Towards Sweedler's cohomology for weak Hopf algebras

Ana Belén Rodríguez Raposo (University of A Coruña, Spain) ana.raposo@udc.es

Let H be a cocommutative weak Hopf algebra and B a H-module algebra. We extend to this context some of the notions that arise in the study of Sweedler's cohomology. In particular, we define the concept of 2-cocycle and of cohomologous 2-cocycles. We use this notion to classify weak crossed products of B and H.

We also study H-extensions of B, and we obtain that a normal 2-cocycle induces a weak cleft H-extension of B. As a consequence of the classification of weak crossed products via cohomologous 2-cocycles, we finally obtain that cohomologous 2-cocycles induce isomorphic weak cleft H-extensions.

Towards Sweedler's cohomology for weak Hopf algebras

Ana Belén Rodríguez Raposo

Departamento de Computación Universidade da Coruña

・ロト ・ 日 ・ エ ト ・ 日 ・ うらぐ

In colaboration with J.M. Fernández Vilaboa and R. González Rodríguez

Outline

- 1. Introduction
- 2. Groups by groupoids
- 3. 2-cocycles and weak crossed products

・ロト ・ 日 ・ エ ト ・ 日 ・ うらぐ

4. Cleft extensions

- Our base category is a symmetric monoidal one, with base object K and split idempotents.
- (A, μ_A, η_A) is an algebra with multiplication μ_A and unit η_A .
- $(C, \delta_C, \varepsilon_C)$ is a coalgebra with comultiplication δ_C and counit ε_C .
- $\blacktriangleright A^{(n)} = A \otimes \stackrel{n \text{ times}}{\ldots} \otimes A.$
- If (A, μ_A, η_A) is an algebra then μⁿ_A is the corresponding multiplication of A⁽ⁿ⁾.
- If (C, δ_C, ε_C) is a coalgebra then εⁿ_C is the corresponding counit of C⁽ⁿ⁾.

- Our base category is a symmetric monoidal one, with base object K and split idempotents.
- (A, μ_A, η_A) is an algebra with multiplication μ_A and unit η_A .
- $(C, \delta_C, \varepsilon_C)$ is a coalgebra with comultiplication δ_C and counit ε_C .
- $\blacktriangleright A^{(n)} = A \otimes \stackrel{n \text{ times}}{\ldots} \otimes A.$
- If (A, μ_A, η_A) is an algebra then μⁿ_A is the corresponding multiplication of A⁽ⁿ⁾.
- If (C, δ_C, ε_C) is a coalgebra then εⁿ_C is the corresponding counit of C⁽ⁿ⁾.

- Our base category is a symmetric monoidal one, with base object K and split idempotents.
- (A, μ_A, η_A) is an algebra with multiplication μ_A and unit η_A .
- $(C, \delta_C, \varepsilon_C)$ is a coalgebra with comultiplication δ_C and counit ε_C .
- $\blacktriangleright A^{(n)} = A \otimes \stackrel{n \text{ times}}{\ldots} \otimes A.$
- If (A, μ_A, η_A) is an algebra then μⁿ_A is the corresponding multiplication of A⁽ⁿ⁾.
- If (C, δ_C, ε_C) is a coalgebra then εⁿ_C is the corresponding counit of C⁽ⁿ⁾.

- Our base category is a symmetric monoidal one, with base object K and split idempotents.
- (A, μ_A, η_A) is an algebra with multiplication μ_A and unit η_A .
- $(C, \delta_C, \varepsilon_C)$ is a coalgebra with comultiplication δ_C and counit ε_C .
- $\blacktriangleright A^{(n)} = A \otimes \stackrel{n \text{ times}}{\ldots} \otimes A.$
- If (A, μ_A, η_A) is an algebra then μⁿ_A is the corresponding multiplication of A⁽ⁿ⁾.
- If (C, δ_C, ε_C) is a coalgebra then εⁿ_C is the corresponding counit of C⁽ⁿ⁾.

- Our base category is a symmetric monoidal one, with base object K and split idempotents.
- (A, μ_A, η_A) is an algebra with multiplication μ_A and unit η_A .
- $(C, \delta_C, \varepsilon_C)$ is a coalgebra with comultiplication δ_C and counit ε_C .
- $\blacktriangleright A^{(n)} = A \otimes \stackrel{n \text{ times}}{\ldots} \otimes A.$
- If (A, μ_A, η_A) is an algebra then μⁿ_A is the corresponding multiplication of A⁽ⁿ⁾.
- If (C, δ_C, ε_C) is a coalgebra then εⁿ_C is the corresponding counit of C⁽ⁿ⁾.

- Our base category is a symmetric monoidal one, with base object K and split idempotents.
- (A, μ_A, η_A) is an algebra with multiplication μ_A and unit η_A .
- $(C, \delta_C, \varepsilon_C)$ is a coalgebra with comultiplication δ_C and counit ε_C .
- $\blacktriangleright A^{(n)} = A \otimes \stackrel{n \text{ times}}{\ldots} \otimes A.$
- If (A, μ_A, η_A) is an algebra then μⁿ_A is the corresponding multiplication of A⁽ⁿ⁾.
- If (C, δ_C, ε_C) is a coalgebra then εⁿ_C is the corresponding counit of C⁽ⁿ⁾.

Towards Sweedler's cohomology for weak Hopf algebras

Outline

1. Introduction

- 2. Groups by groupoids
- 3. 2-cocycles and weak crossed products

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへぐ

4. Cleft extensions

Sweedler's cohomology and other related topics Let *H* be a cocommutative Hopf algebra and *B* a commutative *H*-module algebra.

Semi-simplicial complex

$$K \longrightarrow \operatorname{Reg}(H,B) \xrightarrow[\stackrel{\partial_3 \longrightarrow}{\partial_1}]{} \operatorname{Reg}(H \otimes H,B) \xrightarrow[\stackrel{\partial_4 \longrightarrow}{\partial_3 \longrightarrow}]{} \operatorname{Reg}(H^{(3)},B) \dots$$

1. $\partial_1(f) = \varphi_B(H \otimes f)$ 2. $\partial_2(f) = f(\mu_H \otimes H)$ 3. $\partial_3(f) = f(H \otimes \mu_H)$ 4. $\partial_4(f) = f \otimes \varepsilon_H$

2-cocycle

 $\sigma \in Reg(H \otimes H, B) \text{ is a 2-cocycle if} \\ \partial_1(\sigma) \wedge \partial_3(\sigma) = \partial_4(\sigma) \wedge \partial_2(\sigma) \\ \text{The 2-cocycle } \tau \text{ is cohomologous to } \sigma \text{ if} \\ \tau \wedge \partial_2(\gamma) = \partial_1(\gamma) \wedge \partial_3(\gamma) \wedge \sigma \\ \text{for } \gamma \in Reg(H, B). \ H^2(H, B) \text{ is the} \\ 2nd. \text{ group of cohomology.} \end{cases}$

Let H be a cocommutative Hopf algebra and B a commutative H-module algebra.

Semi-simplicial complex

$$\mathcal{K} \longrightarrow \operatorname{Reg}(H,B) \xrightarrow[\stackrel{\partial_3}{\longrightarrow}]{}_{2} \operatorname{Reg}(H \otimes H,B) \xrightarrow[\stackrel{\partial_4}{\rightarrow}]{}_{3} \operatorname{Reg}(H^{(3)},B) \dots$$

1. $\partial_1(f) = \varphi_B(H \otimes f)$ 2. $\partial_2(f) = f(\mu_H \otimes H)$ 3. $\partial_3(f) = f(H \otimes \mu_H)$ 4. $\partial_4(f) = f \otimes \varepsilon_H$

2-cocycle

 $\sigma \in Reg(H \otimes H, B)$ is a 2-cocycle if $\partial_1(\sigma) \wedge \partial_3(\sigma) = \partial_4(\sigma) \wedge \partial_2(\sigma)$ The 2-cocycle τ is cohomologous to σ if $\tau \wedge \partial_2(\gamma) = \partial_1(\gamma) \wedge \partial_3(\gamma) \wedge \sigma$ for $\gamma \in Reg(H, B)$. $H^2(H, B)$ is the 2nd. group of cohomology.

Let H be a cocommutative Hopf algebra and B a commutative H-module algebra.

Semi-simplicial complex

$$\mathcal{K} \longrightarrow \operatorname{Reg}(H,B) \xrightarrow[\stackrel{\partial_3}{\longrightarrow}]{}_{2} \operatorname{Reg}(H \otimes H,B) \xrightarrow[\stackrel{\partial_4}{\rightarrow}]{}_{3} \operatorname{Reg}(H^{(3)},B) \dots$$

1. $\partial_1(f) = \varphi_B(H \otimes f)$ 2. $\partial_2(f) = f(\mu_H \otimes H)$ 3. $\partial_3(f) = f(H \otimes \mu_H)$ 4. $\partial_4(f) = f \otimes \varepsilon_H$

2-cocycle

 $\sigma \in Reg(H \otimes H, B)$ is a 2-cocycle if $\partial_1(\sigma) \wedge \partial_3(\sigma) = \partial_4(\sigma) \wedge \partial_2(\sigma)$ The 2-cocycle τ is cohomologous to σ if $\tau \wedge \partial_2(\gamma) = \partial_1(\gamma) \wedge \partial_3(\gamma) \wedge \sigma$ for $\gamma \in Reg(H, B)$. $H^2(H, B)$ is the 2nd. group of cohomology.

Let H be a cocommutative Hopf algebra and B a commutative H-module algebra.

Semi-simplicial complex

$$\mathcal{K} \longrightarrow \operatorname{Reg}(H,B) \xrightarrow[\stackrel{\partial_3}{\longrightarrow}]{2} \operatorname{Reg}(H \otimes H,B) \xrightarrow[\stackrel{\partial_4}{\rightarrow}]{2} \operatorname{Reg}(H^{(3)},B) \dots$$

1. $\partial_1(f) = \varphi_B(H \otimes f)$ 2. $\partial_2(f) = f(\mu_H \otimes H)$ 3. $\partial_3(f) = f(H \otimes \mu_H)$ 4. $\partial_4(f) = f \otimes \varepsilon_H$

2-cocycle

 $\sigma \in Reg(H \otimes H, B)$ is a 2-cocycle if $\partial_1(\sigma) \wedge \partial_3(\sigma) = \partial_4(\sigma) \wedge \partial_2(\sigma)$ The 2-cocycle τ is cohomologous to σ if $\tau \wedge \partial_2(\gamma) = \partial_1(\gamma) \wedge \partial_3(\gamma) \wedge \sigma$ for $\gamma \in Reg(H, B)$. $H^2(H, B)$ is the 2nd. group of cohomology.

Let H be a cocommutative Hopf algebra and B a commutative H-module algebra.

Semi-simplicial complex

$$\mathcal{K} \longrightarrow \operatorname{Reg}(H,B) \xrightarrow[\stackrel{\partial_3}{\longrightarrow}]{2} \operatorname{Reg}(H \otimes H,B) \xrightarrow[\stackrel{\partial_4}{\rightarrow}]{2} \operatorname{Reg}(H^{(3)},B) \dots$$

1.
$$\partial_1(f) = \varphi_B(H \otimes f)$$

2. $\partial_2(f) = f(\mu_H \otimes H)$
3. $\partial_3(f) = f(H \otimes \mu_H)$
4. $\partial_4(f) = f \otimes \varepsilon_H$

2-cocycle

 $\sigma \in Reg(H \otimes H, B) \text{ is a 2-cocycle if} \\ \partial_1(\sigma) \wedge \partial_3(\sigma) = \partial_4(\sigma) \wedge \partial_2(\sigma) \\ \text{The 2-cocycle } \tau \text{ is cohomologous to } \sigma \text{ if} \\ \tau \wedge \partial_2(\gamma) = \partial_1(\gamma) \wedge \partial_3(\gamma) \wedge \sigma \\ \text{for } \gamma \in Reg(H, B). \ H^2(H, B) \text{ is the} \\ 2nd. \text{ group of cohomology.} \end{cases}$

Let H be a cocommutative Hopf algebra and B a commutative H-module algebra.

Semi-simplicial complex

$$\mathcal{K} \longrightarrow \operatorname{Reg}(H,B) \xrightarrow[\stackrel{\partial_3}{\longrightarrow}]{2} \operatorname{Reg}(H \otimes H,B) \xrightarrow[\stackrel{\partial_4}{\rightarrow}]{2} \operatorname{Reg}(H^{(3)},B) \dots$$

1.
$$\partial_1(f) = \varphi_B(H \otimes f)$$

2. $\partial_2(f) = f(\mu_H \otimes H)$
3. $\partial_3(f) = f(H \otimes \mu_H)$
4. $\partial_4(f) = f \otimes \varepsilon_H$

2-cocycle

 $\sigma \in \operatorname{Reg}(H \otimes H, B) \text{ is a 2-cocycle if} \\ \partial_1(\sigma) \wedge \partial_3(\sigma) = \partial_4(\sigma) \wedge \partial_2(\sigma) \\ \text{The 2-cocycle } \tau \text{ is cohomologous to } \sigma \text{ if} \\ \tau \wedge \partial_2(\gamma) = \partial_1(\gamma) \wedge \partial_3(\gamma) \wedge \sigma \\ \text{for } \gamma \in \operatorname{Reg}(H, B). \ H^2(H, B) \text{ is the} \\ \text{2nd. group of cohomology.} \end{cases}$

Let H be a cocommutative Hopf algebra and B a commutative H-module algebra.

Semi-simplicial complex

$$\mathcal{K} \longrightarrow \operatorname{Reg}(H,B) \xrightarrow[\stackrel{\partial_3}{\longrightarrow}]{2} \operatorname{Reg}(H \otimes H,B) \xrightarrow[\stackrel{\partial_4}{\rightarrow}]{2} \operatorname{Reg}(H^{(3)},B) \dots$$

1.
$$\partial_1(f) = \varphi_B(H \otimes f)$$

2. $\partial_2(f) = f(\mu_H \otimes H)$
3. $\partial_3(f) = f(H \otimes \mu_H)$
4. $\partial_4(f) = f \otimes \varepsilon_H$

2-cocycle

$$\begin{split} &\sigma\in \textit{Reg}(H\otimes H,B) \text{ is a 2-cocycle if } \\ &\partial_1(\sigma)\wedge\partial_3(\sigma)=\partial_4(\sigma)\wedge\partial_2(\sigma) \\ &\text{The 2-cocycle }\tau \text{ is cohomologous to }\sigma \text{ if } \\ &\tau\wedge\partial_2(\gamma)=\partial_1(\gamma)\wedge\partial_3(\gamma)\wedge\sigma \\ &\text{for }\gamma\in\textit{Reg}(H,B). \ H^2(H,B) \text{ is the } \\ &\text{2nd. group of cohomology.} \end{split}$$

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\blacktriangleright \varphi_B(\eta_H \otimes B) = B$

Crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is the unit.

- $\mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- ► Cocycle condition.
- $\bullet \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$
- $\blacktriangleright \sigma \notin Reg(H \otimes H, B).$
 - ・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_{B}, \sigma \longrightarrow \mu_{\varphi_{B}, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\blacktriangleright \varphi_B(\eta_H \otimes B) = B$

Crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is the unit.

- $\mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- ► Cocycle condition.
- $\blacktriangleright \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$
- ► $\sigma \notin Reg(H \otimes H, B).$
 - ・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\blacktriangleright \varphi_B(\eta_H \otimes B) = B$

Crossed product

$$\begin{split} & B \otimes H \text{ is a crossed product if} \\ & \mu_{\varphi_B,\sigma} \text{ is associative and} \\ & \eta_B \otimes \eta_H \text{ is the unit.} \end{split}$$

- $\mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- ► Cocycle condition.
- $\blacktriangleright \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$
- ► $\sigma \notin Reg(H \otimes H, B).$
 - ・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\blacktriangleright \varphi_B(\eta_H \otimes B) = B$

Crossed product

$$\begin{split} & B \otimes H \text{ is a crossed product if} \\ & \mu_{\varphi_B,\sigma} \text{ is associative and} \\ & \eta_B \otimes \eta_H \text{ is the unit.} \end{split}$$

- $\mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- ► Cocycle condition.
- $\bullet \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$
- ► $\sigma \notin Reg(H \otimes H, B).$
 - ・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\blacktriangleright \varphi_B(\eta_H \otimes B) = B$

Crossed product

$$\begin{split} & B \otimes H \text{ is a crossed product if} \\ & \mu_{\varphi_B,\sigma} \text{ is associative and} \\ & \eta_B \otimes \eta_H \text{ is the unit.} \end{split}$$

- $\mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- ► Cocycle condition.
- $\blacktriangleright \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$
- ► $\sigma \notin Reg(H \otimes H, B).$
 - ・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

 φ_B is a weak action:

- $\varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\blacktriangleright \varphi_B(\eta_H \otimes B) = B$

Crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_{B},\sigma}$ is associative and $\eta_{B} \otimes \eta_{H}$ is the unit.

- $\mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- Cocycle condition.
- $\blacktriangleright \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$
- ► $\sigma \notin Reg(H \otimes H, B).$
 - ・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\varphi_B(\eta_H \otimes B) = B$

Crossed product

$$\begin{split} & B \otimes H \text{ is a crossed product if} \\ & \mu_{\varphi_B,\sigma} \text{ is associative and} \\ & \eta_B \otimes \eta_H \text{ is the unit.} \end{split}$$

- $\mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- Cocycle condition.
- $\bullet \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$
- $\blacktriangleright \sigma \notin Reg(H \otimes H, B).$
 - ・ロト ・日 ・ モー・ モー・ シック・

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\varphi_B(\eta_H \otimes B) = B$

Crossed product

$$\begin{split} & B \otimes H \text{ is a crossed product if} \\ & \mu_{\varphi_B,\sigma} \text{ is associative and} \\ & \eta_B \otimes \eta_H \text{ is the unit.} \end{split}$$

 σ satisfies:

- $\mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- Cocycle condition.
- $\bullet \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$
- ► $\sigma \notin Reg(H \otimes H, B).$

・ロト ・日 ・ モー・ モー・ シック・

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\varphi_B(\eta_H \otimes B) = B$

Crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is the unit.

- $\mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \\ \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- ► Cocycle condition.
- $\bullet \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$
- $\blacktriangleright \sigma \notin Reg(H \otimes H, B).$
 - ・ロト ・日 ・ モー・ モー・ シック

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}: B \otimes H \otimes B \otimes H \to B \otimes H$

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\varphi_B(\eta_H \otimes B) = B$

Crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is the unit.

 σ satisfies:

- $\blacktriangleright \ \mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \\ \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- ► Cocycle condition.
- $\sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$ • $\sigma \notin \operatorname{Reg}(H \otimes H, B).$

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}: B \otimes H \otimes B \otimes H \to B \otimes H$

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\varphi_B(\eta_H \otimes B) = B$

Crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is the unit.

 σ satisfies:

- $\blacktriangleright \ \mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \\ \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- ► Cocycle condition.
- $\sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$ • $\sigma \notin Reg(H \otimes H, B).$

・ロト・日本・日本・日本・日本・日本

H is a Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}: B \otimes H \otimes B \otimes H \to B \otimes H$

 φ_B is a weak action:

- $\blacktriangleright \varphi_B(H \otimes \mu_B) = \mu_B(\varphi_B \otimes \varphi_B)$
- $\blacktriangleright \varphi_B(H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$
- $\varphi_B(\eta_H \otimes B) = B$

Crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is the unit.

 σ satisfies:

- $\blacktriangleright \ \mu_B(\varphi_B(H \otimes \varphi_B) \otimes \sigma) = \\ \mu_B(\sigma \otimes \varphi_B(\mu_H \otimes B))$
- ► Cocycle condition.
- $\sigma(\eta_H, H) = \sigma(H, \eta_H) = \varepsilon_H \otimes \eta_B$
- $\sigma \notin Reg(H \otimes H, B)$.

・ロト・(中下・(中下・(中下・))

If H is a Hopf algebra, B an algebra and A a H-comodule algebra:

 $B \hookrightarrow A$ is a cleft extension if and only if there exists $\varphi_B : B \otimes H \to B$ a weak action and a 2-cocycle $\sigma \in Reg(H \otimes H, B)$ such that $A \simeq B \otimes_{\sigma}^{\varphi_B} H$

 $B \otimes_{\sigma}^{\varphi_B} H \simeq B \otimes_{\tau}^{\varphi_B} H$ if and only if σ and τ are cohomologous.

Clasifying crossed products

If H is a Hopf algebra, B an algebra and A a H-comodule algebra:

 $B \hookrightarrow A$ is a cleft extension if and only if there exists $\varphi_B : B \otimes H \to B$ a weak action and a 2-cocycle $\sigma \in Reg(H \otimes H, B)$ such that $A \simeq B \otimes_{\sigma}^{\varphi_B} H$

 $B\otimes_{\sigma}^{\varphi_{B}}H\simeq B\otimes_{ au}^{\varphi_{B}}H$ if and only if σ and au are cohomologous.

Clasifying crossed products

If H is a Hopf algebra, B an algebra and A a H-comodule algebra:

 $B \hookrightarrow A$ is a cleft extension if and only if there exists $\varphi_B : B \otimes H \to B$ a weak action and a 2-cocycle $\sigma \in Reg(H \otimes H, B)$ such that $A \simeq B \otimes_{\sigma}^{\varphi_B} H$

 $B \otimes_{\sigma}^{\varphi_B} H \simeq B \otimes_{\tau}^{\varphi_B} H$ if and only if σ and τ are cohomologous.

Clasifying crossed products

If *H* is a Hopf algebra, *B* an algebra and *A* a *H*-comodule algebra:

 $B \hookrightarrow A$ is a cleft extension if and only if there exists $\varphi_B : B \otimes H \to B$ a weak action and a 2-cocycle $\sigma \in Reg(H \otimes H, B)$ such that $A \simeq B \otimes_{\sigma}^{\varphi_B} H$

 $B \otimes_{\sigma}^{\varphi_B} H \simeq B \otimes_{\tau}^{\varphi_B} H$ if and only if σ and τ are cohomologous.

Clasifying crossed products

Towards Sweedler's cohomology for weak Hopf algebras \Box Introduction

Recall that:

Weak Hopf algebras

A weak Hopf algebra H is an algebra and a coalgebra such that $\delta_H \circ \eta_H \neq \eta_H \otimes \eta_H$ (at least not necessarily).

▶ The behavior of $\delta_H \circ \eta_H$ is encoded by some idempotent morphisms $\Pi_{R,L} : H \to H$ and $\overline{\Pi}_{R,L} : H \to H$, that in the non weak case become $\eta_H \otimes \varepsilon_H$.

Preunits

If $\mu_A : A \otimes A \to A$ is an associative multiplication, $\nu : K \to A$ is a preunit if $\mu_A \circ (A \otimes \nu) = \mu_A \circ (\nu \otimes A)$ and $\mu \circ (\nu \otimes \nu) = \nu$. $\nabla_{\nu} = \mu_A(\nu \otimes A)$ is an idempotent morphism whose image is an algebra. Towards Sweedler's cohomology for weak Hopf algebras \Box Introduction

Recall that:

Weak Hopf algebras

A weak Hopf algebra H is an algebra and a coalgebra such that $\delta_H \circ \eta_H \neq \eta_H \otimes \eta_H$ (at least not necessarily).

▶ The behavior of $\delta_H \circ \eta_H$ is encoded by some idempotent morphisms $\Pi_{R,L} : H \to H$ and $\overline{\Pi}_{R,L} : H \to H$, that in the non weak case become $\eta_H \otimes \varepsilon_H$.

Preunits

If $\mu_A : A \otimes A \to A$ is an associative multiplication, $\nu : K \to A$ is a preunit if $\mu_A \circ (A \otimes \nu) = \mu_A \circ (\nu \otimes A)$ and $\mu \circ (\nu \otimes \nu) = \nu$. $\nabla_{\nu} = \mu_A(\nu \otimes A)$ is an idempotent morphism whose image is an algebra. Towards Sweedler's cohomology for weak Hopf algebras \Box Introduction

Recall that:

Weak Hopf algebras

A weak Hopf algebra H is an algebra and a coalgebra such that $\delta_H \circ \eta_H \neq \eta_H \otimes \eta_H$ (at least not necessarily).

► The behavior of $\delta_H \circ \eta_H$ is encoded by some idempotent morphisms $\Pi_{R,L} : H \to H$ and $\overline{\Pi}_{R,L} : H \to H$, that in the non weak case become $\eta_H \otimes \varepsilon_H$.

Preunits

If $\mu_A : A \otimes A \to A$ is an associative multiplication, $\nu : K \to A$ is a preunit if $\mu_A \circ (A \otimes \nu) = \mu_A \circ (\nu \otimes A)$ and $\mu \circ (\nu \otimes \nu) = \nu$. $\nabla_{\nu} = \mu_A(\nu \otimes A)$ is an idempotent morphism whose image is an algebra.
Groupoids

Definition

A groupoid G is a (small) cateogory whose morphisms are isomorphisms. We denote by G_0 the set of objects and by G_1 the morphisms.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A group is a groupoid with one object.

Changing our point of view

Let *H* be a cocommutative Hopf algebra, (B, φ_B) a commutative *H*-module algebra and $f : H^{(n)} \to B$.

ション ふゆ アメリア メリア しょうくしゃ

$Reg^n(H,B)$ $f \in Reg^n(H,B)$ if there exists $f^{-1}: H^{(n)} o B$ such that $f \wedge f^{-1} = f^{-1} \wedge f = arepsilon_H^n \otimes \eta_B$

 ${\it Reg}^n(H,B)$ is a group $orall n \in \mathbb{N}$ with unit $arepsilon_H^n \otimes \eta_B$.

Changing our point of view

Let *H* be a cocommutative Hopf algebra, (B, φ_B) a commutative *H*-module algebra and $f : H^{(n)} \to B$.

$Reg^{n}(H,B)$

 $f \in Reg^n(H,B)$ if there exists $f^{-1}: H^{(n)}
ightarrow B$ such that

$$f \wedge f^{-1} = f^{-1} \wedge f = \varepsilon_H^n \otimes \eta_B$$

ション ふゆ アメリア メリア しょうくしゃ

 ${\it Reg}^n(H,B)$ is a group $orall n\in \mathbb{N}$ with unit $arepsilon_H^n\otimes \eta_{B^n}$

Changing our point of view

Let *H* be a cocommutative Hopf algebra, (B, φ_B) a commutative *H*-module algebra and $f : H^{(n)} \to B$.

$Reg^{n}(H, B)$

$$f \in Reg^n(H,B)$$
 if there exists $f^{-1}: H^{(n)}
ightarrow B$ such that

$$f \wedge f^{-1} = f^{-1} \wedge f = \varepsilon_H^n \otimes \eta_B$$

 $Reg^{n}(H,B)$ is a group $\forall n \in \mathbb{N}$ with unit $\varepsilon_{H}^{n} \otimes \eta_{B}$.

・ロト ・ 西 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへぐ

Some facts

For (B, φ_B) a *H*-module algebra:

1st. fact $\varphi_B \circ (H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$ if *H* is a Hopf algebra.

- 2nd. fact If *H* is a weak Hopf algebra, then $\varphi_B \circ (H \otimes \eta_B)$ does not have to equal $\varepsilon_H \otimes \eta_B$.
- 3rd. fact If $B \hookrightarrow A$ is a weak cleft extension with cleaving morphism f, then $f \wedge f^{-1} = \varphi_B(H \otimes \eta_B)$.

An idea

Why do we not change the unit(s) of Reg(H, B) by $\varphi_B \circ (H \otimes \eta_B)$?

Some facts

For (B, φ_B) a *H*-module algebra:

1st. fact $\varphi_B \circ (H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$ if *H* is a Hopf algebra.

- 2nd. fact If *H* is a weak Hopf algebra, then $\varphi_B \circ (H \otimes \eta_B)$ does not have to equal $\varepsilon_H \otimes \eta_B$.
- 3rd. fact If $B \hookrightarrow A$ is a weak cleft extension with cleaving morphism f, then $f \wedge f^{-1} = \varphi_B(H \otimes \eta_B)$.

An idea

Why do we not change the unit(s) of Reg(H, B) by $\varphi_B \circ (H \otimes \eta_B)$?

Towards Sweedler's cohomology for weak Hopf algebras $\hfill \hfill \hf$

Some facts

For (B, φ_B) a *H*-module algebra:

1st. fact $\varphi_B \circ (H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$ if *H* is a Hopf algebra.

2nd. fact If H is a weak Hopf algebra, then $\varphi_B \circ (H \otimes \eta_B)$ does not have to equal $\varepsilon_H \otimes \eta_B$.

3rd. fact If $B \hookrightarrow A$ is a weak cleft extension with cleaving morphism f, then $f \wedge f^{-1} = \varphi_B(H \otimes \eta_B)$.

An idea

Why do we not change the unit(s) of Reg(H,B) by $\varphi_B \circ (H \otimes \eta_B)$?

Towards Sweedler's cohomology for weak Hopf algebras \Box Introduction

Some facts

For (B, φ_B) a *H*-module algebra:

1st. fact $\varphi_B \circ (H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$ if *H* is a Hopf algebra.

- 2nd. fact If *H* is a weak Hopf algebra, then $\varphi_B \circ (H \otimes \eta_B)$ does not have to equal $\varepsilon_H \otimes \eta_B$.
- 3rd. fact If $B \hookrightarrow A$ is a weak cleft extension with cleaving morphism f, then $f \wedge f^{-1} = \varphi_B(H \otimes \eta_B)$.

An idea

Why do we not change the unit(s) of Reg(H,B) by $\varphi_B \circ (H \otimes \eta_B)$?

Towards Sweedler's cohomology for weak Hopf algebras \Box Introduction

Some facts

For (B, φ_B) a *H*-module algebra:

1st. fact $\varphi_B \circ (H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$ if *H* is a Hopf algebra.

- 2nd. fact If *H* is a weak Hopf algebra, then $\varphi_B \circ (H \otimes \eta_B)$ does not have to equal $\varepsilon_H \otimes \eta_B$.
- 3rd. fact If $B \hookrightarrow A$ is a weak cleft extension with cleaving morphism f, then $f \wedge f^{-1} = \varphi_B(H \otimes \eta_B)$.

An idea

Why do we not change the unit(s) of Reg(H, B) by $\varphi_B \circ (H \otimes \eta_B)$?

Towards Sweedler's cohomology for weak Hopf algebras \Box Introduction

Some facts

For (B, φ_B) a *H*-module algebra:

1st. fact $\varphi_B \circ (H \otimes \eta_B) = \varepsilon_H \otimes \eta_B$ if *H* is a Hopf algebra.

- 2nd. fact If *H* is a weak Hopf algebra, then $\varphi_B \circ (H \otimes \eta_B)$ does not have to equal $\varepsilon_H \otimes \eta_B$.
- 3rd. fact If $B \hookrightarrow A$ is a weak cleft extension with cleaving morphism f, then $f \wedge f^{-1} = \varphi_B(H \otimes \eta_B)$.

An idea

Why do we not change the unit(s) of Reg(H, B) by $\varphi_B \circ (H \otimes \eta_B)$?

Outline

1. Introduction

2. Groups by groupoids

3. 2-cocycles and weak crossed products

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへぐ

4. Cleft extensions

H is a cocommutative weak Hopf algebra and B is an algebra.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへぐ

Changin Reg(H, B) by M(H, B).

Objects

 $\varphi_B(H \otimes \eta_B)$, where $\varphi_B : B \otimes H \to H$ is a weak action.

Arrows

Morphisms $f : H \to B$ such that there exists $f^{-1} : H \to B$ satisfiying

$$\begin{array}{rcl} f \wedge f^{-1} &=& \varphi'_B(H \otimes \eta_B) \\ f^{-1} \wedge f &=& \varphi_B(H \otimes \eta_B). \end{array}$$

▲□▶▲圖▶★≣▶★≣▶ ≣ のへで

Changin Reg(H, B) by M(H, B).

Objects

 $\varphi_B(H \otimes \eta_B)$, where $\varphi_B : B \otimes H \to H$ is a weak action.

Arrows

Morphisms $f : H \to B$ such that there exists $f^{-1} : H \to B$ satisfiying

 $\begin{array}{rcl} f \wedge f^{-1} &=& \varphi'_B(H \otimes \eta_B) \\ f^{-1} \wedge f &=& \varphi_B(H \otimes \eta_B). \end{array}$

Changin Reg(H, B) by M(H, B).

Objects

 $\varphi_B(H \otimes \eta_B)$, where $\varphi_B : B \otimes H \to H$ is a weak action.

Arrows

Morphisms $f : H \to B$ such that there exists $f^{-1} : H \to B$ satisfiying

$$f \wedge f^{-1} = \varphi'_B(H \otimes \eta_B)$$

 $f^{-1} \wedge f = \varphi_B(H \otimes \eta_B).$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへ⊙

$\varphi_B : H \otimes B \to B$ is a weak action if:

- 1. $\mu_B \circ (\varphi_B \otimes \varphi_B) \circ (H \otimes c_{H,B} \circ B) \circ (\delta_H \otimes B \otimes B) = \varphi_B \circ (H \otimes \mu_B).$
- 2. $\varphi_B \circ (\mu_H \otimes \eta_B) = \varphi_B \circ (\mu_H \circ (H \otimes \Pi_L) \otimes \eta_B)$
- 3. $\varphi_B \circ (\eta_H \otimes B) = id_B$

The objects of *M*"(*H*, *B*)

 $M^n(H,B)_0 = \{\varphi_B \circ (H^{(n)} \otimes \eta_B)\}$ for $\varphi_B : H^{(n)} \otimes B \to B$ a weak action.

 $\varphi_B: H \otimes B \rightarrow B$ is a weak action if:

- 1. $\mu_B \circ (\varphi_B \otimes \varphi_B) \circ (H \otimes c_{H,B} \circ B) \circ (\delta_H \otimes B \otimes B) = \varphi_B \circ (H \otimes \mu_B).$
- 2. $\varphi_B \circ (\mu_H \otimes \eta_B) = \varphi_B \circ (\mu_H \circ (H \otimes \Pi_L) \otimes \eta_B)$
- 3. $\varphi_B \circ (\eta_H \otimes B) = id_B$

The objects of *M*"(*H*, *B*)

 $M^n(H,B)_0 = \{ \varphi_B \circ (H^{(n)} \otimes \eta_B) \}$ for $\varphi_B : H^{(n)} \otimes B \to B$ a weak action.

▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲ 圖 → のへの

 $\varphi_B : H \otimes B \to B$ is a weak action if:

- 1. $\mu_B \circ (\varphi_B \otimes \varphi_B) \circ (H \otimes c_{H,B} \circ B) \circ (\delta_H \otimes B \otimes B) = \varphi_B \circ (H \otimes \mu_B).$
- 2. $\varphi_{B} \circ (\mu_{H} \otimes \eta_{B}) = \varphi_{B} \circ (\mu_{H} \circ (H \otimes \Pi_{L}) \otimes \eta_{B})$
- 3. $\varphi_B \circ (\eta_H \otimes B) = id_B$

The objects of $M^n(H,B)$

 $M^n(H,B)_0 = \{\varphi_B \circ (H^{(n)} \otimes \eta_B)\}$ for $\varphi_B : H^{(n)} \otimes B \to B$ a weak action.

▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲ 圖 → のへの

 $\varphi_B : H \otimes B \to B$ is a weak action if:

- 1. $\mu_B \circ (\varphi_B \otimes \varphi_B) \circ (H \otimes c_{H,B} \circ B) \circ (\delta_H \otimes B \otimes B) = \varphi_B \circ (H \otimes \mu_B).$
- 2. $\varphi_{B} \circ (\mu_{H} \otimes \eta_{B}) = \varphi_{B} \circ (\mu_{H} \circ (H \otimes \Pi_{L}) \otimes \eta_{B})$
- 3. $\varphi_B \circ (\eta_H \otimes B) = id_B$

and we generalize these properties to $\varphi_B: H^{(n)} \otimes B \to B$.

The objects of $M^n(H, B)$

 $M^{n}(H,B)_{0} = \{\varphi_{B} \circ (H^{(n)} \otimes \eta_{B})\}$ for $\varphi_{B} : H^{(n)} \otimes B \to B$ a weak action.

▲ロト ▲圖 ▶ ▲目 ▶ ▲目 ▶ ▲ 圖 → のへの

 $\varphi_B : H \otimes B \to B$ is a weak action if:

- 1. $\mu_B \circ (\varphi_B \otimes \varphi_B) \circ (H \otimes c_{H,B} \circ B) \circ (\delta_H \otimes B \otimes B) = \varphi_B \circ (H \otimes \mu_B).$
- 2. $\varphi_{B} \circ (\mu_{H} \otimes \eta_{B}) = \varphi_{B} \circ (\mu_{H} \circ (H \otimes \Pi_{L}) \otimes \eta_{B})$
- 3. $\varphi_B \circ (\eta_H \otimes B) = id_B$

and we generalize these properties to $\varphi_B: H^{(n)} \otimes B \to B$.

The objects of $M^n(H, B)$

 $M^{n}(H,B)_{0} = \{\varphi_{B} \circ (H^{(n)} \otimes \eta_{B})\}$ for $\varphi_{B} : H^{(n)} \otimes B \to B$ a weak action.

Gauge transformations (the morphisms)

If $\varphi_B, \varphi'_B : H \otimes B \to B$ are weak actions, $f : H \to B$ is a gauge transformation between φ_B and φ'_B if there exists $f^{-1} : H \to B$:

1. $\begin{aligned} f \wedge f^{-1} &= \varphi_B(H \otimes \eta_B) = t(f) \\ f^{-1} \wedge f &= \varphi'_B(H \otimes \eta_B) = s(f) \end{aligned}$ 2. $f \wedge f^{-1} \wedge f = f \text{ and } f^{-1} \wedge f \wedge f^{-1} = f^{-1}$ 3. $\mu_B^3 \circ (f \otimes \varphi_B \otimes f^{-1}) \circ (\delta_H \otimes c_{H,B}) \circ (\delta_H \otimes B) = \varphi'_B \end{aligned}$

Gauge transformations (the morphisms)

If $\varphi_B, \varphi'_B : H \otimes B \to B$ are weak actions, $f : H \to B$ is a gauge transformation between φ_B and φ'_B if there exists $f^{-1} : H \to B$:

うして ふゆ くりょう ふしゃ くしゃ

1.
$$\begin{aligned} f \wedge f^{-1} &= \varphi_B(H \otimes \eta_B) = t(f) \\ f^{-1} \wedge f &= \varphi'_B(H \otimes \eta_B) = s(f) \end{aligned}$$

2.
$$f \wedge f^{-1} \wedge f = f \text{ and } f^{-1} \wedge f \wedge f^{-1} = f^{-1}$$

3.
$$u_{A}^3 \circ (f \otimes \mu_B \otimes f^{-1}) \circ (\delta \mu \otimes \mu_B) \circ (\delta \mu \otimes B) = f^{-1}$$

Gauge transformations (the morphisms)

If $\varphi_B, \varphi'_B : H \otimes B \to B$ are weak actions, $f : H \to B$ is a gauge transformation between φ_B and φ'_B if there exists $f^{-1} : H \to B$:

1.
$$\begin{aligned} f \wedge f^{-1} &= \varphi_B(H \otimes \eta_B) = t(f) \\ f^{-1} \wedge f &= \varphi'_B(H \otimes \eta_B) = s(f) \end{aligned}$$

2.
$$f \wedge f^{-1} \wedge f = f \text{ and } f^{-1} \wedge f \wedge f^{-1} = f^{-1}$$

3.
$$\mu_B^3 \circ (f \otimes \varphi_B \otimes f^{-1}) \circ (\delta_H \otimes c_{H,B}) \circ (\delta_H \otimes B) = \varphi'_B \end{aligned}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Gauge transformations (the morphisms)

If $\varphi_B, \varphi'_B : H \otimes B \to B$ are weak actions, $f : H \to B$ is a gauge transformation between φ_B and φ'_B if there exists $f^{-1} : H \to B$:

1.
$$\begin{aligned} f \wedge f^{-1} &= \varphi_B(H \otimes \eta_B) = t(f) \\ f^{-1} \wedge f &= \varphi'_B(H \otimes \eta_B) = s(f) \end{aligned}$$

2.
$$f \wedge f^{-1} \wedge f = f \text{ and } f^{-1} \wedge f \wedge f^{-1} = f^{-1}$$

3.
$$\mu_B^3 \circ (f \otimes \varphi_B \otimes f^{-1}) \circ (\delta_H \otimes c_{H,B}) \circ (\delta_H \otimes B) = \varphi'_B \end{aligned}$$

・ロト ・ 日 ・ エ ト ・ 日 ・ うらぐ

Gauge transformations (the morphisms)

If $\varphi_B, \varphi'_B : H \otimes B \to B$ are weak actions, $f : H \to B$ is a gauge transformation between φ_B and φ'_B if there exists $f^{-1} : H \to B$:

1.
$$\begin{aligned} f \wedge f^{-1} &= \varphi_B(H \otimes \eta_B) = t(f) \\ f^{-1} \wedge f &= \varphi'_B(H \otimes \eta_B) = s(f) \end{aligned}$$

2.
$$f \wedge f^{-1} \wedge f = f \text{ and } f^{-1} \wedge f \wedge f^{-1} = f^{-1}$$

3.
$$\mu_B^3 \circ (f \otimes \varphi_B \otimes f^{-1}) \circ (\delta_H \otimes c_{H,B}) \circ (\delta_H \otimes B) = \varphi'_B \end{aligned}$$

・ロト ・ 日 ・ エ ト ・ 日 ・ うらぐ

ĉ

Gauge transformations (the morphisms)

If $\varphi_B, \varphi'_B : H \otimes B \to B$ are weak actions, $f : H \to B$ is a gauge transformation between φ_B and φ'_B if there exists $f^{-1} : H \to B$:

1.
$$\begin{aligned} f \wedge f^{-1} &= \varphi_B(H \otimes \eta_B) = t(f) \\ f^{-1} \wedge f &= \varphi'_B(H \otimes \eta_B) = s(f) \end{aligned}$$

2.
$$f \wedge f^{-1} \wedge f = f \text{ and } f^{-1} \wedge f \wedge f^{-1} = f^{-1}$$

3.
$$\mu_B^3 \circ (f \otimes \varphi_B \otimes f^{-1}) \circ (\delta_H \otimes c_{H,B}) \circ (\delta_H \otimes B) = \varphi'_B \end{aligned}$$

and we generalize to gauge transformations $f : H^{(n)} \to B$.

・ロト ・ 日 ・ エ ト ・ 日 ・ うらぐ

Gauge transformations (the morphisms)

If $\varphi_B, \varphi'_B : H \otimes B \to B$ are weak actions, $f : H \to B$ is a gauge transformation between φ_B and φ'_B if there exists $f^{-1} : H \to B$:

1.
$$\begin{aligned} f \wedge f^{-1} &= \varphi_B(H \otimes \eta_B) = t(f) \\ f^{-1} \wedge f &= \varphi'_B(H \otimes \eta_B) = s(f) \end{aligned}$$

2.
$$f \wedge f^{-1} \wedge f = f \text{ and } f^{-1} \wedge f \wedge f^{-1} = f^{-1}$$

3.
$$\mu_B^3 \circ (f \otimes \varphi_B \otimes f^{-1}) \circ (\delta_H \otimes c_{H,B}) \circ (\delta_H \otimes B) = \varphi'_B \end{aligned}$$

nd we generalize to gauge transformations $f : H^{(n)} \to B$.

Arrows and composition of $M^n(H, B)$

а

 $M^n(H,B)_1 = \{f : H^{(n)} \to B\}$ where f is a gauge transformation between φ_B and φ'_B . We define the composition by $f * g = f \land g$ if t(g) = s(f).

The operators

Morphisms of groupoids

$$M(H,B) \xrightarrow[]{@ 2 \to 1 \\ @ 2$$

- $\blacktriangleright \ \partial_1^{\varphi_B}(\varphi_B(H \otimes \eta_B)) = \varphi_B(H \otimes \varphi_B(H \otimes \eta_B))$
- $\blacktriangleright \ \partial_2(\varphi_B(H\otimes\eta_B))=\varphi_B(\mu_H\otimes\eta_B)$
- $\triangleright \ \partial_3(\varphi_B(H\otimes\eta_B)) = \varphi_B(\mu_H(H\otimes\Pi_L)\otimes\eta_B)$

The operators

Morphisms of groupoids

$$M(H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{3}}{\longrightarrow}} M(H \otimes H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{4}}{\longrightarrow}} M^{3}(H,B) \dots$$

For $\varphi_B(H \otimes \eta_B) \in Reg(H, B)_0$

- $\blacktriangleright \ \partial_1^{\varphi_B}(\varphi_B(H \otimes \eta_B)) = \varphi_B(H \otimes \varphi_B(H \otimes \eta_B))$
- $\blacktriangleright \ \partial_2(\varphi_B(H \otimes \eta_B)) = \varphi_B(\mu_H \otimes \eta_B)$
- $\triangleright \ \partial_3(\varphi_B(H\otimes\eta_B)) = \varphi_B(\mu_H(H\otimes\Pi_L)\otimes\eta_B)$

The operators

Morphisms of groupoids

$$M(H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{2}}{\longrightarrow}} M(H \otimes H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{3}}{\longrightarrow}} M^{3}(H,B) \dots$$

For $\varphi_B(H \otimes \eta_B) \in Reg(H, B)_0$

- $\blacktriangleright \ \partial_1^{\varphi_B}(\varphi_B(H \otimes \eta_B)) = \varphi_B(H \otimes \varphi_B(H \otimes \eta_B))$
- $\blacktriangleright \ \partial_2(\varphi_B(H \otimes \eta_B)) = \varphi_B(\mu_H \otimes \eta_B)$
- $\blacktriangleright \ \partial_3(\varphi_B(H \otimes \eta_B)) = \varphi_B(\mu_H(H \otimes \Pi_L) \otimes \eta_B)$

The operators

Morphisms of groupoids

$$M(H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{2}}{\longrightarrow}} M(H \otimes H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{3}}{\longrightarrow}} M^{3}(H,B) \dots$$

For $\varphi_B(H \otimes \eta_B) \in Reg(H, B)_0$

- $\blacktriangleright \ \partial_1^{\varphi_B}(\varphi_B(H \otimes \eta_B)) = \varphi_B(H \otimes \varphi_B(H \otimes \eta_B))$
- $\blacktriangleright \ \partial_2(\varphi_B(H\otimes\eta_B))=\varphi_B(\mu_H\otimes\eta_B)$
- $\blacktriangleright \ \partial_3(\varphi_B(H \otimes \eta_B)) = \varphi_B(\mu_H(H \otimes \Pi_L) \otimes \eta_B)$

The operators

Morphisms of groupoids

$$M(H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{3}}{\longrightarrow}} M(H \otimes H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{4}}{\longrightarrow}} M^{3}(H,B) \dots$$

For $\varphi_B(H \otimes \eta_B) \in Reg(H, B)_0$

- $\blacktriangleright \ \partial_1^{\varphi_B}(\varphi_B(H \otimes \eta_B)) = \varphi_B(H \otimes \varphi_B(H \otimes \eta_B))$
- $\blacktriangleright \ \partial_2(\varphi_B(H\otimes\eta_B))=\varphi_B(\mu_H\otimes\eta_B)$
- $\blacktriangleright \ \partial_3(\varphi_B(H \otimes \eta_B)) = \varphi_B(\mu_H(H \otimes \Pi_L) \otimes \eta_B)$

The operators

Morphisms of groupoids

$$M(H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_2}{\longrightarrow}} M(H \otimes H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_3}{\longrightarrow}} M^3(H,B) \dots$$

For $\varphi_B(H \otimes \eta_B) \in Reg(H, B)_0$

- $\blacktriangleright \ \partial_1^{\varphi_B}(\varphi_B(H \otimes \eta_B)) = \varphi_B(H \otimes \varphi_B(H \otimes \eta_B))$
- $\blacktriangleright \ \partial_2(\varphi_B(H\otimes\eta_B))=\varphi_B(\mu_H\otimes\eta_B)$
- $\blacktriangleright \ \partial_3(\varphi_B(H \otimes \eta_B)) = \varphi_B(\mu_H(H \otimes \Pi_L) \otimes \eta_B)$

The operators

Morphisms of groupoids

$$M(H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{2}}{\longrightarrow}} M(H \otimes H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{3}}{\longrightarrow}} M^{3}(H,B) \dots$$

If $f \in M(H,B)_1$, $\varphi_B(H \otimes \eta_B) \xrightarrow{f} \varphi'_B(H \otimes \eta_B)$:

- $\blacktriangleright \ \partial_1^{\varphi_B}(f) = \varphi_B(H \otimes f)$
- $\blacktriangleright \ \partial_2(f) = f(\mu_H \otimes H)$
- $\blacktriangleright \ \partial_3(f) = f \circ (\mu_H \circ (H \otimes \Pi_L))$

The operators

Morphisms of groupoids

$$M(H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{2}}{\longrightarrow}} M(H \otimes H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{3}}{\longrightarrow}} M^{3}(H,B) \dots$$

If $f \in M(H,B)_1$, $\varphi_B(H \otimes \eta_B) \xrightarrow{f} \varphi'_B(H \otimes \eta_B)$:

- $\blacktriangleright \ \partial_1^{\varphi_B}(f) = \varphi_B(H \otimes f)$
- $\blacktriangleright \ \partial_2(f) = f(\mu_H \otimes H)$
- $\triangleright \ \partial_3(f) = f \circ (\mu_H \circ (H \otimes \Pi_L))$

The operators

Morphisms of groupoids

$$M(H,B) \xrightarrow[]{ \xrightarrow{ \Rightarrow} \\ \Rightarrow \\ \Rightarrow \\ \xrightarrow{ \Rightarrow} \\ \Rightarrow \\ \xrightarrow{ \Rightarrow} \xrightarrow{$$

If $f \in M(H,B)_1$, $\varphi_B(H \otimes \eta_B) \xrightarrow{f} \varphi'_B(H \otimes \eta_B)$:

- $\blacktriangleright \ \partial_1^{\varphi_B}(f) = \varphi_B(H \otimes f)$
- $\blacktriangleright \ \partial_2(f) = f(\mu_H \otimes H)$
- $\blacktriangleright \ \partial_3(f) = f \circ (\mu_H \circ (H \otimes \Pi_L))$

 $\partial_1^{\varphi_B}(\varphi_B(H\otimes\eta_B))=\partial_2(\varphi_B(H\otimes\eta_B))=\partial_3(\varphi_B(H\otimes\eta_B))$

うして ふゆ くりょう ふしゃ くしゃ
The operators

Morphisms of groupoids

$$M(H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{2}}{\longrightarrow}} M(H \otimes H,B) \xrightarrow[]{\stackrel{\mathfrak{g}_{3}}{\longrightarrow}} M^{3}(H,B) \dots$$

If $f \in M(H,B)_1$, $\varphi_B(H \otimes \eta_B) \xrightarrow{f} \varphi'_B(H \otimes \eta_B)$:

- $\blacktriangleright \ \partial_1^{\varphi_B}(f) = \varphi_B(H \otimes f)$
- $\blacktriangleright \ \partial_2(f) = f(\mu_H \otimes H)$
- $\blacktriangleright \ \partial_3(f) = f \circ (\mu_H \circ (H \otimes \Pi_L)) = f \otimes \varepsilon_H$

 $\partial_1^{\varphi_B}(\varphi_B(H\otimes\eta_B))=\partial_2(\varphi_B(H\otimes\eta_B))=\partial_3(\varphi_B(H\otimes\eta_B))$

2-cocycles

Let $\sigma: H \otimes H \to B$ be a morphism in the groupoid $M(H \otimes H, B)$ such that

Twisted condition

As $\sigma \in M(H \otimes H, B)$:

 $\varphi_B \circ (H \otimes \varphi_B \circ (H \otimes B)) =$

 $\mu_B^3 \circ (\sigma \otimes \varphi_B(\mu_H \otimes B) \otimes \sigma^{-1}) \circ (\delta_{H \otimes H} \otimes c_{H \otimes H,B}) \circ (\delta_{H \otimes H} \otimes B)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

2-cocycles

Let $\sigma: H \otimes H \to B$ be a morphism in the groupoid $M(H \otimes H, B)$ such that $\varphi_B(\mu_H \otimes \eta_B)$ $\varphi_B(H \otimes \varphi_B(H \otimes \eta_B))$

 σ^{-1}

Twisted condition

As $\sigma \in M(H \otimes H, B)$:

 $\varphi_B \circ (H \otimes \varphi_B \circ (H \otimes B)) =$

 $\mu_B^3 \circ (\sigma \otimes \varphi_B(\mu_H \otimes B) \otimes \sigma^{-1}) \circ (\delta_{H \otimes H} \otimes c_{H \otimes H,B}) \circ (\delta_{H \otimes H} \otimes B)$

2-cocycles

Let $\sigma: H \otimes H \to B$ be a morphism in the groupoid $M(H \otimes H, B)$ such that $\varphi_B(\mu_H \otimes \eta_B)$ $\varphi_B(H \otimes \varphi_B(H \otimes \eta_B))$

 σ^{-1}

Twisted condition

As $\sigma \in M(H \otimes H, B)$:

 $\varphi_B \circ (H \otimes \varphi_B \circ (H \otimes B)) =$

 $\mu_B^3 \circ (\sigma \otimes \varphi_B(\mu_H \otimes B) \otimes \sigma^{-1}) \circ (\delta_{H \otimes H} \otimes c_{H \otimes H,B}) \circ (\delta_{H \otimes H} \otimes B)$

2-cocycles

Let $\sigma: H \otimes H \to B$ be a morphism in the groupoid $M(H \otimes H, B)$ such that

Twisted condition

As $\sigma \in M(H \otimes H, B)$:

 $\varphi_B \circ (H \otimes \varphi_B \circ (H \otimes B)) =$

 $\mu_B^3 \circ (\sigma \otimes \varphi_B(\mu_H \otimes B) \otimes \sigma^{-1}) \circ (\delta_{H \otimes H} \otimes c_{H \otimes H,B}) \circ (\delta_{H \otimes H} \otimes B)$

2-cocycles

2-cocycles

 σ is a 2-cocycle with respect to φ_B if

 $\partial_1^{\varphi_B}(\sigma) * \partial_3(\sigma) = \partial_4(\sigma) * \partial_2(\sigma)$

Let σ be a 2-cocycle with respect to φ_B and let τ be a 2-cocycle with respect to φ'_B and $\gamma: H \to B$ a morphism in M(H, B).

Equivalent 2-cocycles

 σ and τ are equivalent if

 $\tau * \partial_2(\gamma) = (\partial_3(\gamma) \wedge \partial_1^{\varphi_B}(\gamma)) * \sigma$

provided that $\gamma: \varphi_B(H \otimes \eta_B) \to \varphi'_B(H \otimes \eta_B)$. We denote by $H^2(H, B)$ the set of equivalence classes.

2-cocycles

2-cocycles

 σ is a 2-cocycle with respect to φ_B if

 $\partial_1^{\varphi_B}(\sigma) * \partial_3(\sigma) = \partial_4(\sigma) * \partial_2(\sigma)$

Let σ be a 2-cocycle with respect to φ_B and let τ be a 2-cocycle with respect to φ'_B and $\gamma: H \to B$ a morphism in M(H, B).

Equivalent 2-cocycles

 σ and τ are equivalent if

$$\tau * \partial_2(\gamma) = (\partial_3(\gamma) \wedge \partial_1^{\varphi_B}(\gamma)) * \sigma$$

provided that $\gamma: \varphi_B(H \otimes \eta_B) \to \varphi'_B(H \otimes \eta_B)$. We denote by $H^2(H, B)$ the set of equivalence classes.

Normal 2-cocycles If σ is a 2-cocycle with respect to φ_B

Normal 2-cocycle

 σ is a *normal 2-cocycle* if:

$$\sigma \circ (H \otimes \eta_H) = \sigma \circ (\eta_H \otimes H) = \varphi_B(H \otimes \eta_B).$$

Proposition

If σ is a 2-cocycle with respect to φ_B , there exists a normal 2-cocycle with respect to φ_B equivalent to σ .

Classes of equivalence

All the equivalence classes of cohomologous 2-cocycles have a normal representative element.

Normal 2-cocycles If σ is a 2-cocycle with respect to φ_B

Normal 2-cocycle

 σ is a normal 2-cocycle if:

$$\sigma \circ (H \otimes \eta_H) = \sigma \circ (\eta_H \otimes H) = \varphi_B(H \otimes \eta_B).$$

Proposition

If σ is a 2-cocycle with respect to φ_B , there exists a normal 2-cocycle with respect to φ_B equivalent to σ .

Classes of equivalence

All the equivalence classes of cohomologous 2-cocycles have a normal representative element.

Normal 2-cocycles If σ is a 2-cocycle with respect to φ_B

Normal 2-cocycle

 σ is a normal 2-cocycle if:

$$\sigma \circ (H \otimes \eta_H) = \sigma \circ (\eta_H \otimes H) = \varphi_B(H \otimes \eta_B).$$

Proposition

If σ is a 2-cocycle with respect to φ_B , there exists a normal 2-cocycle with respect to φ_B equivalent to σ .

Classes of equivalence

All the equivalence classes of cohomologous 2-cocycles have a normal representative element.

-2-cocycles and weak crossed products

Outline

- 1. Introduction
- 2. Groups by groupoids
- 3. 2-cocycles and weak crossed products

・ロト ・ 日 ・ エ ト ・ 日 ・ うらぐ

4. Cleft extensions

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_{B},\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

- $B \otimes H$ is not an algebra.
- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- ► Twisted condition.
- Cocycle condition.
- $\sigma M(H \otimes H, B)$.
- - ・ロット 本語 マネ 山 マ キャー 日 くうく

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_{B},\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

- $B \otimes H$ is not an algebra.
- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- ► Twisted condition.
- Cocycle condition.
- $\sigma M(H \otimes H, B)$.
- - ・ロット 本語 マネ 山 マ キャー 日 くうく

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

- $B \otimes H$ is not an algebra.
- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- ► Twisted condition.
- Cocycle condition.
- $\sigma M(H \otimes H, B)$.
- - ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへの

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

- $B \otimes H$ is not an algebra.
- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- ► Twisted condition.
- Cocycle condition.
- $\sigma M(H \otimes H, B)$.
- - ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへの

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

• $B \otimes H$ is not an algebra.

- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- ► Twisted condition.
- ► Cocycle condition.
- $\sigma M(H \otimes H, B)$.
- $\sigma(\eta_H, H) = \sigma(H, \eta_H) = \varphi_B(H \otimes \eta_B)$
 - ・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

• $B \otimes H$ is not an algebra.

► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.

• φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- ► Twisted condition.
- Cocycle condition.
- $\sigma M(H \otimes H, B)$.
- - ●●● 画 →画▼ →画▼ → ●●●

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

• $B \otimes H$ is not an algebra.

- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- ► Twisted condition.
- Cocycle condition.
- $\sigma M(H \otimes H, B)$.
- $\sigma(\eta_H, H) = \sigma(H, \eta_H) = \varphi_B(H \otimes \eta_B)$
 - ●●● 画 →画▼ →画▼ → ●●●

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

- $B \otimes H$ is not an algebra.
- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

 σ satisfies:

- ► Twisted condition.
- ► Cocycle condition.
- $\sigma M(H \otimes H, B)$.
- $\sigma(\eta_H, H) = \sigma(H, \eta_H) = \varphi_B(H \otimes \eta_B)$

●●● 画 →画▼ →画▼ → ■ ●●●

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

- $B \otimes H$ is not an algebra.
- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- ► Twisted condition.
- Cocycle condition.
- $\sigma M(H \otimes H, B)$.
- $\sigma(\eta_H, H) = \sigma(H, \eta_H) = \varphi_B(H \otimes \eta_B)$
 - ●●● 画 →画▼ →画▼ → ●●●

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_{B},\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

- $B \otimes H$ is not an algebra.
- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- ► Twisted condition.
- Cocycle condition.
- ► $\sigma M(H \otimes H, B)$.
- $\sigma(\eta_H, H) = \sigma(H, \eta_H) = \varphi_B(H \otimes \eta_B)$
 - ・ロト ・西ト ・田ト ・田ト ・日下

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

- $B \otimes H$ is not an algebra.
- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- ► Twisted condition.
- Cocycle condition.
- ► $\sigma \notin M(H \otimes H, B)$.
- - うせん 一川 (山下) (山下) (山下) (山下)

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

- $B \otimes H$ is not an algebra.
- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

 σ satisfies:

- ► Twisted condition.
- Cocycle condition.
- $\sigma \in M(H \otimes H, B)$.
- $\bullet \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \\ \varphi_B(H \otimes \eta_B)$

Weak crossed products

H is a weak Hopf algebra, *B* an algebra and $\varphi_B : H \otimes B \to B$ and $\sigma : H \otimes H \to B$ morphisms.

$$\varphi_B, \sigma \longrightarrow \mu_{\varphi_B, \sigma}$$

 $\mu_{\varphi_B,\sigma}:B\otimes H\otimes B\otimes H\to B\otimes H$

- $B \otimes H$ is not an algebra.
- ► For $\nabla_{\eta_B \otimes \eta_H} : B \otimes H \to B \otimes H$, $Im \nabla = B \times_{\sigma}^{\varphi_B} H$ is an algebra.
- φ_B is a weak action.

Normal crossed product

 $B \otimes H$ is a crossed product if $\mu_{\varphi_B,\sigma}$ is associative and $\eta_B \otimes \eta_H$ is a preunit.

- Twisted condition.
- Cocycle condition.
- $\sigma \in M(H \otimes H, B)$.
- $\bullet \ \sigma(\eta_H, H) = \sigma(H, \eta_H) = \\ \varphi_B(H \otimes \eta_B)$
 - くしゃ 本語を 本語を 本語を よしゃ

Equivalent weak crossed products

<u>Definition</u>: $B \sharp_{\sigma}^{\varphi_{B}} H$ and $B \sharp_{\tau}^{\varphi'_{B}} H$ are equivalent if and only if $B \times_{\sigma}^{\varphi_{B}} H \simeq B \times_{\tau}^{\varphi'_{B}} H$.

I heorem

Two weak crossed products $B\sharp_{\sigma}^{\varphi_{B}}H$ and $B\sharp_{\tau}^{\varphi_{B}}H$ are equivalent if and only if σ and τ are cohomologous.

The equivalence classes of weak crossed products (with invertible cocycle) are in bijective correspondence with $H^2(H, B)$.

Equivalent weak crossed products

<u>Definition</u>: $B \sharp_{\sigma}^{\varphi_{B}} H$ and $B \sharp_{\tau}^{\varphi'_{B}} H$ are equivalent if and only if $B \times_{\sigma}^{\varphi_{B}} H \simeq B \times_{\tau}^{\varphi'_{B}} H$.

Theorem

Two weak crossed products $B\sharp_{\sigma}^{\varphi_B}H$ and $B\sharp_{\tau}^{\varphi'_B}H$ are equivalent if and only if σ and τ are cohomologous.

The equivalence classes of weak crossed products (with invertible cocycle) are in bijective correspondence with $H^2(H, B)$.

Equivalent weak crossed products

<u>Definition</u>: $B \sharp_{\sigma}^{\varphi_{B}} H$ and $B \sharp_{\tau}^{\varphi'_{B}} H$ are equivalent if and only if $B \times_{\sigma}^{\varphi_{B}} H \simeq B \times_{\tau}^{\varphi'_{B}} H$.

Theorem

Two weak crossed products $B\sharp_{\sigma}^{\varphi_B}H$ and $B\sharp_{\tau}^{\varphi'_B}H$ are equivalent if and only if σ and τ are cohomologous.

The equivalence classes of weak crossed products (with invertible cocycle) are in bijective correspondence with $H^2(H, B)$.

ション ふゆ マ キャット しょう くしゃ

Outline

- 1. Introduction
- 2. Groups by groupoids
- 3. 2-cocycles and weak crossed products

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

4. Cleft extensions

If A is an H-comodule algebra define

$$A^{coH} \xrightarrow{\iota_{A}} A \xrightarrow{\rho_{A}} A \otimes H$$

$$\xrightarrow{(A \otimes \Pi_{L}) \circ \rho_{A}} A \otimes H$$

H-extension

 $B \hookrightarrow A$ is a *H*-extension if

1. $B \simeq A^{coH}$ with inclusion $\iota_A : B \to A$.

2. $\iota_A \circ \varphi_B \circ (H \otimes \eta_B) = (A \otimes (\varepsilon_H \circ \mu_H)) \circ ((\rho_A \circ \eta_A) \otimes H) = \overline{e}_{LL}.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If A is an H-comodule algebra define

$$A^{coH} \xrightarrow{\iota_{A}} A \xrightarrow{\rho_{A}} A \otimes H$$

$$\xrightarrow{(A \otimes \Pi_{L}) \circ \rho_{A}} A \otimes H$$

H-extension

 $B \hookrightarrow A \text{ is a } H\text{-extension if}$ 1. $B \simeq A^{coH}$ with inclusion $\iota_A : B \to A$. 2. $\iota_A \circ \varphi_B \circ (H \otimes \eta_B) = (A \otimes (\varepsilon_H \circ \mu_H)) \circ ((\rho_A \circ \eta_A) \otimes H) = \overline{e}_{LL}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If A is an H-comodule algebra define

$$A^{coH} \xrightarrow{\iota_{A}} A \xrightarrow{\rho_{A}} A \otimes H$$

$$\xrightarrow{(A \otimes \Pi_{L}) \circ \rho_{A}} A \otimes H$$

H-extension

$$B \hookrightarrow A$$
 is a *H*-extension if

1.
$$B \simeq A^{coH}$$
 with inclusion $\iota_A : B \to A$.

2.
$$\iota_A \circ \varphi_B \circ (H \otimes \eta_B) = (A \otimes (\varepsilon_H \circ \mu_H)) \circ ((\rho_A \circ \eta_A) \otimes H) = \overline{e}_{LL}.$$

Another Reg

Let $f : H \to A$ be a morphism in C. $f \in Reg(H, A)$ if there exists $f^{-1} : H \to A$ such that

1. $f^{-1} \wedge f = e_{RR}, f \wedge f^{-1} = \overline{e}_{LL}.$ 2. $f \wedge f^{-1} \wedge f = f, f^{-1} \wedge f \wedge f^{-1} = f^{-1}.$ $e_{RR} = (A \otimes (\varepsilon_H \circ \mu_H)) \circ (c_{H,A} \otimes H) \circ (H \otimes (\rho_A \circ \eta_A)))$ $\overline{e}_{LL} = (A \otimes (\varepsilon_H \circ \mu_H)) \circ ((\rho_A \circ \eta_A) \otimes H)$

A new groupoid!

Another Reg

Let $f : H \to A$ be a morphism in C. $f \in Reg(H, A)$ if there exists $f^{-1} : H \to A$ such that

1.
$$f^{-1} \wedge f = e_{RR}, f \wedge f^{-1} = \overline{e}_{LL}.$$

2. $f \wedge f^{-1} \wedge f = f$, $f^{-1} \wedge f \wedge f^{-1} = f^{-1}$.

$$\begin{array}{ll} e_{RR} & = & (A \otimes (\varepsilon_H \circ \mu_H)) \circ (c_{H,A} \otimes H) \circ (H \otimes (\rho_A \circ \eta_A)) \\ \bar{e}_{LL} & = & (A \otimes (\varepsilon_H \circ \mu_H)) \circ ((\rho_A \circ \eta_A) \otimes H) \end{array}$$

A new groupoid!

Another Reg

Let $f : H \to A$ be a morphism in C. $f \in Reg(H, A)$ if there exists $f^{-1} : H \to A$ such that

1.
$$f^{-1} \wedge f = e_{RR}, f \wedge f^{-1} = \overline{e}_{LL}.$$

2. $f \wedge f^{-1} \wedge f = f, f^{-1} \wedge f \wedge f^{-1} = f^{-1}.$
 $e_{RR} = (A \otimes (\varepsilon_H \circ \mu_H)) \circ (c_{H,A} \otimes H) \circ (H \otimes (\rho_A \circ \eta_A)))$
 $\overline{e}_{LL} = (A \otimes (\varepsilon_H \circ \mu_H)) \circ ((\rho_A \circ \eta_A) \otimes H)$

・ロト ・ 日 ・ エ ト ・ 日 ・ うらぐ

A new groupoid!

Another Reg

Let $f : H \to A$ be a morphism in C. $f \in Reg(H, A)$ if there exists $f^{-1} : H \to A$ such that

1.
$$f^{-1} \wedge f = e_{RR}, f \wedge f^{-1} = \overline{e}_{LL}.$$

2. $f \wedge f^{-1} \wedge f = f, f^{-1} \wedge f \wedge f^{-1} = f^{-1}.$
 $e_{RR} = (A \otimes (\varepsilon_H \circ \mu_H)) \circ (c_{H,A} \otimes H) \circ (H \otimes (\rho_A \circ \eta_A)))$
 $\overline{e}_{LL} = (A \otimes (\varepsilon_H \circ \mu_H)) \circ ((\rho_A \circ \eta_A) \otimes H)$

・ロト ・ 日 ・ エ ト ・ 日 ・ うらぐ

A new groupoid!

Another Reg

Let $f : H \to A$ be a morphism in C. $f \in Reg(H, A)$ if there exists $f^{-1} : H \to A$ such that

1.
$$f^{-1} \wedge f = e_{RR}, f \wedge f^{-1} = \overline{e}_{LL}.$$

2. $f \wedge f^{-1} \wedge f = f, f^{-1} \wedge f \wedge f^{-1} = f^{-1}.$
 $e_{RR} = (A \otimes (\varepsilon_H \circ \mu_H)) \circ (c_{H,A} \otimes H) \circ (H \otimes (\rho_A \circ \eta_A)))$
 $\overline{e}_{LL} = (A \otimes (\varepsilon_H \circ \mu_H)) \circ ((\rho_A \circ \eta_A) \otimes H)$

A new groupoid!

Reg(H, A) is a groupoid with two objects e_{RR} and \bar{e}_{LL} .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○
Cleft H-extensions

H-cleft extensions

The *H*-extension $B \hookrightarrow A$ is *cleft* if there exits $f \in Reg(H, A)$ of *H*-comodules and such that f^{-1} satisfies

1.
$$(A \otimes \Pi_R) \circ \rho_A \circ f^{-1} = (A \otimes \mu_H) \circ (c_{H,A} \otimes H) \circ (H \otimes (\rho_A \circ f^{-1})) \circ \delta$$

2. $f \circ \eta_H = \eta_A, \qquad f^{-1} \circ \eta_H = \eta_A.$

• As
$$B \hookrightarrow A$$
 is a
H-extension,
 $\overline{e}_{LL} = \iota_A \circ \varphi_B(H \otimes \eta_B)$ so

 $f \wedge f^{-1} = \iota_A \circ \varphi_B(H \otimes \eta_B).$

Cleft H-extensions

H-cleft extensions

The *H*-extension $B \hookrightarrow A$ is *cleft* if there exits $f \in Reg(H, A)$ of *H*-comodules and such that f^{-1} satisfies

1.
$$(A \otimes \Pi_R) \circ \rho_A \circ f^{-1} = (A \otimes \mu_H) \circ (c_{H,A} \otimes H) \circ (H \otimes (\rho_A \circ f^{-1})) \circ \delta$$

2. $f \circ \eta_H = \eta_A, \qquad f^{-1} \circ \eta_H = \eta_A.$

・ロト ・ 日 ・ エ ト ・ 日 ・ うらぐ

► As
$$B \hookrightarrow A$$
 is a
H-extension,
 $\overline{e}_{LL} = \iota_A \circ \varphi_B(H \otimes \eta_B)$ so
 $f \wedge f^{-1} = \iota_A \circ \varphi_B(H \otimes \eta_B)$.

Cleft H-extensions

H-cleft extensions

The *H*-extension $B \hookrightarrow A$ is *cleft* if there exits $f \in Reg(H, A)$ of *H*-comodules and such that f^{-1} satisfies

1.
$$(A \otimes \Pi_R) \circ \rho_A \circ f^{-1} = (A \otimes \mu_H) \circ (c_{H,A} \otimes H) \circ (H \otimes (\rho_A \circ f^{-1})) \circ \delta$$

2. $f \circ \eta_H = \eta_A, \qquad f^{-1} \circ \eta_H = \eta_A.$

► As
$$B \hookrightarrow A$$
 is a
H-extension,
 $\bar{e}_{LL} = \iota_A \circ \varphi_B(H \otimes \eta_B)$ so
 $f \wedge f^{-1} = \iota_A \circ \varphi_B(H \otimes \eta_B)$

 η_{R})

ション ふゆ アメリア メリア しょうくしゃ

Equivalent *H*-extensions

If $B \hookrightarrow A_1$ and $B \hookrightarrow A_2$ are *H*-extensions then $T : A_1 \to A_2$ is a *morphism of extensions* if

1. T is of H-comodule algebras.

2.
$$\iota_{A_2} = T \circ \iota_{A_1}$$
.

T is an isomorphism of extensions if $T : A_1 \rightarrow A_2$ is an isomorphism.

Proposition

If $T : (B \hookrightarrow A_1) \to (B \hookrightarrow A_2)$ is of *H*-extensions and $B \hookrightarrow A_1$ is cleft then:

- $B \hookrightarrow A_2$ is also cleft.
- T is an isomorphism.

Equivalent *H*-extensions

If $B \hookrightarrow A_1$ and $B \hookrightarrow A_2$ are *H*-extensions then $T : A_1 \to A_2$ is a *morphism of extensions* if

1. T is of H-comodule algebras.

2.
$$\iota_{A_2} = T \circ \iota_{A_1}$$
.

T is an isomorphism of extensions if $T : A_1 \rightarrow A_2$ is an isomorphism.

Proposition

If $T : (B \hookrightarrow A_1) \to (B \hookrightarrow A_2)$ is of *H*-extensions and $B \hookrightarrow A_1$ is cleft then:

- $B \hookrightarrow A_2$ is also cleft.
- T is an isomorphism.

Equivalent *H*-extensions

If $B \hookrightarrow A_1$ and $B \hookrightarrow A_2$ are *H*-extensions then $T : A_1 \to A_2$ is a *morphism of extensions* if

1. T is of H-comodule algebras.

$$2. \ \iota_{A_2} = T \circ \iota_{A_1}.$$

T is an isomorphism of extensions if $T : A_1 \rightarrow A_2$ is an isomorphism.

Proposition

If $T : (B \hookrightarrow A_1) \to (B \hookrightarrow A_2)$ is of *H*-extensions and $B \hookrightarrow A_1$ is cleft then:

- $B \hookrightarrow A_2$ is also cleft.
- ► *T* is an isomorphism.

Equivalent *H*-extensions

If $B \hookrightarrow A_1$ and $B \hookrightarrow A_2$ are *H*-extensions then $T : A_1 \to A_2$ is a *morphism of extensions* if

1. T is of H-comodule algebras.

$$2. \ \iota_{A_2} = T \circ \iota_{A_1}.$$

T is an isomorphism of extensions if $T : A_1 \rightarrow A_2$ is an isomorphism.

Proposition

If $T : (B \hookrightarrow A_1) \to (B \hookrightarrow A_2)$ is of *H*-extensions and $B \hookrightarrow A_1$ is cleft then:

- $B \hookrightarrow A_2$ is also cleft.
- ► *T* is an isomorphism.

Equivalent *H*-extensions

If $B \hookrightarrow A_1$ and $B \hookrightarrow A_2$ are *H*-extensions then $T : A_1 \to A_2$ is a *morphism of extensions* if

1. T is of H-comodule algebras.

$$2. \ \iota_{A_2} = T \circ \iota_{A_1}.$$

T is an isomorphism of extensions if $T : A_1 \rightarrow A_2$ is an isomorphism.

Proposition

If $T : (B \hookrightarrow A_1) \to (B \hookrightarrow A_2)$ is of *H*-extensions and $B \hookrightarrow A_1$ is cleft then:

- $B \hookrightarrow A_2$ is also cleft.
- T is an isomorphism.

Equivalent *H*-extensions

If $B \hookrightarrow A_1$ and $B \hookrightarrow A_2$ are *H*-extensions then $T : A_1 \to A_2$ is a *morphism of extensions* if

1. T is of H-comodule algebras.

$$2. \ \iota_{A_2} = T \circ \iota_{A_1}.$$

T is an isomorphism of extensions if $T : A_1 \rightarrow A_2$ is an isomorphism.

Proposition

If $T : (B \hookrightarrow A_1) \to (B \hookrightarrow A_2)$ is of *H*-extensions and $B \hookrightarrow A_1$ is cleft then:

- $B \hookrightarrow A_2$ is also cleft.
- T is an isomorphism.

Cleft extensions and weak crossed products

Induced weak crossed product

If $B \hookrightarrow A$ is a cleft *H*-extension then $B \otimes H$ can be endowed with a normal weak crossed product with invertible cocycle structure such that $A \simeq B \times_{\varphi_B}^{\sigma} H$

A cleft extension from a weak crossed product

If $B\sharp_{\varphi_B}^{\sigma}H$ is a normal weak crossed product with invertible cocycle, then $B \hookrightarrow B \times H$ is a cleft extension. Cleft extensions and weak crossed products

Induced weak crossed product

If $B \hookrightarrow A$ is a cleft *H*-extension then $B \otimes H$ can be endowed with a normal weak crossed product with invertible cocycle structure such that $A \simeq B \times_{\varphi_B}^{\sigma} H$

A cleft extension from a weak crossed product

If $B\sharp_{\varphi_B}^{\sigma}H$ is a normal weak crossed product with invertible cocycle, then $B \hookrightarrow B \times H$ is a cleft extension.

Classifying weak crossed products

Theorem

Let H be a cocommutative weak Hopf algebra and B an algebra. Then the classes of equivalence of cleft H-extensions are in bijective correspondence with $H^2(H, B)$ and with the classes of equivalence of weak crossed products with invertible cocycle.

うして ふゆ くりょう ふしゃ くしゃ

Muchas gracias

・ロト・日本・モー・モー・ モー うへで