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Let C be a braided tensor category (e.g., the representation category of a finite
dimensional Hopf algebra). One associates to C two groups: the group G of braided
autoequivalences of C and the group P of invertible C-module categories. The pair
(G,P ) forms a crossed module (also known as a categorical group). We discuss the
structure of this crossed module and explain how it is used in the classification of
fusion categories.

This is a report on joint works in progress with A. Davydov and with V. Drinfeld,
S. Gelaki, and V. Ostrik.
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Coautors

This is a report on joint works in progress with A. Davydov and with
V. Drinfeld, S. Gelaki, and V. Ostrik.

Let k be an algebraically closed field, char(k) = 0.
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Braided tensor categories
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Braided tensor categories

Let C be a finite braided tensor category

This means that C is an Abelian k-linear equipped with tensor product
⊗ : C × C → C, the unit object 1, the associativity and unit constraints

aX ,Y ,Z : (X⊗Y )⊗Z
∼
−→ X⊗(Y ⊗Z ), lX : X⊗1

∼
−→ X , rx : 1⊗X

∼
−→ X ,

and the braiding

cX ,Y : X ⊗ Y
∼
−→ Y ⊗ X , X ,Y ∈ Obj(C).

satisfying natural compatibility axioms. We also require existence of duals
(rigidity) and finiteness of the number of simple objects and existence of
projective covers.
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Let C be a finite braided tensor category

This means that C is an Abelian k-linear equipped with tensor product
⊗ : C × C → C, the unit object 1, the associativity and unit constraints

aX ,Y ,Z : (X⊗Y )⊗Z
∼
−→ X⊗(Y ⊗Z ), lX : X⊗1

∼
−→ X , rx : 1⊗X

∼
−→ X ,

and the braiding

cX ,Y : X ⊗ Y
∼
−→ Y ⊗ X , X ,Y ∈ Obj(C).

satisfying natural compatibility axioms. We also require existence of duals
(rigidity) and finiteness of the number of simple objects and existence of
projective covers.

Example

C = Rep(H), the category of finite dimensional representations of a finite
dimensional quasi-triangular (quasi-) Hopf algebra H.
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Two groups associated to a braided tensor category
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Two groups associated to a braided tensor category

1st group: braided autoequivalences

Definition: Autbr (C) is the group of (isomorphism classes of) braided
autoequivalences of C.

Dmitri Nikshych (U of New Hampshire) The Picard crossed module July 4, 2011 4 / 16



Two groups associated to a braided tensor category

1st group: braided autoequivalences

Definition: Autbr (C) is the group of (isomorphism classes of) braided
autoequivalences of C.

2nd group: the Picard group of C

The Picard group of C is the group Pic(C) of invertible exact C-module
categories.
We need some definitions in order to introduce it.
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Exact C-module categories (V. Ostrik, P.Etingof)
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Exact C-module categories (V. Ostrik, P.Etingof)

An exact C-module category M is an Abelian k-linear category along with
an exact bifunctor ⊗ : C ×M → M and associativity constraints

µXYM : (X ⊗ Y ) ⊗ M
∼
−→ X ⊗ (Y ⊗ M), λM : 1 ⊗ M

∼
−→ M

satisfying the pentagon and triangle axioms. The exactness condition
means that P ⊗ M is projective for any projective P ∈ C and any M ∈ M.
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Exact C-module categories (V. Ostrik, P.Etingof)

An exact C-module category M is an Abelian k-linear category along with
an exact bifunctor ⊗ : C ×M → M and associativity constraints

µXYM : (X ⊗ Y ) ⊗ M
∼
−→ X ⊗ (Y ⊗ M), λM : 1 ⊗ M

∼
−→ M

satisfying the pentagon and triangle axioms. The exactness condition
means that P ⊗ M is projective for any projective P ∈ C and any M ∈ M.

Classical analogy

Braided tensor categories are analogues of finite dimensional algebras

Exact module categories are analogues of projective modules

Semisimple case

If C is semisimple (i.e., is a fusion category) then a C-module category M
is exact iff M is semisimple.

Dmitri Nikshych (U of New Hampshire) The Picard crossed module July 4, 2011 5 / 16



Tensor product of C-module categories
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Tensor product of C-module categories

Given C-module categories M and N one defines their tensor product

M ⊠C N

using a universal property. The category M ⊠C N is again a C-module
category.
This is similar to tensor product of modules over a commutative ring.
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M ⊠C N

using a universal property. The category M ⊠C N is again a C-module
category.
This is similar to tensor product of modules over a commutative ring.

A C-module category M is invertible if M ⊠C N ∼= C for some N .
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Tensor product of C-module categories

Given C-module categories M and N one defines their tensor product

M ⊠C N

using a universal property. The category M ⊠C N is again a C-module
category.
This is similar to tensor product of modules over a commutative ring.

A C-module category M is invertible if M ⊠C N ∼= C for some N .

The equivalence classes of invertible C-module categories form a group
Pic(C) called the Picard group of C.
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Relation with the Brauer group of C
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Relation with the Brauer group of C

The notions of an Azumaya algebra in C and the Brauer group Br(C) are
due to Van Oystaeyen and Zhang (1998).
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Relation with the Brauer group of C

The notions of an Azumaya algebra in C and the Brauer group Br(C) are
due to Van Oystaeyen and Zhang (1998).

Let A be a separable Azumaya algebra in C. Then

M := A − modules in C

is an invertible exact module category. Conversely, every M appears in
this way [Ostrik].
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Relation with the Brauer group of C

The notions of an Azumaya algebra in C and the Brauer group Br(C) are
due to Van Oystaeyen and Zhang (1998).

Let A be a separable Azumaya algebra in C. Then

M := A − modules in C

is an invertible exact module category. Conversely, every M appears in
this way [Ostrik].

We have,

Pic(C) (equivalence classes of invertible C-module categories)
∼=

Br(C) (Morita equaivalence classes of separable Azumaya algebras).
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Crossed module formed by Autbr(C) and Pic(C)
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Crossed module formed by Autbr(C) and Pic(C)

Action of Autbr (C) on Pic(C)

By functoriality, Autbr (C) acts on the 2-category of C-module categories.
In particular, Autbr (C) has a canonical action on the group Pic(C).
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Crossed module formed by Autbr(C) and Pic(C)

Action of Autbr (C) on Pic(C)

By functoriality, Autbr (C) acts on the 2-category of C-module categories.
In particular, Autbr (C) has a canonical action on the group Pic(C).

Homomorphism ∂ : Pic(C) → Autbr (C)

For any C-module category M there is a pair tensor functors:

α±

M
: C → EndC(M) : X 7→ X ⊗−.

The C-module functor structure on α±

M
are given by c±1 (i.e., by braiding

and its inverse).
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Crossed module formed by Autbr(C) and Pic(C)

Action of Autbr (C) on Pic(C)

By functoriality, Autbr (C) acts on the 2-category of C-module categories.
In particular, Autbr (C) has a canonical action on the group Pic(C).

Homomorphism ∂ : Pic(C) → Autbr (C)

For any C-module category M there is a pair tensor functors:

α±

M
: C → EndC(M) : X 7→ X ⊗−.

The C-module functor structure on α±

M
are given by c±1 (i.e., by braiding

and its inverse).

When M is invertible the functors α±

M
are equivalences. Set

∂M := (α+
M

)−1 ◦ α−

M
: C → C.
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Crossed module formed by Autbr(C) and Pic(C)
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Crossed module formed by Autbr(C) and Pic(C)

We have ∂M := (α+
M

)−1 ◦ α−

M
∈ Autbr (C) and

∂ : Pic(C) → Autbr (C) : M → ∂M

is a group homomorphism.
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Crossed module formed by Autbr(C) and Pic(C)

We have ∂M := (α+
M

)−1 ◦ α−

M
∈ Autbr (C) and

∂ : Pic(C) → Autbr (C) : M → ∂M

is a group homomorphism.

Theorem [Etingof, Ostrik, speaker]

When C is factorizable the map ∂ is an isomorphism, so that

Pic(C) ∼= Autbr (C)

For example, C = Rep(factorizable Hopf algebra) is factorizable. Also,
Drinfeld centers of tensor categories are factorizable.
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Understanding homomorphism ∂ : Pic(C) → Autbr(C)
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Understanding homomorphism ∂ : Pic(C) → Autbr(C)

In general, ∂ : Pic(C) → Autbr (C) is neither surjective nor injective. It is
an interesting problem to describe its image and kernel.
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Understanding homomorphism ∂ : Pic(C) → Autbr(C)

In general, ∂ : Pic(C) → Autbr (C) is neither surjective nor injective. It is
an interesting problem to describe its image and kernel.

Alternative description of Pic(C) [Davydov, speaker]

Let Z(C) denote the Drinfeld center of C. Note C, Cop →֒ Z(C). We have

Pic(C) ∼= Autbr (Z(C); C),

where Autbr (Z(C); C) is the group of braided autoequivalences of the
Drinfeld center Z(C) trivializable on C ⊂ Z(C).
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Understanding homomorphism ∂ : Pic(C) → Autbr(C)

In general, ∂ : Pic(C) → Autbr (C) is neither surjective nor injective. It is
an interesting problem to describe its image and kernel.

Alternative description of Pic(C) [Davydov, speaker]

Let Z(C) denote the Drinfeld center of C. Note C, Cop →֒ Z(C). We have

Pic(C) ∼= Autbr (Z(C); C),

where Autbr (Z(C); C) is the group of braided autoequivalences of the
Drinfeld center Z(C) trivializable on C ⊂ Z(C).

Any α ∈ Autbr (Z(C); C) maps Cop to itself and, hence determines an
element of Autbr (C) by restriction .
The homomorphism ∂ : Pic(C) → Autbr (C) is identified with

Pic(C) ∼= Autbr (Z(C); C)
restriction
−−−−−−→ Autbr (Cop) ∼= Autbr (C).
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Recall definition of the crossed module
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Recall definition of the crossed module

Definition [Whitehead]

A crossed module (G , C ) is a pair of groups G and C together with an
action of G on C , denoted (g , c) 7→ gc , and a homomorphism ∂ : C → G

satisfying

∂(gc) = g∂(c)g−1, (1)
∂(c)c ′ = cc ′c−1 c , c ′ ∈ C , g ∈ G . (2)
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Crossed module is the same thing as a group object in the category of
groupoids. They are also called categorical groups.
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Recall definition of the crossed module

Definition [Whitehead]

A crossed module (G , C ) is a pair of groups G and C together with an
action of G on C , denoted (g , c) 7→ gc , and a homomorphism ∂ : C → G

satisfying

∂(gc) = g∂(c)g−1, (1)
∂(c)c ′ = cc ′c−1 c , c ′ ∈ C , g ∈ G . (2)

Crossed module is the same thing as a group object in the category of
groupoids. They are also called categorical groups.

Example

For any group G and a normal subgroup H ⊂ G there is a crossed module
CM(G , H), where G acts on H by conjugation.
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Theorem [Davydov, speaker]

For a braided category C the pair (Autbr (C), Pic(C)) is a crossed module.
We call it the Picard crossed module of C.
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Theorem [Davydov, speaker]

For a braided category C the pair (Autbr (C), Pic(C)) is a crossed module.
We call it the Picard crossed module of C.

Let C := C(A, q) be the pointed fusion category associated to a quadratic
form q : A → k× on an Abelian group A [Joyal, Street]. In this case

Autbr (C) = O(A, q), the orthogonal group of (A, q),

Pic(C) = { pairs (B , β) | where B ⊂ A is a subgroup and

β : B × B → k× is a non-degenerate bilinear form

such that β(x , x) = q(x), x ∈ B }.

One can describe the Picard crossed module of C explicitly.
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Dyslectic modules
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Dyslectic modules

The Picard crossed modules can be used to describe an important
invariant of a braided tensor category: the core.
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Dyslectic modules

The Picard crossed modules can be used to describe an important
invariant of a braided tensor category: the core.

Suppose G is a group and E = Rep(G ) ⊂ C is a Tannakian subcategory.
Let A = Fun(G ) and C0

A := dyslectic A − modules M ∈ C, i.e., such that

M ⊗ A
cA,M◦cM,A

//

ρ
##GG

GG
GG

GG
G

M ⊗ A

ρ
{{ww

ww
ww

ww
w

M

commutes
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Dyslectic modules

The Picard crossed modules can be used to describe an important
invariant of a braided tensor category: the core.

Suppose G is a group and E = Rep(G ) ⊂ C is a Tannakian subcategory.
Let A = Fun(G ) and C0

A := dyslectic A − modules M ∈ C, i.e., such that

M ⊗ A
cA,M◦cM,A

//

ρ
##GG

GG
GG

GG
G

M ⊗ A

ρ
{{ww

ww
ww

ww
w

M

commutes

• The category C0
A is a braided tensor category [Pareigis].

• There is a normal subgroup H ⊂ G and a homomorphism
CM(G , H) → Pic(C0

A).
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The core of a braided tensor category
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The core of a braided tensor category

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Suppose E = Rep(G ) ⊂ C is a maximal Tannakian subcategory. Then C0
A

and Image(CM(G , H) → Pic(C0
A)) do not depend on the choice of E .
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The core of a braided tensor category

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Suppose E = Rep(G ) ⊂ C is a maximal Tannakian subcategory. Then C0
A

and Image(CM(G , H) → Pic(C0
A)) do not depend on the choice of E .

• The pair (C0
A, Image(CM(G , H) → Pic(C0

A)) is called the core of C.

• The core allows to separate the part of C that doesn’t come from
finite groups.

• One can reconstruct C from its core (in terms of finite groups and
their cohomology)
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Examples of classification and open problem
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Examples of classification and open problem

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Let C be a braided fusion category. Then

• Core(C) is trivial ⇐⇒ C is the relative Drinfeld center of a pointed
fusion category,

• Core(C) is pointed ⇐⇒ C is weakly group-theoretical (can be
explicitly constructed from finite groups).
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Examples of classification and open problem

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Let C be a braided fusion category. Then

• Core(C) is trivial ⇐⇒ C is the relative Drinfeld center of a pointed
fusion category,

• Core(C) is pointed ⇐⇒ C is weakly group-theoretical (can be
explicitly constructed from finite groups).

Open problem:

Let H be a non-commutative semisimple quasitriangular (quasi-) Hopf
algebra.

• Does Rep(H) contain a non-trivial Tannakian subcategory?

• In other words, does H have a non-trivial triangular quotient Hopf
algebra?

• Equivalently, is Core(Rep(H)) pointed?
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Thanks for listening!
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