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Let H be a cocommutative weak Hopf algebra and B a H-module algebra. We
extend to this context some of the notions that arise in the study of Sweedler’s
cohomology. In particular, we define the concept of 2-cocycle and of cohomologous
2-cocycles. We use this notion to classify weak crossed products of B and H.

We also study H-extensions of B, and we obtain that a normal 2-cocycle induces
a weak cleft H-extension of B. As a consequence of the classification of weak
crossed products via cohomologous 2-cocycles, we finally obtain that cohomologous
2-cocycles induce isomorphic weak cleft H-extensions.
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Towards Sweedler’s cohomology for weak Hopf algebras

Some notation and conventions

I Our base category is a symmetric monoidal one, with base
object K and split idempotents.

I (A, µA, ηA) is an algebra with multiplication µA and unit ηA.
I (C , δC , εC ) is a coalgebra with comultiplication δC and counit
εC .

I A(n) = A⊗ n times. . . ⊗A.
I If (A, µA, ηA) is an algebra then µn

A is the corresponding
multiplication of A(n).

I If (C , δC , εC ) is a coalgebra then εnC is the corresponding
counit of C (n).
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Introduction

Sweedler’s cohomology and other related topics
Let H be a cocommutative Hopf algebra and B a commutative
H-module algebra.

Semi-simplicial complex

K Reg(H,B) Reg(H ⊗ H,B) Reg(H(3),B) . . .∂1
∂2
∂3

∂1
∂2
∂3
∂4

. . .

1. ∂1(f ) = ϕB(H ⊗ f )

2. ∂2(f ) = f (µH ⊗ H)

3. ∂3(f ) = f (H ⊗ µH)

4. ∂4(f ) = f ⊗ εH

2-cocycle
σ ∈ Reg(H ⊗ H,B) is a 2-cocycle if
∂1(σ) ∧ ∂3(σ) = ∂4(σ) ∧ ∂2(σ)
The 2-cocycle τ is cohomologous to σ if
τ ∧ ∂2(γ) = ∂1(γ) ∧ ∂3(γ) ∧ σ
for γ ∈ Reg(H,B). H2(H,B) is the
2nd. group of cohomology.
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Sweedler’s cohomology and other related topics

H is a Hopf algebra, B an algebra and ϕB : H ⊗ B → B and
σ : H ⊗ H → B morphisms.

ϕB , σ µϕB ,σ

µϕB ,σ : B ⊗ H ⊗ B ⊗ H → B ⊗ H

Crossed product
B ⊗ H is a crossed product if
µϕB ,σ is associative and
ηB ⊗ ηH is the unit.

ϕB is a weak action:
I ϕB(H ⊗ µB) = µB(ϕB ⊗ ϕB)

I ϕB(H ⊗ ηB) = εH ⊗ ηB

I ϕB(ηH ⊗ B) = B

σ satisfies:
I µB(ϕB(H ⊗ ϕB)⊗ σ) =
µB(σ ⊗ ϕB(µH ⊗ B))

I Cocycle condition.
I σ(ηH ,H) = σ(H, ηH) = εH ⊗ ηB

I σ /∈ Reg(H ⊗ H,B).
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Sweedler’s cohomology and other related topics

If H is a Hopf algebra, B an algebra and A a H-comodule algebra:

B ↪→ A is a cleft extension if and only if there exists
ϕB : B ⊗ H → B a weak action and a 2-cocycle
σ ∈ Reg(H ⊗ H,B) such that A ' B ⊗ϕB

σ H

B ⊗ϕB
σ H ' B ⊗ϕB

τ H if and only if σ and τ are cohomologous.

Clasifying crossed products
H2(H,B) gives a classification of crossed products with invertible
cocycle and of cleft extensions.



Towards Sweedler’s cohomology for weak Hopf algebras

Introduction

Sweedler’s cohomology and other related topics

If H is a Hopf algebra, B an algebra and A a H-comodule algebra:

B ↪→ A is a cleft extension if and only if there exists
ϕB : B ⊗ H → B a weak action and a 2-cocycle
σ ∈ Reg(H ⊗ H,B) such that A ' B ⊗ϕB

σ H

B ⊗ϕB
σ H ' B ⊗ϕB

τ H if and only if σ and τ are cohomologous.

Clasifying crossed products
H2(H,B) gives a classification of crossed products with invertible
cocycle and of cleft extensions.



Towards Sweedler’s cohomology for weak Hopf algebras

Introduction

Sweedler’s cohomology and other related topics

If H is a Hopf algebra, B an algebra and A a H-comodule algebra:

B ↪→ A is a cleft extension if and only if there exists
ϕB : B ⊗ H → B a weak action and a 2-cocycle
σ ∈ Reg(H ⊗ H,B) such that A ' B ⊗ϕB

σ H

B ⊗ϕB
σ H ' B ⊗ϕB

τ H if and only if σ and τ are cohomologous.

Clasifying crossed products
H2(H,B) gives a classification of crossed products with invertible
cocycle and of cleft extensions.



Towards Sweedler’s cohomology for weak Hopf algebras

Introduction

Sweedler’s cohomology and other related topics

If H is a Hopf algebra, B an algebra and A a H-comodule algebra:

B ↪→ A is a cleft extension if and only if there exists
ϕB : B ⊗ H → B a weak action and a 2-cocycle
σ ∈ Reg(H ⊗ H,B) such that A ' B ⊗ϕB

σ H

B ⊗ϕB
σ H ' B ⊗ϕB

τ H if and only if σ and τ are cohomologous.

Clasifying crossed products
H2(H,B) gives a classification of crossed products with invertible
cocycle and of cleft extensions.



Towards Sweedler’s cohomology for weak Hopf algebras

Introduction
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Weak Hopf algebras
A weak Hopf algebra H is an algebra and a coalgebra such that
δH ◦ ηH 6=ηH ⊗ ηH (at least not necessarily).

I The behavior of δH ◦ ηH is encoded by some idempotent
morphisms ΠR,L : H → H and Π̄R,L : H → H, that in the non
weak case become ηH ⊗ εH .

Preunits
If µA : A⊗ A→ A is an associative multiplication, ν : K → A is a
preunit if µA ◦ (A⊗ ν) = µA ◦ (ν ⊗ A) and µ ◦ (ν ⊗ ν) = ν.
∇ν = µA(ν ⊗ A) is an idempotent morphism whose image is an
algebra.
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Groupoids

Definition
A groupoid G is a (small) cateogory whose morphisms are
isomorphisms. We denote by G0 the set of objects and by G1 the
morphisms.
A group is a groupoid with one object.
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Changing our point of view

Let H be a cocommutative Hopf algebra, (B, ϕB) a commutative
H-module algebra and f : H(n) → B .

Regn(H,B)

f ∈ Regn(H,B) if there exists f −1 : H(n) → B such that

f ∧ f −1 = f −1 ∧ f = εnH ⊗ ηB

Regn(H,B) is a group ∀n ∈ N with unit εnH ⊗ ηB .
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Some facts

For (B, ϕB) a H-module algebra:

1st. fact ϕB ◦ (H ⊗ ηB) = εH ⊗ ηB if H is a Hopf algebra.
2nd. fact If H is a weak Hopf algebra, then ϕB ◦ (H ⊗ ηB) does not have

to equal εH ⊗ ηB .
3rd. fact If B ↪→ A is a weak cleft extension with cleaving morphism f ,

then f ∧ f −1 = ϕB(H ⊗ ηB).

An idea
Why do we not change the unit(s) of Reg(H,B) by ϕB ◦ (H ⊗ ηB)?

Why do we not change groups by groupoids?
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Groups by groupoids

H is a cocommutative weak Hopf algebra and B is an algebra.
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Groups by groupoids

Changin Reg(H,B) by M(H,B).

ϕB (H ⊗ ηB ) ϕ′B (H ⊗ ηB )

f

f −1

Objects
ϕB(H ⊗ ηB), where
ϕB : B ⊗ H → H is a weak
action.

Arrows
Morphisms f : H → B such
that there exists f −1 : H → B
satisfiying

f ∧ f −1 = ϕ′B(H ⊗ ηB)
f −1 ∧ f = ϕB(H ⊗ ηB).
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Weak actions (the objects)

ϕB : H ⊗ B → B is a weak action if:
1. µB ◦(ϕB⊗ϕB)◦(H⊗cH,B ◦B)◦(δH⊗B⊗B) = ϕB ◦(H⊗µB).
2. ϕB ◦ (µH ⊗ ηB) = ϕB ◦ (µH ◦ (H ⊗ ΠL)⊗ ηB)

3. ϕB ◦ (ηH ⊗ B) = idB

and we generalize these properties to ϕB : H(n) ⊗ B → B .

The objects of Mn(H,B)

Mn(H,B)0 = {ϕB ◦ (H(n) ⊗ ηB)} for ϕB : H(n) ⊗ B → B a weak
action.
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Gauge transformations (the morphisms)

If ϕB , ϕ
′
B : H ⊗ B → B are weak actions, f : H → B is a gauge

transformation between ϕB and ϕ′B if there exists f −1 : H → B :

1.
f ∧ f −1 = ϕB(H ⊗ ηB) = t(f )
f −1 ∧ f = ϕ′B(H ⊗ ηB) = s(f )

2. f ∧ f −1 ∧ f = f and f −1 ∧ f ∧ f −1 = f −1

3. µ3
B ◦ (f ⊗ ϕB ⊗ f −1) ◦ (δH ⊗ cH,B) ◦ (δH ⊗ B) = ϕ′B

and we generalize to gauge transformations f : H(n) → B .

ϕB (H ⊗ ηB ) ϕ′B (H ⊗ ηB )

f

f−1
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The operators

Morphisms of groupoids

M(H,B) M(H ⊗ H,B) M3(H,B) . . .∂1
∂2
∂3

∂1
∂2
∂3
∂4

For ϕB(H ⊗ ηB) ∈ Reg(H,B)0

I ∂ϕB
1 (ϕB(H ⊗ ηB)) = ϕB(H ⊗ ϕB(H ⊗ ηB))

I ∂2(ϕB(H ⊗ ηB)) = ϕB(µH ⊗ ηB)

I ∂3(ϕB(H ⊗ ηB)) = ϕB(µH(H ⊗ ΠL)⊗ ηB)

∂ϕB
1 (ϕB(H ⊗ ηB)) = ∂2(ϕB(H ⊗ ηB)) = ∂3(ϕB(H ⊗ ηB))
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Groups by groupoids

2-cocycles

Let σ : H ⊗ H → B be a morphism in the groupoid M(H ⊗ H,B)
such that

ϕB(µH ⊗ ηB) ϕB(H ⊗ ϕB(H ⊗ ηB))

σ

σ−1

Twisted condition
As σ ∈ M(H ⊗ H,B):

ϕB ◦ (H ⊗ ϕB ◦ (H ⊗ B)) =

µ3
B ◦ (σ ⊗ ϕB(µH ⊗ B)⊗ σ−1) ◦ (δH⊗H ⊗ cH⊗H,B) ◦ (δH⊗H ⊗ B)
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2-cocycles
2-cocycles
σ is a 2-cocycle with respect to ϕB if

∂ϕB
1 (σ) ∗ ∂3(σ) = ∂4(σ) ∗ ∂2(σ)

Let σ be a 2-cocycle with respect to ϕB and let τ be a 2-cocycle
with respect to ϕ′B and γ : H → B a morphism in M(H,B).

Equivalent 2-cocycles
σ and τ are equivalent if

τ ∗ ∂2(γ) = (∂3(γ) ∧ ∂ϕB
1 (γ)) ∗ σ

provided that γ : ϕB(H ⊗ ηB)→ ϕ′B(H ⊗ ηB). We denote by
H2(H,B) the set of equivalence classes.



Towards Sweedler’s cohomology for weak Hopf algebras

Groups by groupoids

2-cocycles
2-cocycles
σ is a 2-cocycle with respect to ϕB if

∂ϕB
1 (σ) ∗ ∂3(σ) = ∂4(σ) ∗ ∂2(σ)

Let σ be a 2-cocycle with respect to ϕB and let τ be a 2-cocycle
with respect to ϕ′B and γ : H → B a morphism in M(H,B).

Equivalent 2-cocycles
σ and τ are equivalent if

τ ∗ ∂2(γ) = (∂3(γ) ∧ ∂ϕB
1 (γ)) ∗ σ

provided that γ : ϕB(H ⊗ ηB)→ ϕ′B(H ⊗ ηB). We denote by
H2(H,B) the set of equivalence classes.



Towards Sweedler’s cohomology for weak Hopf algebras

Groups by groupoids

Normal 2-cocycles
If σ is a 2-cocycle with respect to ϕB

Normal 2-cocycle
σ is a normal 2-cocycle if:

σ ◦ (H ⊗ ηH) = σ ◦ (ηH ⊗ H) = ϕB(H ⊗ ηB).

Proposition
If σ is a 2-cocycle with respect to ϕB , there exists a normal
2-cocycle with respect to ϕB equivalent to σ.

Classes of equivalence
All the equivalence classes of cohomologous 2-cocycles have a
normal representative element.
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2-cocycles and weak crossed products

Weak crossed products

H is a weak Hopf algebra, B an algebra and ϕB : H ⊗ B → B and
σ : H ⊗ H → B morphisms.

ϕB , σ µϕB ,σ

µϕB ,σ : B ⊗ H ⊗ B ⊗ H → B ⊗ H

Normal crossed product
B ⊗ H is a crossed product if
µϕB ,σ is associative and
ηB ⊗ ηH is a preunit.

I B ⊗ H is not an algebra.
I For ∇ηB⊗ηH : B ⊗ H → B ⊗ H,

Im∇ = B ×ϕB
σ H is an algebra.

I ϕB is a weak action.

σ satisfies:
I Twisted condition.
I Cocycle condition.
I σM(H ⊗ H,B).
I σ(ηH ,H) = σ(H, ηH) =
ϕB(H ⊗ ηB)
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Equivalent weak crossed products

Definition: B]ϕB
σ H and B]ϕ

′
B
τ H are equivalent if and only if

B ×ϕB
σ H ' B ×ϕ

′
B
τ H.

Theorem

Two weak crossed products B]ϕB
σ H and B]ϕ

′
B
τ H are equivalent if

and only if σ and τ are cohomologous.

The equivalence classes of weak crossed products (with invertible
cocycle) are in bijective correspondence with H2(H,B).
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Cleft extensions

H-extensions of algebras

If A is an H-comodule algebra define

AcoH A A⊗ H
ιA

ρA

(A⊗ ΠL) ◦ ρA

H-extension
B ↪→ A is a H-extension if
1. B ' AcoH with inclusion ιA : B → A.
2. ιA ◦ϕB ◦ (H ⊗ ηB) = (A⊗ (εH ◦ µH)) ◦ ((ρA ◦ ηA)⊗H) = ēLL.
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Cleft extensions

Another Reg

Let f : H → A be a morphism in C. f ∈ Reg(H,A) if there exists
f −1 : H → A such that
1. f −1 ∧ f = eRR , f ∧ f −1 = ēLL.
2. f ∧ f −1 ∧ f = f , f −1 ∧ f ∧ f −1 = f −1.

eRR = (A⊗ (εH ◦ µH)) ◦ (cH,A ⊗ H) ◦ (H ⊗ (ρA ◦ ηA))
ēLL = (A⊗ (εH ◦ µH)) ◦ ((ρA ◦ ηA)⊗ H)

A new groupoid!
Reg(H,A) is a groupoid with
two objects eRR and ēLL.

eRR ēLL

f

f−1



Towards Sweedler’s cohomology for weak Hopf algebras

Cleft extensions

Another Reg

Let f : H → A be a morphism in C. f ∈ Reg(H,A) if there exists
f −1 : H → A such that
1. f −1 ∧ f = eRR , f ∧ f −1 = ēLL.
2. f ∧ f −1 ∧ f = f , f −1 ∧ f ∧ f −1 = f −1.

eRR = (A⊗ (εH ◦ µH)) ◦ (cH,A ⊗ H) ◦ (H ⊗ (ρA ◦ ηA))
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ēLL = ιA ◦ϕB(H ⊗ ηB) so

f ∧f −1 = ιA◦ϕB(H⊗ηB).

eRR ιA ◦ ϕB(H ⊗ ηB)

f

f−1



Towards Sweedler’s cohomology for weak Hopf algebras

Cleft extensions

Equivalent H-extensions
If B ↪→ A1 and B ↪→ A2 are H-extensions then T : A1 → A2 is a
morphism of extensions if
1. T is of H-comodule algebras.
2. ιA2 = T ◦ ιA1 .

T is an isomorphism of extensions if T : A1 → A2 is an
isomorphism.

Proposition
If T : (B ↪→ A1)→ (B ↪→ A2) is of H-extensions and B ↪→ A1 is
cleft then:

I B ↪→ A2 is also cleft.
I T is an isomorphism.

We can classify (cleft) H-extensions by isomorphisms of extensions.
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Cleft extensions and weak crossed products

Induced weak crossed product
If B ↪→ A is a cleft H-extension then B ⊗H can be endowed with a
normal weak crossed product with invertible cocycle structure such
that A ' B ×σϕB

H

A cleft extension from a weak crossed product
If B]σϕB

H is a normal weak crossed product with invertible cocycle,
then B ↪→ B × H is a cleft extension.
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Classifying weak crossed products

Theorem
Let H be a cocommutative weak Hopf algebra and B an algebra.
Then the classes of equivalence of cleft H-extensions are in
bijective correspondence with H2(H,B) and with the classes of
equivalence of weak crossed products with invertible cocycle.
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Cleft extensions

Muchas gracias
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