The Picard crossed module of a braided tensor category

Dmitri Nikshych (University of New Hampshire, USA) nikshych@cisunix.unh.edu

Let \mathcal{C} be a braided tensor category (e.g., the representation category of a finite dimensional Hopf algebra). One associates to \mathcal{C} two groups: the group G of braided autoequivalences of \mathcal{C} and the group P of invertible \mathcal{C} -module categories. The pair (G, P) forms a crossed module (also known as a categorical group). We discuss the structure of this crossed module and explain how it is used in the classification of fusion categories.

This is a report on joint works in progress with A. Davydov and with V. Drinfeld, S. Gelaki, and V. Ostrik.

Hopf algebras and tensor categories Almeria, July 2011

The Picard crossed module of a braided tensor category

Dmitri Nikshych

University of New Hampshire

nikshych@math.unh.edu

July 4, 2011

Coautors

This is a report on joint works in progress with A. Davydov and with V. Drinfeld, S. Gelaki, and V. Ostrik.

Coautors

This is a report on joint works in progress with A. Davydov and with V. Drinfeld, S. Gelaki, and V. Ostrik.

Let k be an algebraically closed field, char(k) = 0.

Let C be a finite braided tensor category

This means that C is an Abelian *k*-linear equipped with tensor product $\otimes : C \times C \to C$, the unit object **1**, the associativity and unit constraints

$$a_{X,Y,Z}: (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z), \quad I_X: X \otimes 1 \xrightarrow{\sim} X, \quad r_x: 1 \otimes X \xrightarrow{\sim} X,$$

and the braiding

$$c_{X,Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X, \qquad X, Y \in Obj(\mathcal{C}).$$

satisfying natural compatibility axioms. We also require existence of duals (rigidity) and finiteness of the number of simple objects and existence of projective covers.

Let \mathcal{C} be a finite braided tensor category

This means that C is an Abelian *k*-linear equipped with tensor product $\otimes : C \times C \to C$, the unit object **1**, the associativity and unit constraints

$$a_{X,Y,Z}: (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z), \quad I_X: X \otimes 1 \xrightarrow{\sim} X, \quad r_x: 1 \otimes X \xrightarrow{\sim} X,$$

and the braiding

$$c_{X,Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X, \qquad X, Y \in Obj(\mathcal{C}).$$

satisfying natural compatibility axioms. We also require existence of duals (rigidity) and finiteness of the number of simple objects and existence of projective covers.

Example

C = Rep(H), the category of finite dimensional representations of a finite dimensional quasi-triangular (quasi-) Hopf algebra H.

Dmitri Nikshych (U of New Hampshire)

The Picard crossed module

July 4, 2011 3 / 16

Two groups associated to a braided tensor category

1st group: braided autoequivalences

Definition: Aut^{*br*}(C) is the group of (isomorphism classes of) braided autoequivalences of C.

1st group: braided autoequivalences

Definition: Aut^{*br*}(C) is the group of (isomorphism classes of) braided autoequivalences of C.

2nd group: the Picard group of $\ensuremath{\mathcal{C}}$

The *Picard group* of C is the group Pic(C) of invertible exact C-module categories.

We need some definitions in order to introduce it.

An exact *C*-module category \mathcal{M} is an Abelian *k*-linear category along with an exact bifunctor $\otimes : \mathcal{C} \times \mathcal{M} \to \mathcal{M}$ and associativity constraints

 $\mu_{XYM}: (X \otimes Y) \otimes M \xrightarrow{\sim} X \otimes (Y \otimes M), \qquad \lambda_M: \mathbf{1} \otimes M \xrightarrow{\sim} M$

satisfying the pentagon and triangle axioms. The exactness condition means that $P \otimes M$ is projective for any projective $P \in C$ and any $M \in M$.

An exact *C*-module category \mathcal{M} is an Abelian *k*-linear category along with an exact bifunctor $\otimes : \mathcal{C} \times \mathcal{M} \to \mathcal{M}$ and associativity constraints

 $\mu_{XYM}: (X \otimes Y) \otimes M \xrightarrow{\sim} X \otimes (Y \otimes M), \qquad \lambda_M: \mathbf{1} \otimes M \xrightarrow{\sim} M$

satisfying the pentagon and triangle axioms. The exactness condition means that $P \otimes M$ is projective for any projective $P \in C$ and any $M \in M$.

Classical analogy

Braided tensor categories are analogues of finite dimensional algebras Exact module categories are analogues of projective modules

An exact *C*-module category \mathcal{M} is an Abelian *k*-linear category along with an exact bifunctor $\otimes : \mathcal{C} \times \mathcal{M} \to \mathcal{M}$ and associativity constraints

 $\mu_{XYM}: (X \otimes Y) \otimes M \xrightarrow{\sim} X \otimes (Y \otimes M), \qquad \lambda_M: \mathbf{1} \otimes M \xrightarrow{\sim} M$

satisfying the pentagon and triangle axioms. The exactness condition means that $P \otimes M$ is projective for any projective $P \in C$ and any $M \in M$.

Classical analogy

Braided tensor categories are analogues of finite dimensional algebras

Exact module categories are analogues of projective modules

Semisimple case

If C is semisimple (i.e., is a fusion category) then a C-module category \mathcal{M} is exact iff \mathcal{M} is semisimple.

Dmitri Nikshych (U of New Hampshire)

Tensor product of C-module categories

Given $\mathcal C\text{-module}$ categories $\mathcal M$ and $\mathcal N$ one defines their tensor product

 $\mathcal{M}\boxtimes_{\mathcal{C}}\mathcal{N}$

using a universal property. The category $\mathcal{M}\boxtimes_{\mathcal{C}}\mathcal{N}$ is again a $\mathcal{C}\text{-module}$ category.

This is similar to tensor product of modules over a commutative ring.

Given $\mathcal C\text{-module}$ categories $\mathcal M$ and $\mathcal N$ one defines their tensor product

 $\mathcal{M}\boxtimes_{\mathcal{C}}\mathcal{N}$

using a universal property. The category $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$ is again a \mathcal{C} -module category.

This is similar to tensor product of modules over a commutative ring.

A C-module category \mathcal{M} is invertible if $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \cong \mathcal{C}$ for some \mathcal{N} .

Given $\mathcal C\text{-module}$ categories $\mathcal M$ and $\mathcal N$ one defines their tensor product

 $\mathcal{M}\boxtimes_{\mathcal{C}}\mathcal{N}$

using a universal property. The category $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$ is again a \mathcal{C} -module category.

This is similar to tensor product of modules over a commutative ring.

A C-module category \mathcal{M} is invertible if $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \cong \mathcal{C}$ for some \mathcal{N} .

The equivalence classes of invertible C-module categories form a group Pic(C) called the *Picard group of* C.

The notions of an Azumaya algebra in C and the Brauer group Br(C) are due to Van Oystaeyen and Zhang (1998).

The notions of an Azumaya algebra in C and the Brauer group Br(C) are due to Van Oystaeyen and Zhang (1998).

Let A be a separable Azumaya algebra in \mathcal{C} . Then

 $\mathcal{M}:=A-\text{modules in }\mathcal{C}$

is an invertible exact module category. Conversely, every ${\cal M}$ appears in this way [Ostrik].

The notions of an Azumaya algebra in C and the Brauer group Br(C) are due to Van Oystaeyen and Zhang (1998).

Let A be a separable Azumaya algebra in \mathcal{C} . Then

 $\mathcal{M} := A - modules in \mathcal{C}$

is an invertible exact module category. Conversely, every ${\cal M}$ appears in this way [Ostrik].

We have,

Pic(C) (equivalence classes of invertible C-module categories)

 \cong

Br(C) (Morita equaivalence classes of separable Azumaya algebras).

Action of $\operatorname{Aut}^{br}(\mathcal{C})$ on $\operatorname{Pic}(\mathcal{C})$

By functoriality, $\operatorname{Aut}^{br}(\mathcal{C})$ acts on the 2-category of \mathcal{C} -module categories. In particular, $\operatorname{Aut}^{br}(\mathcal{C})$ has a canonical action on the group $\operatorname{Pic}(\mathcal{C})$.

Action of $\operatorname{Aut}^{br}(\mathcal{C})$ on $\operatorname{Pic}(\mathcal{C})$

By functoriality, $\operatorname{Aut}^{br}(\mathcal{C})$ acts on the 2-category of \mathcal{C} -module categories. In particular, $\operatorname{Aut}^{br}(\mathcal{C})$ has a canonical action on the group $\operatorname{Pic}(\mathcal{C})$.

Homomorphism ∂ : $\mathsf{Pic}(\mathcal{C}) \to \mathsf{Aut}^{br}(\mathcal{C})$

For any $\mathcal C\text{-module}$ category $\mathcal M$ there is a pair tensor functors:

$$\alpha_{\mathcal{M}}^{\pm}: \mathcal{C} \to \mathsf{End}_{\mathcal{C}}(\mathcal{M}): X \mapsto X \otimes -.$$

The C-module functor structure on $\alpha_{\mathcal{M}}^{\pm}$ are given by $c^{\pm 1}$ (i.e., by braiding and its inverse).

Action of $\operatorname{Aut}^{br}(\mathcal{C})$ on $\operatorname{Pic}(\mathcal{C})$

By functoriality, $\operatorname{Aut}^{br}(\mathcal{C})$ acts on the 2-category of \mathcal{C} -module categories. In particular, $\operatorname{Aut}^{br}(\mathcal{C})$ has a canonical action on the group $\operatorname{Pic}(\mathcal{C})$.

Homomorphism ∂ : $Pic(\mathcal{C}) \rightarrow Aut^{br}(\mathcal{C})$

For any $\mathcal C\text{-module}$ category $\mathcal M$ there is a pair tensor functors:

$$\alpha_{\mathcal{M}}^{\pm}: \mathcal{C} \to \mathsf{End}_{\mathcal{C}}(\mathcal{M}): X \mapsto X \otimes -.$$

The C-module functor structure on $\alpha_{\mathcal{M}}^{\pm}$ are given by $c^{\pm 1}$ (i.e., by braiding and its inverse).

When \mathcal{M} is invertible the functors $\alpha^{\pm}_{\mathcal{M}}$ are equivalences. Set

$$\partial_{\mathcal{M}} := (\alpha_{\mathcal{M}}^+)^{-1} \circ \alpha_{\mathcal{M}}^- : \mathcal{C} \to \mathcal{C}.$$

We have
$$\partial_{\mathcal{M}} := (\alpha_{\mathcal{M}}^+)^{-1} \circ \alpha_{\mathcal{M}}^- \in \operatorname{Aut}^{br}(\mathcal{C})$$
 and
 $\partial : \operatorname{Pic}(\mathcal{C}) \to \operatorname{Aut}^{br}(\mathcal{C}) : \mathcal{M} \to \partial_{\mathcal{M}}$

is a group homomorphism.

We have
$$\partial_{\mathcal{M}} := (\alpha_{\mathcal{M}}^+)^{-1} \circ \alpha_{\mathcal{M}}^- \in \operatorname{Aut}^{br}(\mathcal{C})$$
 and
 $\partial : \operatorname{Pic}(\mathcal{C}) \to \operatorname{Aut}^{br}(\mathcal{C}) : \mathcal{M} \to \partial_{\mathcal{M}}$

is a group homomorphism.

Theorem [Etingof, Ostrik, speaker]

When ${\mathcal C}$ is factorizable the map ∂ is an isomorphism, so that

$$\operatorname{Pic}(\mathcal{C})\cong\operatorname{Aut}^{br}(\mathcal{C})$$

For example, C = Rep(factorizable Hopf algebra) is factorizable. Also, Drinfeld centers of tensor categories are factorizable.

$\overline{\mathsf{Understanding}} \text{ homomorphism } \partial : \mathsf{Pic}(\mathcal{C}) \to \mathsf{Aut}^{br}(\mathcal{C})$

Understanding homomorphism ∂ : $\mathsf{Pic}(\mathcal{C}) \to \mathsf{Aut}^{br}(\mathcal{C})$

In general, ∂ : Pic(\mathcal{C}) \rightarrow Aut^{br}(\mathcal{C}) is neither surjective nor injective. It is an interesting problem to describe its image and kernel.

Understanding homomorphism ∂ : $\mathsf{Pic}(\mathcal{C}) \to \mathsf{Aut}^{br}(\mathcal{C})$

In general, ∂ : Pic(\mathcal{C}) \rightarrow Aut^{br}(\mathcal{C}) is neither surjective nor injective. It is an interesting problem to describe its image and kernel.

Alternative description of Pic(C) [Davydov, speaker]

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of \mathcal{C} . Note $\mathcal{C}, \mathcal{C}^{op} \hookrightarrow \mathcal{Z}(\mathcal{C})$. We have

 $\operatorname{Pic}(\mathcal{C}) \cong \operatorname{Aut}^{br}(\mathcal{Z}(\mathcal{C}); \mathcal{C}),$

where Aut^{br}($\mathcal{Z}(\mathcal{C}); \mathcal{C}$) is the group of braided autoequivalences of the Drinfeld center $\mathcal{Z}(\mathcal{C})$ trivializable on $\mathcal{C} \subset \mathcal{Z}(\mathcal{C})$.

Understanding homomorphism ∂ : $\mathsf{Pic}(\mathcal{C}) \to \mathsf{Aut}^{br}(\mathcal{C})$

In general, ∂ : Pic(\mathcal{C}) \rightarrow Aut^{br}(\mathcal{C}) is neither surjective nor injective. It is an interesting problem to describe its image and kernel.

Alternative description of Pic(C) [Davydov, speaker]

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of \mathcal{C} . Note $\mathcal{C}, \mathcal{C}^{op} \hookrightarrow \mathcal{Z}(\mathcal{C})$. We have

 $\operatorname{Pic}(\mathcal{C}) \cong \operatorname{Aut}^{br}(\mathcal{Z}(\mathcal{C}); \mathcal{C}),$

where Aut^{br}($\mathcal{Z}(\mathcal{C}); \mathcal{C}$) is the group of braided autoequivalences of the Drinfeld center $\mathcal{Z}(\mathcal{C})$ trivializable on $\mathcal{C} \subset \mathcal{Z}(\mathcal{C})$.

Any $\alpha \in \operatorname{Aut}^{br}(\mathcal{Z}(\mathcal{C});\mathcal{C})$ maps \mathcal{C}^{op} to itself and, hence determines an element of $\operatorname{Aut}^{br}(\mathcal{C})$ by restriction. The homomorphism $\partial : \operatorname{Pic}(\mathcal{C}) \to \operatorname{Aut}^{br}(\mathcal{C})$ is identified with

$$\mathsf{Pic}(\mathcal{C}) \cong \mathsf{Aut}^{br}(\mathcal{Z}(\mathcal{C}); \mathcal{C}) \xrightarrow{restriction} \mathsf{Aut}^{br}(\mathcal{C}^{op}) \cong \mathsf{Aut}^{br}(\mathcal{C}).$$

Dmitri Nikshych (U of New Hampshire)

Recall definition of the crossed module

Recall definition of the crossed module

Definition [Whitehead]

A crossed module (G, C) is a pair of groups G and C together with an action of G on C, denoted $(g, c) \mapsto {}^{g}c$, and a homomorphism $\partial : C \to G$ satisfying

$$\partial({}^{g}c) = g\partial(c)g^{-1}, \qquad (1)$$

$$\partial^{(c)}c' = cc'c^{-1} \quad c,c' \in C, g \in G.$$
 (2)

Definition [Whitehead]

A crossed module (G, C) is a pair of groups G and C together with an action of G on C, denoted $(g, c) \mapsto {}^{g}c$, and a homomorphism $\partial : C \to G$ satisfying

$$\partial({}^{g}c) = g\partial(c)g^{-1}, \qquad (1)$$

$$\partial^{(c)}c' = cc'c^{-1} \quad c,c' \in C, g \in G.$$
 (2)

Crossed module is the same thing as a group object in the category of groupoids. They are also called *categorical groups*.

Definition [Whitehead]

A crossed module (G, C) is a pair of groups G and C together with an action of G on C, denoted $(g, c) \mapsto {}^{g}c$, and a homomorphism $\partial : C \to G$ satisfying

$$\partial({}^{g}c) = g\partial(c)g^{-1}, \qquad (1)$$

$$\partial^{(c)}c' = cc'c^{-1} \quad c,c' \in C, g \in G.$$
 (2)

Crossed module is the same thing as a group object in the category of groupoids. They are also called *categorical groups*.

Example

For any group G and a normal subgroup $H \subset G$ there is a crossed module CM(G, H), where G acts on H by conjugation.

Dmitri Nikshych (U of New Hampshire)

Theorem [Davydov, speaker]

For a braided category C the pair $(Aut^{br}(C), Pic(C))$ is a crossed module. We call it the *Picard crossed module* of C.

Theorem [Davydov, speaker]

For a braided category C the pair $(Aut^{br}(C), Pic(C))$ is a crossed module. We call it the *Picard crossed module* of C.

Let C := C(A, q) be the pointed fusion category associated to a quadratic form $q : A \to k^{\times}$ on an Abelian group A [Joyal, Street]. In this case

One can describe the Picard crossed module of C explicitly.

Dmitri Nikshych (U of New Hampshire)

Dyslectic modules

The Picard crossed modules can be used to describe an important invariant of a braided tensor category: the core.

Dyslectic modules

The Picard crossed modules can be used to describe an important invariant of a braided tensor category: the core.

Suppose G is a group and $\mathcal{E} = \operatorname{Rep}(G) \subset \mathcal{C}$ is a Tannakian subcategory. Let $A = \operatorname{Fun}(G)$ and $\mathcal{C}^0_A := dyslectic A - modules M \in \mathcal{C}$, i.e., such that

commutes

Dyslectic modules

The Picard crossed modules can be used to describe an important invariant of a braided tensor category: the core.

Suppose G is a group and $\mathcal{E} = \operatorname{Rep}(G) \subset \mathcal{C}$ is a Tannakian subcategory. Let $A = \operatorname{Fun}(G)$ and $\mathcal{C}^0_A := dyslectic A - modules M \in \mathcal{C}$, i.e., such that

commutes

- The category C_A^0 is a braided tensor category [Pareigis].
- There is a normal subgroup H ⊂ G and a homomorphism CM(G, H) → Pic(C⁰_A).

Dmitri Nikshych (U of New Hampshire)

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Suppose $\mathcal{E} = \operatorname{Rep}(G) \subset \mathcal{C}$ is a maximal Tannakian subcategory. Then \mathcal{C}^0_A and $\operatorname{Image}(CM(G, H) \to \operatorname{Pic}(\mathcal{C}^0_A))$ do not depend on the choice of \mathcal{E} .

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Suppose $\mathcal{E} = \operatorname{Rep}(G) \subset \mathcal{C}$ is a maximal Tannakian subcategory. Then \mathcal{C}^0_A and $\operatorname{Image}(CM(G, H) \to \operatorname{Pic}(\mathcal{C}^0_A))$ do not depend on the choice of \mathcal{E} .

- The pair $(\mathcal{C}^0_A, \operatorname{Image}(CM(G, H) \to \operatorname{Pic}(\mathcal{C}^0_A))$ is called the *core* of \mathcal{C} .
- The core allows to separate the part of ${\mathcal C}$ that doesn't come from finite groups.
- One can reconstruct C from its core (in terms of finite groups and their cohomology)

Examples of classification and open problem

Examples of classification and open problem

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Let $\ensuremath{\mathcal{C}}$ be a braided fusion category. Then

- Core(C) is trivial $\iff \mathcal{C}$ is the relative Drinfeld center of a pointed fusion category,
- Core(C) is pointed ⇔ C is weakly group-theoretical (can be explicitly constructed from finite groups).

Examples of classification and open problem

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Let $\ensuremath{\mathcal{C}}$ be a braided fusion category. Then

- Core(C) is trivial $\iff \mathcal{C}$ is the relative Drinfeld center of a pointed fusion category,
- Core(C) is pointed ⇔ C is weakly group-theoretical (can be explicitly constructed from finite groups).

Open problem:

Let H be a non-commutative semisimple quasitriangular (quasi-) Hopf algebra.

- Does Rep(H) contain a non-trivial Tannakian subcategory?
- In other words, does *H* have a non-trivial triangular quotient Hopf algebra?
- Equivalently, is Core(Rep(H)) pointed?

Thanks for listening!