner automorphism.

Remark: For a pointed Hopf algebra U(D, λ), it is CY if and only
if its associated graded algebra U(D, 0) is CY.
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The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Classification

In this classification, we assume that k = C.

CY pointed Hopf algebras U(D, λ) of dimension 3

Case Cartan matrix Generators Relations

Case 1 trivial yh, y
−1
h

y±1
h

y±1
m = y±1

m y±1
h

1 6 h 6 3 y±1
h

y∓1
h

= 1
1 6 h,m 6 3

Case 2 (I) A1 × A1 y±1
1 , x1, x2 y1y

−1
1 = y−1

1 y1 = 1
y1x1 = qx1y1

y1x2 = q−1x2y1, 0 < |q| < 1

x1x2 − q−k x2x1 = 0, k ∈ Z+

Case 2 (II) A1 × A1 y±1
1 , x1, x2 y1y

−1
1 = y−1

1 y1 = 1
y1x1 = qx1y1

y1x2 = q−1x2y1, 0 < |q| < 1

x1x2 − q−k x2x1 = (1− y2k
1 ), k ∈ Z+

Remark: Uq(sl2) belongs to Case 2 (II).
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The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

CY pointed Hopf algebras U(D, λ) of dimension 4

Case Cartan matrix Generators Relations

Case 1 trivial yh, y
−1
h

y±1
h

y±1
m = y±1

m y±1
h

1 6 h 6 4 y±1
h

y∓1
h

= 1
1 6 h,m 6 4

Case 2 (I) A1 × A1 y±1
1 , y±1

2 , x1, x2 y±1
h

y±1
m = y±1

m y±1
h

y±1
h

y∓1
h

= 1
1 6 h,m 6 2

y1x1 = q
1
x1y1, y1x2 = q−1

1
x2y1

y2x1 = q
2
x1y2, y2x2 = q−1

2
x2y2

0 < |q
1
| < 1

x1x2 − q−k
1

x2x1 = 0, k ∈ Z+

Case 2 (II) A1 × A1 y±1
1 , y±1

2 , x1, x2 y±1
h

y±1
m = y±1

m y±1
h

y±1
h

y∓1
h

= 1
1 6 h,m 6 2

y1x1 = q
1
x1y1, y1x2 = q−1

1
x2y1

y2x1 = q
2
x1y2, y2x2 = q−1

2
x2y2

0 < |q
1
| < 1

x1x2 − q−k
1

x2x1 = 1− y2k
1 , k ∈ Z+

Let A and B be two algebras in Case (I) (or (II)) defined by triples (k, q
1
, q

2
) and (k′, q′

1
, q′

2
) respectively. They

are isomorphic if and only if k = k′, q
1

= q′
1

and there is some integer b, such that q′
2

= qb
1
q

2
or q′

2
= qb

1
q−1

2
.
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The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Case 2 (III) A1 × A1 y±1
1 , y±1

2 , x1, x2 y±1
h

y±1
m = y±1

m y±1
h

y±1
h

y∓1
h

= 1
1 6 h,m 6 2

y1x1 = qx1y1, y1x2 = q−1x2y1

y2x1 = q
k
l x1y2, y2x2 = q

− k
l x2y2

x1x2 − q−k x2x1 = 0

k, l ∈ Z+, 0 < |q| < 1

Case 2 (IV) A1 × A1 y±1
1 , y±1

2 , x1, x2 y±1
h

y±1
m = y±1

m y±1
h

y±1
h

y∓1
h

= 1
1 6 h,m 6 2

y1x1 = qx1y1, y1x2 = q−1x2y1

y2x1 = q
k
l x1y2, y2x2 = q

− k
l x2y2

x1x2 − q−k x2x1 = 1− yk1 y l2
k, l ∈ Z+, 0 < |q| < 1
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The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Case 2 (V) A1 × A1 y±1
1 , y±1

2 , x1, x2 y±1
h

y±1
m = y±1

m y±1
h

y±1
h

y∓1
h

= 1
1 6 h,m 6 2

y1x1 = qx1y1, y1x2 = q−1x2y1

y2x1 = q

k−l1
l2 x1y2, y2x2 = q

− k−l1
l2 x2y2

x1x2 − q−k x2x1 = 0

k, l1, l2 ∈ Z+, 0 < l1 < l2, 0 < |q| < 1

Case 2 (VI) A1 × A1 y±1
1 , y±1

2 , x1, x2 y±1
h

y±1
m = y±1

m y±1
h

y±1
h

y∓1
h

= 1
1 6 h,m 6 2

y1x1 = qx1y1, y1x2 = q−1x2y1

y2x1 = q

k−l1
l2 x1y2, y2x2 = q

− k−l1
l2 x2y2

x1x2 − q−k x2x1 = 1− y
k+l1
1 y

l2
2

k, l1, l2 ∈ Z+, 0 < l1 < l2, 0 < |q| < 1
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The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Example

Let A be the algebra with generators xi , y±1
j , 1 6 i , j 6 3, subject

to the relations

y±1
i y±1

j = y±1
j y±1

i , y±1
j y∓1

j = 1, 1 6 i , j 6 3,

yj(xi ) = χi (yj)xiyj , 1 6 i , j 6 3,

x2
1 x2 − qx1x2x1 − q2x1x2x1 + q3x2x2

1 = 0,

x2
2 x1 − q−2x2x1x2 − q−1x2x1x2 + q−3x1x2

2 = 0,

x1x3 = x3x1.

A is a CY pointed Hopf algebra of type A2 × A1 of dimension
7.

The non-trivial liftings of A are also CY.
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Outline
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The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan
type

Rigid dualizing complexes of braided Hopf algebras over finite
group algebras
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Background
The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Let D be a generic datum of finite Cartan type and λ a family
of linking parameters for D.

Gr U(D, λ) ∼= U(D, 0) ∼= B(V )#kΓ.

The Nichols algebra B(V ) is generated by xi , 1 6 i 6 θ,
subject to the relations

adc(xi )
1−aij xj = 0, 1 6 i , j 6 θ, i 6= j .

The Nichols algebra B(V ) is an Np+1-filtered algebra, whose
associated graded algebra GrB(V ) is isomorphic to the
following algebra:

k〈x
β1
, · · · , x

βp
| x

βi
x
βj

= χ
βj

(g
βi

)x
βj

x
βi
, 1 6 i < j 6 p〉,

where x
β1
, · · · , x

βp
are the root vectors of B(V ).
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Background
The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

The CY property of Nichols algebras

Theorem 4

Let V be a generic braided vector space of finite Cartan type, and
R = B(V ) the Nichols algebra of V . For each 1 6 k 6 θ, let jk be
the integer such that βjk = αk .

(1) The rigid dualizing complex is isomorphic to ϕR[p], where ϕ is
the algebra automorphism defined by

ϕ(xk) = (

jk−1∏
i=1

χ−1
k (g

βi
))(

p∏
i=jk+1

χ
βi

(gk))xk =

p∏
i=1,i 6=jk

χ
βi

(gk)xk ,

for any 1 6 k 6 θ.
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The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

The CY property of Nichols algebras

(2) The algebra R is a CY algebra if and only if

jk−1∏
i=1

χk(g
βi

) =

p∏
i=jk+1

χ
βi

(gk),

for any 1 6 k 6 θ.
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The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Gr U(D, λ) ∼= U(D, 0) ∼= B(V )#kΓ.

Proposition 5

If A = U(D, λ) is a CY algebra, then the rigid dualizing complex of
the Nichols algebra R = B(V ) is isomorphic to ϕR[p], where ϕ is
defined by ϕ(xk) = χ−1

k (gk)xk , for all 1 6 k 6 θ.

Proposition 6

If the Nichols algebra R = B(V ) is a CY algebra, then the rigid
dualizing complex of A = U(D, λ) is isomorphic to ψA[p + s],
where ψ is defined by ψ(xk) = xk for all 1 6 k 6 θ and
ψ(g) =

∏p
i=1 χβi (g) for all g ∈ Γ.
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Background
The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Question:
Let H be a Hopf algebra, and R a braided Hopf algebra in the
category of Yetter-Drinfeld modules over H. What is the
relation between the CY property of R and that of R#H?
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Background
The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Question: Let H be a Hopf algebra, and R a braided Hopf
algebra in the category of Yetter-Drinfeld modules over H.
What is the relation between the CY property of R and that
of R#H?

If R is CY, when is R#H CY?
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The Calabi-Yau property of U(D, λ)

The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Let R be a p-Koszul CY algebra (not necessarily a braided
Hopf algebra) and H an involutory CY Hopf algebra. Liu, Wu
and Zhu showed that the smash product R#H is CY if and
only if the homological determinant of the H-action is trivial.

(Jørgensen-Zhang) Let R be an AS-Gorenstein algebra of
injective dimension d . There is a left H-action on ExtdR(k,R)
induced by the left H-action on R. Let e be a non-zero
element in ExtdR(k,R). Then there is an algebra
homomorphism η : H → k satisfying h · e = η(h)e for all
h ∈ H.

(i) The composite map ηSH : H → k is called the homological
determinant of the H-action on R, and it is denoted by hdet
(or more precisely hdetR).

(ii) The homological determinant hdetR is said to be trivial if
hdetR = εH , where εH is the counit of the Hopf algebra H.
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The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

Proposition 7

Let H be a finite dimensional semisimple Hopf algebra and R a
braided Hopf algebra in the category H

HYD. If R is an AS-regular
algebra of global dimension dR , then A = R#H is also AS-regular
of global dimension dR .
In this case, if

∫ l
R = kξR where ξR : R → k is an algebra

homomorphism, then
∫ l
A = kξ, where ξ : A→ k is defined by

ξ(r#h) = ξR(r) hdet(h),

for all r#h ∈ R#H.
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The Calabi-Yau property of Nichols algebras of finite Cartan type
Rigid dualizing complexes of braided Hopf algebras over finite group algebras

R → R#H

Theorem 8

Let H be a finite dimensional semisimple Hopf algebra and R a
Noetherian braided Hopf algebra in the category H

HYD of
Yetter-Drinfeld modules. Suppose that the algebra R is CY of
dimension dR . Then R#H is CY if and only if the homological
determinant of the H-action is trivial and the algebra
automorphism φ defined by

φ(r#h) = SH(r(−1))(S2
R(r(0)))S2

H(h)

for any r#h ∈ R#H is an inner automorphism.
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Question: Let H be a Hopf algebra, and R a braided Hopf
algebra in the category of Yetter-Drinfeld modules over H.
What is the relation between the CY property of R and that
of R#H?

If R is CY, when is R#H CY?

If R#H is CY, when is R CY?
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Rigid dualizing complexes

Theorem 9

Let Γ be a finite group and R a braided Hopf algebra in the category
Γ
ΓYD of Yetter-Drinfeld modules. Assume that R is an AS-Gorenstein

algebra with injective dimension d. If
∫ l

R
∼= kξR , for some algebra

homomorphism ξR : R → k, then R has a rigid dualizing complex ϕR[d ],
where ϕ is the algebra automorphism defined by

ϕ(r) =
∑

g∈Γ ξR(r 1) hdet(g)g−1(S2
R((r 2)g ))

for all r ∈ R. Here hdet denotes the homological determinant of the

group action.

We use ∆(r) = r 1 ⊗ r 2 to denote the comultiplication for a braided Hopf

algebra. If Γ is a finite group and the algebra R is a Γ-comodule. then R

is a Γ-graded module. Let δ denote the Γ-comodule structure. Then

R = ⊕g∈ΓRg , where Rg = {r ∈ R | δ(r) = g ⊗ r}. If r =
∑

g∈Γ rg with

rg ∈ Rg , then δ(r) =
∑

g∈Γ g ⊗ rg .
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R#H → R

Theorem 10

Let Γ be a finite group and R a braided Hopf algebra in the
category Γ

ΓYD of Yetter-Drinfeld modules. Define an algebra
automorphism ϕ of R by

ϕ(r) =
∑
g∈Γ

g−1(S2
R(rg )),

for any r ∈ R. If R#kΓ is a CY algebra, then R is CY if and only
if the algebra automorphism ϕ is an inner automorphism.
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Thank you!
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