The Picard crossed module of a braided tensor category

Dmitri Nikshych (University of New Hampshire, USA)

nikshych@cisunix.unh.edu
Let \mathcal{C} be a braided tensor category (e.g., the representation category of a finite dimensional Hopf algebra). One associates to \mathcal{C} two groups: the group G of braided autoequivalences of \mathcal{C} and the group P of invertible \mathcal{C}-module categories. The pair (G, P) forms a crossed module (also known as a categorical group). We discuss the structure of this crossed module and explain how it is used in the classification of fusion categories.

This is a report on joint works in progress with A. Davydov and with V. Drinfeld, S. Gelaki, and V. Ostrik.

Hopf algebras and tensor categories

Almeria, July 2011

The Picard crossed module of a braided tensor category

Dmitri Nikshych

University of New Hampshire

nikshych@math.unh.edu

$$
\text { July 4, } 2011
$$

Coautors

This is a report on joint works in progress with A. Davydov and with V. Drinfeld, S. Gelaki, and V. Ostrik.

Coautors

This is a report on joint works in progress with A. Davydov and with V. Drinfeld, S. Gelaki, and V. Ostrik.

Let k be an algebraically closed field, $\operatorname{char}(k)=0$.

Braided tensor categories

Braided tensor categories

Let \mathcal{C} be a finite braided tensor category

This means that \mathcal{C} is an Abelian k-linear equipped with tensor product $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, the unit object $\mathbf{1}$, the associativity and unit constraints $a_{X, Y, Z}:(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes(Y \otimes Z), \quad I_{X}: X \otimes \mathbf{1} \xrightarrow{\sim} X, \quad r_{x}: \mathbf{1} \otimes X \xrightarrow{\sim} X$, and the braiding

$$
c_{X, Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X, \quad X, Y \in \operatorname{Obj}(\mathcal{C})
$$

satisfying natural compatibility axioms. We also require existence of duals (rigidity) and finiteness of the number of simple objects and existence of projective covers.

Braided tensor categories

Let \mathcal{C} be a finite braided tensor category

This means that \mathcal{C} is an Abelian k-linear equipped with tensor product $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, the unit object $\mathbf{1}$, the associativity and unit constraints $a_{X, Y, Z}:(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes(Y \otimes Z), \quad I_{X}: X \otimes \mathbf{1} \xrightarrow{\sim} X, \quad r_{X}: \mathbf{1} \otimes X \xrightarrow{\sim} X$, and the braiding

$$
c_{X, Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X, \quad X, Y \in \operatorname{Obj}(\mathcal{C})
$$

satisfying natural compatibility axioms. We also require existence of duals (rigidity) and finiteness of the number of simple objects and existence of projective covers.

Example

$\mathcal{C}=\operatorname{Rep}(H)$, the category of finite dimensional representations of a finite dimensional quasi-triangular (quasi-) Hopf algebra H.

Two groups associated to a braided tensor category

Two groups associated to a braided tensor category

1st group: braided autoequivalences

Definition: $A u t^{b r}(\mathcal{C})$ is the group of (isomorphism classes of) braided autoequivalences of \mathcal{C}.

Two groups associated to a braided tensor category

1st group: braided autoequivalences

Definition: $\operatorname{Aut}^{b r}(\mathcal{C})$ is the group of (isomorphism classes of) braided autoequivalences of \mathcal{C}.

2nd group: the Picard group of \mathcal{C}

The Picard group of \mathcal{C} is the group $\operatorname{Pic}(\mathcal{C})$ of invertible exact \mathcal{C}-module categories.
We need some definitions in order to introduce it.

Exact \mathcal{C}-module categories (V. Ostrik, P.Etingof)

Exact \mathcal{C}-module categories (V. Ostrik, P.Etingof)

An exact \mathcal{C}-module category \mathcal{M} is an Abelian k-linear category along with an exact bifunctor $\otimes: \mathcal{C} \times \mathcal{M} \rightarrow \mathcal{M}$ and associativity constraints

$$
\mu_{X Y M}:(X \otimes Y) \otimes M \xrightarrow{\sim} X \otimes(Y \otimes M), \quad \lambda_{M}: \mathbf{1} \otimes M \xrightarrow{\sim} M
$$

satisfying the pentagon and triangle axioms. The exactness condition means that $P \otimes M$ is projective for any projective $P \in \mathcal{C}$ and any $M \in \mathcal{M}$.

Exact \mathcal{C}-module categories (V. Ostrik, P.Etingof)

An exact \mathcal{C}-module category \mathcal{M} is an Abelian k-linear category along with an exact bifunctor $\otimes: \mathcal{C} \times \mathcal{M} \rightarrow \mathcal{M}$ and associativity constraints

$$
\mu_{X Y M}:(X \otimes Y) \otimes M \xrightarrow{\sim} X \otimes(Y \otimes M), \quad \lambda_{M}: \mathbf{1} \otimes M \xrightarrow{\sim} M
$$

satisfying the pentagon and triangle axioms. The exactness condition means that $P \otimes M$ is projective for any projective $P \in \mathcal{C}$ and any $M \in \mathcal{M}$.

Classical analogy

Braided tensor categories are analogues of finite dimensional algebras Exact module categories are analogues of projective modules

Exact \mathcal{C}-module categories (V. Ostrik, P.Etingof)

An exact \mathcal{C}-module category \mathcal{M} is an Abelian k-linear category along with an exact bifunctor $\otimes: \mathcal{C} \times \mathcal{M} \rightarrow \mathcal{M}$ and associativity constraints

$$
\mu_{X Y M}:(X \otimes Y) \otimes M \xrightarrow{\sim} X \otimes(Y \otimes M), \quad \lambda_{M}: \mathbf{1} \otimes M \xrightarrow{\sim} M
$$

satisfying the pentagon and triangle axioms. The exactness condition means that $P \otimes M$ is projective for any projective $P \in \mathcal{C}$ and any $M \in \mathcal{M}$.

Classical analogy

Braided tensor categories are analogues of finite dimensional algebras Exact module categories are analogues of projective modules

Semisimple case

If \mathcal{C} is semisimple (i.e., is a fusion category) then a \mathcal{C}-module category \mathcal{M} is exact iff \mathcal{M} is semisimple.

Tensor product of \mathcal{C}-module categories

Tensor product of \mathcal{C}-module categories

Given \mathcal{C}-module categories \mathcal{M} and \mathcal{N} one defines their tensor product

$$
\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}
$$

using a universal property. The category $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$ is again a \mathcal{C}-module category.
This is similar to tensor product of modules over a commutative ring.

Tensor product of \mathcal{C}-module categories

Given \mathcal{C}-module categories \mathcal{M} and \mathcal{N} one defines their tensor product

$$
\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}
$$

using a universal property. The category $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$ is again a \mathcal{C}-module category.
This is similar to tensor product of modules over a commutative ring.

A \mathcal{C}-module category \mathcal{M} is invertible if $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \cong \mathcal{C}$ for some \mathcal{N}.

Tensor product of \mathcal{C}-module categories

Given \mathcal{C}-module categories \mathcal{M} and \mathcal{N} one defines their tensor product

$$
\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}
$$

using a universal property. The category $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$ is again a \mathcal{C}-module category.
This is similar to tensor product of modules over a commutative ring.

A \mathcal{C}-module category \mathcal{M} is invertible if $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \cong \mathcal{C}$ for some \mathcal{N}.

The equivalence classes of invertible \mathcal{C}-module categories form a group $\operatorname{Pic}(\mathcal{C})$ called the Picard group of \mathcal{C}.

Relation with the Brauer group of \mathcal{C}

Relation with the Brauer group of \mathcal{C}

The notions of an Azumaya algebra in \mathcal{C} and the $\operatorname{Brauer} \operatorname{group} \operatorname{Br}(\mathcal{C})$ are due to Van Oystaeyen and Zhang (1998).

Relation with the Brauer group of \mathcal{C}

The notions of an Azumaya algebra in \mathcal{C} and the $\operatorname{Brauer} \operatorname{group} \operatorname{Br}(\mathcal{C})$ are due to Van Oystaeyen and Zhang (1998).

Let A be a separable Azumaya algebra in \mathcal{C}. Then

$$
\mathcal{M}:=A-\text { modules in } \mathcal{C}
$$

is an invertible exact module category. Conversely, every \mathcal{M} appears in this way [Ostrik].

Relation with the Brauer group of \mathcal{C}

The notions of an Azumaya algebra in \mathcal{C} and the $\operatorname{Brauer} \operatorname{group} \operatorname{Br}(\mathcal{C})$ are due to Van Oystaeyen and Zhang (1998).

Let A be a separable Azumaya algebra in \mathcal{C}. Then

$$
\mathcal{M}:=A-\text { modules in } \mathcal{C}
$$

is an invertible exact module category. Conversely, every \mathcal{M} appears in this way [Ostrik].

We have,
$\operatorname{Pic}(\mathcal{C})$ (equivalence classes of invertible \mathcal{C}-module categories) \cong
$\operatorname{Br}(\mathcal{C})$ (Morita equaivalence classes of separable Azumaya algebras).

Crossed module formed by $\operatorname{Aut}^{\mathrm{br}^{\prime}(\mathcal{C}) \text { and } \operatorname{Pic}(\mathcal{C}) .}$

Action of $\mathrm{Aut}^{\mathrm{br}}(\mathcal{C})$ on $\operatorname{Pic}(\mathcal{C})$

By functoriality, Aut ${ }^{b r}(\mathcal{C})$ acts on the 2 -category of \mathcal{C}-module categories. In particular, $\mathrm{Aut}^{b r}(\mathcal{C})$ has a canonical action on the $\operatorname{group} \operatorname{Pic}(\mathcal{C})$.

Crossed module formed by $\operatorname{Aut}^{\operatorname{br}^{r}(\mathcal{C}) \text { and } \operatorname{Pic}(\mathcal{C}) .}$

Action of $\mathrm{Aut}^{\mathrm{br}}(\mathcal{C})$ on $\operatorname{Pic}(\mathcal{C})$

By functoriality, Aut ${ }^{\text {br }}(\mathcal{C})$ acts on the 2 -category of \mathcal{C}-module categories. In particular, Aut ${ }^{b r}(\mathcal{C})$ has a canonical action on the $\operatorname{group} \operatorname{Pic}(\mathcal{C})$.

Homomorphism $\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{b r}(\mathcal{C})$

For any \mathcal{C}-module category \mathcal{M} there is a pair tensor functors:

$$
\alpha_{\mathcal{M}}^{ \pm}: \mathcal{C} \rightarrow \operatorname{End}_{\mathcal{C}}(\mathcal{M}): X \mapsto X \otimes-
$$

The \mathcal{C}-module functor structure on $\alpha_{\mathcal{M}}^{ \pm}$are given by $c^{ \pm 1}$ (i.e., by braiding and its inverse).

Crossed module formed by $\operatorname{Aut}^{\operatorname{br}^{r}(\mathcal{C}) \text { and } \operatorname{Pic}(\mathcal{C}) .}$

Action of $\mathrm{Aut}^{b r}(\mathcal{C})$ on $\operatorname{Pic}(\mathcal{C})$

By functoriality, Aut ${ }^{b r}(\mathcal{C})$ acts on the 2 -category of \mathcal{C}-module categories. In particular, $\mathrm{Aut}^{b r}(\mathcal{C})$ has a canonical action on the $\operatorname{group} \operatorname{Pic}(\mathcal{C})$.

Homomorphism $\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{b r}(\mathcal{C})$

For any \mathcal{C}-module category \mathcal{M} there is a pair tensor functors:

$$
\alpha_{\mathcal{M}}^{ \pm}: \mathcal{C} \rightarrow \operatorname{End}_{\mathcal{C}}(\mathcal{M}): X \mapsto X \otimes-
$$

The \mathcal{C}-module functor structure on $\alpha_{\mathcal{M}}^{ \pm}$are given by $c^{ \pm 1}$ (i.e., by braiding and its inverse).

When \mathcal{M} is invertible the functors $\alpha_{\mathcal{M}}^{ \pm}$are equivalences. Set

$$
\partial_{\mathcal{M}}:=\left(\alpha_{\mathcal{M}}^{+}\right)^{-1} \circ \alpha_{\mathcal{M}}^{-}: \mathcal{C} \rightarrow \mathcal{C}
$$

Crossed module formed by $\operatorname{Aut}^{\mathrm{br}^{r}(\mathcal{C}) \text { and } \operatorname{Pic}(\mathcal{C}) .}$

We have $\partial_{\mathcal{M}}:=\left(\alpha_{\mathcal{M}}^{+}\right)^{-1} \circ \alpha_{\mathcal{M}}^{-} \in \operatorname{Aut}^{b r}(\mathcal{C})$ and

$$
\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{b r}(\mathcal{C}): \mathcal{M} \rightarrow \partial_{\mathcal{M}}
$$

is a group homomorphism.

Crossed module formed by $\operatorname{Aut}^{\operatorname{br}^{\prime}(\mathcal{C}) \text { and } \operatorname{Pic}(\mathcal{C}) .}$

We have $\partial_{\mathcal{M}}:=\left(\alpha_{\mathcal{M}}^{+}\right)^{-1} \circ \alpha_{\mathcal{M}}^{-} \in \operatorname{Aut}^{b r}(\mathcal{C})$ and

$$
\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{b r}(\mathcal{C}): \mathcal{M} \rightarrow \partial_{\mathcal{M}}
$$

is a group homomorphism.

Theorem [Etingof, Ostrik, speaker]

When \mathcal{C} is factorizable the map ∂ is an isomorphism, so that

$$
\operatorname{Pic}(\mathcal{C}) \cong \operatorname{Aut}^{b r}(\mathcal{C})
$$

For example, $\mathcal{C}=\operatorname{Rep}$ (factorizable Hopf algebra) is factorizable. Also, Drinfeld centers of tensor categories are factorizable.

Understanding homomorphism $\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{b r}(\mathcal{C})$

Understanding homomorphism $\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{b r}(\mathcal{C})$

In general, $\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{b r}(\mathcal{C})$ is neither surjective nor injective. It is an interesting problem to describe its image and kernel.

Understanding homomorphism $\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{\text {br }}(\mathcal{C})$

In general, $\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{\text {br }}(\mathcal{C})$ is neither surjective nor injective. It is an interesting problem to describe its image and kernel.

Alternative description of $\operatorname{Pic}(\mathcal{C})$ [Davydov, speaker]

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of \mathcal{C}. Note $\mathcal{C}, \mathcal{C}^{o p} \hookrightarrow \mathcal{Z}(\mathcal{C})$. We have

$$
\operatorname{Pic}(\mathcal{C}) \cong \operatorname{Aut}^{b r}(\mathcal{Z}(\mathcal{C}) ; \mathcal{C})
$$

where $\operatorname{Aut}^{\text {br }}(\mathcal{Z}(\mathcal{C}) ; \mathcal{C})$ is the group of braided autoequivalences of the Drinfeld center $\mathcal{Z}(\mathcal{C})$ trivializable on $\mathcal{C} \subset \mathcal{Z}(\mathcal{C})$.

Understanding homomorphism $\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{b r}(\mathcal{C})$

In general, $\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{b r}(\mathcal{C})$ is neither surjective nor injective. It is an interesting problem to describe its image and kernel.

Alternative description of $\operatorname{Pic}(\mathcal{C})$ [Davydov, speaker]

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of \mathcal{C}. Note $\mathcal{C}, \mathcal{C}^{o p} \hookrightarrow \mathcal{Z}(\mathcal{C})$. We have

$$
\operatorname{Pic}(\mathcal{C}) \cong \operatorname{Aut}^{b r}(\mathcal{Z}(\mathcal{C}) ; \mathcal{C})
$$

where $\mathrm{Aut}^{\text {br }}(\mathcal{Z}(\mathcal{C}) ; \mathcal{C})$ is the group of braided autoequivalences of the Drinfeld center $\mathcal{Z}(\mathcal{C})$ trivializable on $\mathcal{C} \subset \mathcal{Z}(\mathcal{C})$.

Any $\alpha \in \operatorname{Aut}^{\text {br }}(\mathcal{Z}(\mathcal{C}) ; \mathcal{C})$ maps $\mathcal{C}^{o p}$ to itself and, hence determines an element of $\mathrm{Aut}^{\text {br }}(\mathcal{C})$ by restriction.
The homomorphism $\partial: \operatorname{Pic}(\mathcal{C}) \rightarrow \operatorname{Aut}^{b r}(\mathcal{C})$ is identified with

$$
\operatorname{Pic}(\mathcal{C}) \cong A u t^{b r}(\mathcal{Z}(\mathcal{C}) ; \mathcal{C}) \xrightarrow{\text { restriction }} \operatorname{Aut}^{b r}\left(\mathcal{C}^{o p}\right) \cong A u t^{b r}(\mathcal{C})
$$

Recall definition of the crossed module

Recall definition of the crossed module

Definition [Whitehead]

A crossed module (G, C) is a pair of groups G and C together with an action of G on C, denoted $(g, c) \mapsto{ }^{g} C$, and a homomorphism $\partial: C \rightarrow G$ satisfying

$$
\begin{align*}
\partial\left({ }^{g} c\right) & =g \partial(c) g^{-1} \tag{1}\\
\partial(c) c^{\prime} & =c c^{\prime} c^{-1} \quad c, c^{\prime} \in C, g \in G \tag{2}
\end{align*}
$$

Recall definition of the crossed module

Definition [Whitehead]

A crossed module (G, C) is a pair of groups G and C together with an action of G on C, denoted $(g, c) \mapsto{ }^{g} C$, and a homomorphism $\partial: C \rightarrow G$ satisfying

$$
\begin{align*}
& \partial\left({ }^{g} c\right)=g \partial(c) g^{-1} \tag{1}\\
& \partial(c) c^{\prime} \tag{2}\\
&=c c^{\prime} c^{-1} \quad c, c^{\prime} \in C, g \in G
\end{align*}
$$

Crossed module is the same thing as a group object in the category of groupoids. They are also called categorical groups.

Recall definition of the crossed module

Definition [Whitehead]

A crossed module (G, C) is a pair of groups G and C together with an action of G on C, denoted $(g, c) \mapsto{ }^{g} C$, and a homomorphism $\partial: C \rightarrow G$ satisfying

$$
\begin{align*}
\partial\left({ }^{g} c\right) & =g \partial(c) g^{-1} \tag{1}\\
\partial(c) c^{\prime} & =c c^{\prime} c^{-1} \quad c, c^{\prime} \in C, g \in G \tag{2}
\end{align*}
$$

Crossed module is the same thing as a group object in the category of groupoids. They are also called categorical groups.

Example

For any group G and a normal subgroup $H \subset G$ there is a crossed module $C M(G, H)$, where G acts on H by conjugation.

Theorem [Davydov, speaker]

For a braided category \mathcal{C} the pair $\left(\operatorname{Aut}^{b r}(\mathcal{C}), \operatorname{Pic}(\mathcal{C})\right)$ is a crossed module. We call it the Picard crossed module of \mathcal{C}.

Theorem [Davydov, speaker]

For a braided category \mathcal{C} the pair $\left(\operatorname{Aut}^{b r}(\mathcal{C}), \operatorname{Pic}(\mathcal{C})\right)$ is a crossed module. We call it the Picard crossed module of \mathcal{C}.

Let $\mathcal{C}:=\mathcal{C}(A, q)$ be the pointed fusion category associated to a quadratic form $q: A \rightarrow k^{\times}$on an Abelian group A [Joyal, Street]. In this case

$$
\begin{aligned}
\text { Aut }^{\text {br }}(\mathcal{C})= & O(A, q), \text { the orthogonal group of }(A, q), \\
\operatorname{Pic}(\mathcal{C})= & \{\text { pairs }(B, \beta) \mid \text { where } B \subset A \text { is a subgroup and } \\
& \beta: B \times B \rightarrow k^{\times} \text {is a non-degenerate bilinear form } \\
& \text { such that } \beta(x, x)=q(x), x \in B\}
\end{aligned}
$$

One can describe the Picard crossed module of \mathcal{C} explicitly.

Dyslectic modules

Dyslectic modules

The Picard crossed modules can be used to describe an important invariant of a braided tensor category: the core.

Dyslectic modules

The Picard crossed modules can be used to describe an important invariant of a braided tensor category: the core.

Suppose G is a group and $\mathcal{E}=\operatorname{Rep}(G) \subset \mathcal{C}$ is a Tannakian subcategory. Let $A=\operatorname{Fun}(G)$ and $\mathcal{C}_{A}^{0}:=$ dyslectic A - modules $M \in \mathcal{C}$, i.e., such that

commutes

Dyslectic modules

The Picard crossed modules can be used to describe an important invariant of a braided tensor category: the core.

Suppose G is a group and $\mathcal{E}=\operatorname{Rep}(G) \subset \mathcal{C}$ is a Tannakian subcategory. Let $A=\operatorname{Fun}(G)$ and $\mathcal{C}_{A}^{0}:=$ dyslectic A - modules $M \in \mathcal{C}$, i.e., such that

commutes

- The category \mathcal{C}_{A}^{0} is a braided tensor category [Pareigis].
- There is a normal subgroup $H \subset G$ and a homomorphism $C M(G, H) \rightarrow \operatorname{Pic}\left(\mathcal{C}_{A}^{0}\right)$.

The core of a braided tensor category

The core of a braided tensor category

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Suppose $\mathcal{E}=\operatorname{Rep}(G) \subset \mathcal{C}$ is a maximal Tannakian subcategory. Then \mathcal{C}_{A}^{0} and $\operatorname{Image}\left(C M(G, H) \rightarrow \operatorname{Pic}\left(\mathcal{C}_{A}^{0}\right)\right)$ do not depend on the choice of \mathcal{E}.

The core of a braided tensor category

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Suppose $\mathcal{E}=\operatorname{Rep}(G) \subset \mathcal{C}$ is a maximal Tannakian subcategory. Then \mathcal{C}_{A}^{0} and $\operatorname{Image}\left(C M(G, H) \rightarrow \operatorname{Pic}\left(\mathcal{C}_{A}^{0}\right)\right)$ do not depend on the choice of \mathcal{E}.

- The pair $\left(\mathcal{C}_{A}^{0}\right.$, Image $\left(C M(G, H) \rightarrow \operatorname{Pic}\left(\mathcal{C}_{A}^{0}\right)\right)$ is called the core of \mathcal{C}.
- The core allows to separate the part of \mathcal{C} that doesn't come from finite groups.
- One can reconstruct \mathcal{C} from its core (in terms of finite groups and their cohomology)

Examples of classification and open problem

Examples of classification and open problem

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Let \mathcal{C} be a braided fusion category. Then

- Core (\mathcal{C}) is trivial $\Longleftrightarrow \mathcal{C}$ is the relative Drinfeld center of a pointed fusion category,
- Core (\mathcal{C}) is pointed $\Longleftrightarrow \mathcal{C}$ is weakly group-theoretical (can be explicitly constructed from finite groups).

Examples of classification and open problem

Theorem[Drinfeld, Gelaki, Ostrik, speaker]

Let \mathcal{C} be a braided fusion category. Then

- Core (\mathcal{C}) is trivial $\Longleftrightarrow \mathcal{C}$ is the relative Drinfeld center of a pointed fusion category,
- Core (\mathcal{C}) is pointed $\Longleftrightarrow \mathcal{C}$ is weakly group-theoretical (can be explicitly constructed from finite groups).

Open problem:

Let H be a non-commutative semisimple quasitriangular (quasi-) Hopf algebra.

- Does $\operatorname{Rep}(H)$ contain a non-trivial Tannakian subcategory?
- In other words, does H have a non-trivial triangular quotient Hopf algebra?
- Equivalently, is Core $(\operatorname{Rep}(H))$ pointed?

Thanks for listening!

