Semisimple Hopf algebras

Viacheslav A. Artamonov (Moscow State University, Russia) viacheslav.artamonov@gmail.com

Suppose that H is a finite dimensional semisimple Hopf algebra over an algebraically closed field whose characteristic does not divide the dimension of H. We shall assume that for any positive integer d > 1 any two irreducible H-modules of dimension d are isomorphic. The category of left H-modules $_{H}\mathcal{M}$ is a monoidal category. In the talk we shall discuss Clebsch-Gordan coefficients in decompositions in $_{H}\mathcal{M}$ of tensor products of irreducible H-modules. Some classifications results are obtained in the case when there exists up to an isomorphism a unique irreducible H-module of dimension greater than 1.

Semisimple Hopf algebras

V.A. Artamonov¹

¹Faculty of Mechanics and Mathematics, Moscow State University, RUSSIA

In the talk we consider a problem of a classification up to an isomorphism of semisimple finite dimensional Hopf algebras H over an algebraically closed field k. We shall assume that either char k = 0 or char $k > \dim H$.

Dual Hopf algebras

If *H* has finite dimension then the dual space H^* is again a Hopf algebra with *convolutive* multiplication $l_1 * l_2$, comultiplication Δ^* , counit ε^* and an antipode *S*^{*} which are defined as follows:

$$l_1 * l_2 = \mu \cdot (l_1 \otimes l_2) \cdot \Delta, \quad \Delta^*(l)(x \otimes y) = l(xy),$$

(S*l)(x) = l(S(x)), $\varepsilon^*(l) = l(1)$

for all $x, y \in H$.

Group-like elements

An element $g \in H$ is a group-like element if $\Delta(g) = g \otimes g$ and $\varepsilon(g) = 1$. The set G(H) of all group-like elements is a multiplicative group in H. Elements of $G(H^*)$ of group-like elements in the dual Hopf algebra H^* are just algebra homomorphisms $H \to k$. There are left and right actions $H^* \rightarrow H$, $H \leftarrow H^*$ of H^* on H defined as follows: if $f \in H^*$, $x \in H$ and

$$\Delta(x) = \sum_{x} x_{(1)} \otimes x_{(2)} \in H \otimes H$$

then

$$f \rightarrow x = \sum_{x} x_{(1)} \langle f, x_{(2)} \rangle, \quad x \leftarrow f = \sum_{x} \langle f, x_{(1)} \rangle x_{(2)}$$

In particular if $g \in G(H^*)$ then $g \rightharpoonup x, x \leftarrow g$ are algebra automorphisms of *H*.

Direct decomposition of *H*

In the talk we shall assumed that for any d > 1 there exists at most one irreducible *H*-module of dimension *d*. It means that *H* as a semisimple *k*-algebra has a decomposition

$$H = (\oplus_{g \in G} k e_g) \oplus Mat(d_1, k) \oplus \cdots \oplus Mat(d_n, k),$$
(1)

$$1 < d_1 < \cdots < d_n$$

where $\{e_g \mid g \in G\}$ is a system of central orthogonal idempotents associated with *k*-algebra homomorphisms $g: H \rightarrow k$.

Irreducible *H*-modules

Let E_g , $g \in G$, be the one-dimensional *H*-module associated with $g \in G$. It means that $hx = \langle h, g \rangle x$ for any $h \in H$. The number of 1-dimensional non-isomorphic *H*-modules E_g , $g \in G$, is equal to the order of *G*. Denote by M_1, \ldots, M_n irreducible *H*-modules of dimensions $1 < d_1 < \cdots < d_n$, respectively. It can be shown that each module M_i is equipped with a non-degenerated (skew-)symmetric bilinear form $\langle x, y \rangle_i$ such that $\langle hx, y \rangle_i = \langle x, S(h)y \rangle_i$ for all $x, y \in M_i$ and for all $h \in H$. Each matrix component Mat(d_i , k) in H from (1) is invariant under the antipode S. Let U_i be the Gram matrix of the bilinear form $\langle x, y \rangle_i$ in some base of M_i .

Proposition

$$S(x) = U_i^{t} x U_i^{-1}$$
 for any $x \in Mat(d_i, k)$.

Proposition

For any *i* there exists a faithful projective representation Φ_i of the group G in M_i such that

$$g
ightarrow h = \Phi_i(g)h\Phi_i(g)^{-1}, \quad h \leftarrow g = S(\Phi_i(g))hS(\Phi_i(g))^{-1}$$

for any $h \in Mat(d_i, k)$. Moreover the group commutator $[\Phi_i(g), S(\Phi_i(f))] = 1$ in PGL(M_i) for all $f, g \in G$.

Proposition

If $g \in G$ then there are H-module isomorphisms

$$E_{g} \otimes M_{i} \simeq M_{i} \otimes E_{g} \simeq M_{i},$$
$$M_{i} \otimes M_{j} \simeq \delta_{ij} \left(\oplus_{g \in G} E_{g} \right) \oplus \left(\oplus_{t=1}^{n} m_{ij}^{t} M_{t} \right)$$

where $m_{ij}^t \ge 0 \in \mathbb{Z}$. In particular

$$d_i d_j = \delta_{ij} |G| + \sum_t m_{ij}^t d_t, \quad |G| \leqslant d_1^2, \quad m_{ij}^s = m_{js}^i = m_{ji}^s.$$

We can identify the space $M_i \otimes M_i$ with the space of matrices $Mat(d_i, k)$ using the bilinear form $\langle x, y \rangle_i$. Namely if $a, b, c \in M_i$ then $a \otimes b$ is the linear operator on M_i such that

$$(a \otimes b)c = a \langle b, c \rangle_i \in M_i.$$

Proposition

Under this identification the image of the one-dimensional module E_g in $M_i \otimes M_i$ coincides with the linear span of ${}^t S({}^t \Phi_i(g)^{-1})$. Choosing a special base in M_i we can show that the span is equal to $S(\Phi_i(g)^{-1})$. We can associate with *H* an oriented graph Γ_H whose vertices are indices $\{1, \ldots, n\}$ of irreducible *H*-modules M_1, \ldots, M_n . Two vertrices *i*, *j* are connected by an edge $i \rightarrow j$ if $m_{tj}^i > 0$ for some $t = 1, \ldots, n$. In other terms the module M_i occurs in $M_t \otimes M_j$ for some index *t*.

Proposition

Suppose that there is no edge $i \to j$ in Γ_H . Then i = j = 1 and $|G| = d_1^2$. Moreover $J = \bigoplus_{j \ge 2} \text{Mat}(d_j, k)$ is a Hopf ideal in H and H/J is the Hopf algebra from Theorems 7 and 8.

Theorem (V.A. Artamonov, R.B. Mukhatov, R. Wisbauer)

Suppose that there exists an index $1 \le i \le n$ such that for any index $j \ne i$ there exists a unique edge $i \rightarrow j$. If i = 1, then $J = \bigoplus_{j \ge 2} \text{Mat}(d_j, k)$ is a Hopf ideal in H and H/J is the Hopf algebra from Theorems 7 and 8. If i = n, then n = 1.

Theorem

Let *H* be a semisimple bialgebra with decomposition (1) where $n \ge 2$. Then $m_{n-1,n}^t \ge 2$ for some index t = 1, ..., n.

The antipode S

Each matrix constituent $Mat(d_q, k)$ in (1) is stable under the antipode *S*. Moreover $S^2 = 1$ and $S(e_g) = e_{g^{-1}}$ for any central idempotent e_g from (1).

Theorem

If the group G is nilpotent then taking an isomorphic copy of each matrix component in (1) we can assume that the matrices $\Phi_i(g)$, $S(\Phi_i(g))$ are monomial.

Theorem

Let H be a semisimple Hopf algebra with semisimple decomposition (1). Suppose that there exists a matrix constituent $Mat(d_i, k)$ which is a Hopf ideal in H. Then n = 1.

Elements \mathcal{R}_q

Denote by \mathcal{R}_q the element

$$\mathcal{R}_q = rac{1}{d_q}\sum_{i,j=1}^{d_q} E_{ij}^{(q)}\otimes E_{ji}^{(q)}$$

in Mat $(d_q, k)^{\otimes 2}$. Here $E_{**}^{(q)}$ are matrix units from Mat (d_q, k) . The element \mathcal{R}_q is the unique element in Mat $(d_q, k)^{\otimes 2}$ up scalar multiple such that

$$(A \otimes B)\mathcal{R}_q = \mathcal{R}_q(B \otimes A)$$

for all $A, B \in Mat(d_q, k)$.

Theorem

Let G be a finite group whose order is coprime with char k. A projective representation $\Omega : G \rightarrow PGL(d, k)$ such that

$$\Omega(g^{-1}) = \Omega(g)^{-1}, \quad \Omega(E) = E,$$

is irreducible if and only if

$$\mathcal{R}_{d} = rac{1}{|G|} \sum_{g \in G} \Omega(g^{-1}) \otimes \Omega(g).$$

Theorem

Let $g \in G$ and $x \in Mat(d_r, k)$. Put $\Delta_q = (1 \otimes S)\mathcal{R}_q$. Then $\varepsilon(e_g) = \delta_{1,g}, \ \varepsilon(x) = 0$ and

$$\Delta(e_g) = \sum_{f \in G} e_f \otimes e_{f^{-1}g} + \sum_{t=1,\dots,n} (1 \otimes (g \rightarrow)) \Delta_t,$$

$$\Delta(x) = \sum_{g \in G} \left[(g \rightarrow x) \otimes e_g + e_g \otimes (x \leftarrow g) \right] + \sum_{i,j=1}^n \Delta_{ij}^r(x),$$

where $\Delta_{ij}^{r}(x) \in \operatorname{Mat}(d_{i}, k) \otimes \operatorname{Mat}(d_{j}, k)$.

Proposition

For indices i, j the following are equivalent:

- there exists an edge $i \rightarrow j$;
- **2** $\Delta_{ti}^i \neq 0$ for some *t*;

3
$$\Delta_{ii}^t \neq 0$$
 for some t.

Hopf algebras with n = 1 were considered by several authors. If the order of *G* has maximal possible value d_1^2 then the group *G* is Abelian. In the paper

 Tambara D., Yamagami S., J.Algebra 209 (1998), 692-707, Corollary 3.3.

Hopf algebra H is classified using monoidal category of its representations in terms of bicharacters of the group G.

If $d_1 = 2$ then there exist up to equivalence four classes of Hopf algebras H, namely group algebras of Abelian groups of order 8, group algebras of dihedral group D_4 and of quaternions Q_8 , and G. Kac Hopf algebra H generated by elements x, y, z with defining relations

$$\begin{aligned} x^2 &= y^2 = 1, \ xy = yx, \ zx = yz, \ zy = xz, \\ z^2 &= \frac{1}{2}(1 + x + y - xy), \\ \varepsilon(z) &= 1, \ S(z) = z^{-1}, \\ \Delta(z) &= \frac{1}{2}\left((1 + y) \otimes 1 + (1 - y) \otimes x\right)(z \otimes z), \end{aligned}$$

and x, y are group-like elements.

Interesting results were obtained by

 Masuoka A., Some further classification results on semisimple Hopf algebras, Commun. Algebra, 24(1996),307-329

Let *H* be a semisimple Hopf algebra of dimension $2p^2$, where *p* is an odd integer. Then either *H* has a semisimple decomposition (1) with n = 1, $d_1 = p$ and $|G| = p^2$ or *H* is its dual and it has a semisimple decomposition with 2p one-dimensional components and $\frac{p(p-1)}{2}$ components isomorphic to Mat(2, *k*).

Theorem (Artamonov V.A., 2009 — 2010)

Let H be from (1) with n = 1 and $G = G(H^*)$. The order of G is divisible by d_1 and is a divisor of d_1^2 . The following conditions are equivalent.

• The order of G is equal to d_1^2 .

2
$$\Delta_{11}^1 = 0$$
 in Theorem 6.

Φ₁ is an irreducible projective representation of G in M₁.

Under these restrictions $H = (\bigoplus_{g \in G} ke_g) \oplus Mat(d_1, k)$ and $\varepsilon(e_g) = \delta_{1,g}, \ \varepsilon(x) = 0$ where $x \in Mat(d_1, k)$. Moreover

$$\begin{split} \Delta(\boldsymbol{e}_g) &= \sum_{f \in G} \boldsymbol{e}_f \otimes \boldsymbol{e}_{f^{-1}g} + \frac{1}{d_1} \sum_{i,j=1}^{d_1} \boldsymbol{E}_{ij} \otimes \left(\boldsymbol{g}^{-1} \rightharpoonup \boldsymbol{S}\left(\boldsymbol{E}_{ji}\right) \right), \\ \Delta(\boldsymbol{x}) &= \sum_{\boldsymbol{g} \in G} \left[\left(\Phi_1(\boldsymbol{g}) \boldsymbol{x} \Phi_1(\boldsymbol{g})^{-1} \right) \otimes \boldsymbol{e}_g \\ &+ \boldsymbol{e}_g \otimes \left(\boldsymbol{S}\left(\Phi_i(\boldsymbol{g}) \right) \boldsymbol{x} \boldsymbol{S}\left(\Phi_i(\boldsymbol{g})^{-1} \right) \right) \right]. \end{split}$$

Theorem (Artamonov V.A., I.A. Chubarov, R. Mukhatov, 2007-2009)

Let *H* be from (1), n = 1 and $G = G(H^*)$. If $\Delta_{11}^1 = 0$ then $G = A \times A$ for some Abelian group A of order d_1 .

Theorem (Artamonov V.A., I.A. Chubarov, R. Mukhatov, 2007-2009)

Suppose that G is Abelian group of order d^2 with direct decomposition $G \simeq A \times A$ for some Abelian group A of order d. The group G has a faithful irreducible projective representation Φ of degree d. There exists a (skew-)symmetric matrix $U \in GL(d, k)$ such that $[\Phi(g), S(\Phi(f))] = 1$ in PGL(d, k) for all $f, g \in G$. Here $S(x) = U^t x U^{-1}$ for any $x \in Mat(d, k)$. Then an algebra H with direct decomposition (1) admits Hopf algebra structure defined in Theorem 6. There is a group isomorphism $G \simeq G(H^*)$.

Theorem (Puninsky E., 2009)

Under the assumption of Theorem 8 G(H) is a cyclic group of order $2d_1$, provided d_1 is an odd prime.

Theorem (Artamonov V.A., Chubarov I.A., 2008)

Let n = 1, $d_1 > 2$ and H from Theorem 8. Then H^{*} is not isomorphic to any Hopf algebra belonging to the class of Hopf algebras from Theorem 8.

Previous results use

Theorem (R.Frucht, J. Reine Angew. Math. 166(1932), 16-29)

Let G be a finite Abelian group of and let k be an algebraically closed field such that char k does not divide the order of G. The group G admits a faithful irreducible projective representations of dimension d over k if and only G is a direct product of two isomorphic groups of order d. Dimensions of any irreducible projective representations of the group G are equal either to d or to 1.

Theorem (E. M. Jmud, 1972)

A finite abelian group G of order d^2 has decomposition G \simeq A \times A if and only if it admits a non-degenerate bilinear symmetric form. Any irreducible projective representation of G of degree d is obtained from another one by an automorphism of G.