Congruence property and Galois Symmetry of modular categories

Siu-Hung Ng (Iowa State University, USA) rng@iastate.edu

The natural representation of $SL(2,\mathbb{Z})$ associated to a Rational Conformal Field Theory (RCFT) has been conjectured, by Eholzer, to be *t*-rational and have a congruence kernel. It is further conjectured by Coste and Gannon a Galois symmetry of this representation. Some of these conjectures have been proved mathematically in the context of modular categories via the machinery called generalized Frobenius-Schur indicators. In this talk, I will report recent progress of these conjectures for modular categories.

Congruence property and Galois symmetry of modular categories

Siu-Hung Ng

Iowa State University, USA

Hopf algebras and tensor categories University of Almeria July 4-8, 2011

Siu-Hung Ng Congruence property and Galois symmetry

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Modular invariance

 Recall that the modular group SL(2, ℤ) is a group generated by

$$\begin{split} \mathfrak{s} &= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad \mathfrak{t} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ subject to the relations} \\ & (\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2 \text{ and } \mathfrak{s}^4 = 1. \end{split}$$

Associated to a RCFT is a representation

 ρ : $SL(2,\mathbb{Z}) \rightarrow GL(V)$, where V is spanned by the characters $\chi_a(\tau)$ of the primary fields $a \in \Pi$.

• If
$$\rho\left(\begin{bmatrix} c & d \\ e & f \end{bmatrix}\right) = [M_{ab}]_{\Pi}$$
, then

$$\chi_a\left(\frac{c\tau+d}{e\tau+f}\right) = \sum_{a\in\Pi} M_{ab}\chi_b(\tau)$$

(4回) (日) (日)

Modular invariance

 Recall that the modular group SL(2, ℤ) is a group generated by

$$\begin{split} \mathfrak{s} &= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad \mathfrak{t} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ subject to the relations} \\ (\mathfrak{s}\mathfrak{t})^3 &= \mathfrak{s}^2 \text{ and } \mathfrak{s}^4 = 1. \end{split}$$

• Associated to a RCFT is a representation

 ρ : $SL(2, \mathbb{Z}) \rightarrow GL(V)$, where V is spanned by the characters $\chi_a(\tau)$ of the primary fields $a \in \Pi$.

• If
$$ho\left(\begin{bmatrix} c & d \\ e & f \end{bmatrix}\right) = [M_{ab}]_{\Pi}$$
, then

$$a\left(rac{c au+d}{arepsilon au+f}
ight)=\sum_{a\in\Pi}M_{ab}\chi_b(au)\,.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Modular invariance

 Recall that the modular group SL(2, ℤ) is a group generated by

$$\begin{split} \mathfrak{s} &= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad \mathfrak{t} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ subject to the relations} \\ (\mathfrak{s}\mathfrak{t})^3 &= \mathfrak{s}^2 \text{ and } \mathfrak{s}^4 = 1. \end{split}$$

Associated to a RCFT is a representation

 $\rho: SL(2,\mathbb{Z}) \to GL(V)$, where V is spanned by the characters $\chi_a(\tau)$ of the primary fields $a \in \Pi$.

• If
$$\rho\left(\begin{bmatrix} c & d \\ e & f \end{bmatrix}\right) = [M_{ab}]_{\Pi}$$
, then

$$\chi_a\left(rac{c au+a}{e au+f}
ight)=\sum_{a\in\Pi}M_{ab}\chi_b(au)\,.$$

< 回 > < 回 > < 回 > .

 The free Z-module Z[Π] is a Z-algebra given by the fusion rules:

a family of non-negative integers $N^c_{ab}(a,b,c\in\Pi)$ such that

$$a\otimes b=\sum_{c\in\Pi}N^c_{ab}c$$
 .

The identity element 1 is a member of Π

- S = ρ(s) and T = ρ(t) are simply called the S and T-matrices.
- Verlinde formula:

$$N_{ab}^{c} = \sum_{r \in \Pi} \frac{S_{ar} S_{br} \overline{S}_{cr}}{S_{r1}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

 The free Z-module Z[Π] is a Z-algebra given by the fusion rules:

a family of non-negative integers $N_{ab}^{c}(a, b, c \in \Pi)$ such that

$$a\otimes b=\sum_{c\in\Pi}N^c_{ab}c$$
 .

The identity element 1 is a member of Π

- S = ρ(s) and T = ρ(t) are simply called the S and T-matrices.
- Verlinde formula:

$$N_{ab}^{c} = \sum_{r \in \Pi} \frac{S_{ar} S_{br} \overline{S}_{cr}}{S_{r1}}$$

 The free Z-module Z[Π] is a Z-algebra given by the fusion rules:

a family of non-negative integers $N_{ab}^{c}(a, b, c \in \Pi)$ such that

$$a\otimes b=\sum_{c\in\Pi}N^c_{ab}c$$
 .

The identity element 1 is a member of Π

- S = ρ(s) and T = ρ(t) are simply called the S and T-matrices.
- Verlinde formula:

$$N_{ab}^{c} = \sum_{r \in \Pi} \frac{S_{ar} S_{br} \overline{S}_{cr}}{S_{r1}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

 The free Z-module Z[Π] is a Z-algebra given by the fusion rules:

a family of non-negative integers $N_{ab}^{c}(a, b, c \in \Pi)$ such that

$$a\otimes b=\sum_{c\in\Pi}N^c_{ab}c$$
 .

The identity element 1 is a member of Π

- S = ρ(s) and T = ρ(t) are simply called the S and T-matrices.
- Verlinde formula:

$$N_{ab}^{c} = \sum_{r \in \Pi} \frac{S_{ar} S_{br} \overline{S}_{cr}}{S_{r1}}$$

(過) (ヨ) (ヨ)

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:

(i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.

(ii) The representation is \mathbb{Q}_N -rational, i.e. both $S, T \in GL(\Pi, \mathbb{Q}_N)$.

• Conjecture [Coste-Gannon]:

Let $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:
 - (i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.
 - (ii) The representation is \mathbb{Q}_N -rational, i.e. both $S, T \in GL(\Pi, \mathbb{Q}_N)$.
- Conjecture [Coste-Gannon]:

Let $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:

(i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.

(ii) The representation is \mathbb{Q}_N -rational, i.e. both $S, T \in GL(\Pi, \mathbb{Q}_N)$.

• Conjecture [Coste-Gannon]:

Let $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:

(i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.

(ii) The representation is \mathbb{Q}_N -rational, i.e. both $S, T \in GL(\Pi, \mathbb{Q}_N)$.

• Conjecture [Coste-Gannon]:

Let $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:

(i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.

(ii) The representation is \mathbb{Q}_N -rational, i.e. both

 $S, T \in GL(\Pi, \mathbb{Q}_N).$

• Conjecture [Coste-Gannon]:

Let $\rho : SL(2,\mathbb{Z}) \to GL(\Pi,\mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:

(i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.

(ii) The representation is \mathbb{Q}_N -rational, i.e. both

 $S, T \in GL(\Pi, \mathbb{Q}_N).$

• Conjecture [Coste-Gannon]:

Let $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:

(i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.

(ii) The representation is \mathbb{Q}_N -rational, i.e. both

 $S, T \in GL(\Pi, \mathbb{Q}_N).$

• Conjecture [Coste-Gannon]:

Let $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:

(i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.

(ii) The representation is \mathbb{Q}_N -rational, i.e. both

 $S, T \in GL(\Pi, \mathbb{Q}_N).$

• Conjecture [Coste-Gannon]:

Let $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:

(i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.

(ii) The representation is \mathbb{Q}_N -rational, i.e. both

 $S, T \in GL(\Pi, \mathbb{Q}_N).$

• Conjecture [Coste-Gannon]:

Let $\rho : \operatorname{SL}(2, \mathbb{Z}) \to \operatorname{GL}(\Pi, \mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:

(i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.

(ii) The representation is \mathbb{Q}_N -rational, i.e. both

 $S, T \in GL(\Pi, \mathbb{Q}_N).$

• Conjecture [Coste-Gannon]:

Let $\rho : \operatorname{SL}(2, \mathbb{Z}) \to \operatorname{GL}(\Pi, \mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

- Question: What can we say about such representations of SL(2, Z)?
- Conjecture [Eholzer]:

(i) A representations of SL(2, \mathbb{Z}) associated to a RCFT has a congruence kernel of level *N*.

(ii) The representation is \mathbb{Q}_N -rational, i.e. both

 $S, T \in GL(\Pi, \mathbb{Q}_N).$

• Conjecture [Coste-Gannon]:

Let $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{C})$ be a representation associated to a RCFT. For $\sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then $\sigma^2 \rho$ is equivalent to ρ .

Another formalism of RCFT

- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(\mathcal{C})$ finite containing the unit object 1,
 - (ii) duality $V \mapsto V^*$ (rigidity), \bigcirc and \bigcirc ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \Join
 - (iv) (a) a spherical pivotal structure j : V → V^{**} or (b) twist θ_V = V → V. Both are natural isomorphisms.
 - (v) and a nonsingular S-matrix given by

 $\overline{S}_{ab} =$ quantum trace $(C_{b,a} \circ C_{a,b}) = \cdots$

ヘロト ヘアト ヘビト ヘビト

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(C)$ finite containing the unit object 1,
 - (ii) duality $V \mapsto V^*$ (rigidity), \bigcirc and \bigcirc ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \rightarrow W \otimes V$, called a braiding, \Join
 - (iv) (a) a spherical pivotal structure j : V → V^{**} or (b) twist θ_V = V → V. Both are natural isomorphisms.
 - (v) and a nonsingular S-matrix given by

 $\overline{S}_{ab} =$ quantum trace $(C_{b,a} \circ C_{a,b}) = \cdots$

ヘロト ヘアト ヘビト ヘビト

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(\mathcal{C})$ finite containing the unit object 1,
 - (ii) duality $V \mapsto V^*$ (rigidity), \bigcirc and \bigcirc ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \leftthreetimes
 - (iv) (a) a spherical pivotal structure $j: V \to V^{**}$ or (b) twist $\theta_V: V \to V$. Both are natural isomorphisms.
 - (v) and a nonsingular S-matrix given by

 $\overline{S}_{ab} = \mathsf{quantum trace}(c_{b,a} \circ c_{a,b}) =$

イロト イポト イヨト イヨト

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(\mathcal{C})$ finite containing the unit object 1,
 - (ii) duality $V \mapsto V^*$ (rigidity), \cup and \bigcirc ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \Join
 - (iv) (a) a spherical pivotal structure $j: V \to V^{**}$ or (b) twist $\theta_V: V \to V$. Both are natural isomorphisms.
 - (v) and a nonsingular S-matrix given by

 $\overline{S}_{ab} = { ext{quantum trace}}(c_{b,a} \circ c_{a,b}) =$

ヘロト ヘ戸ト ヘヨト ヘヨト

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(C)$ finite containing the unit object **1**,
 - (ii) duality $V \mapsto V^*$ (rigidity), \cup and \frown ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \leftthreetimes
 - (iv) (a) a spherical pivotal structure $j: V \to V^{**}$ or (b) twist $\theta_V: V \to V$. Both are natural isomorphisms.
 - (v) and a nonsingular S-matrix given by

 $\overline{S}_{ab} = { ext{quantum trace}}(c_{b,a} \circ c_{a,b}) =$

くロト (過) (目) (日)

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(C)$ finite containing the unit object **1**,
 - (ii) duality $V \mapsto V^*$ (rigidity), \cup and \frown ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \succ
 - (iv) (a) a spherical pivotal structure $j : V \to V^{**}$ or (b) twist $\theta_V : V \to V$. Both are natural isomorphisms.
 - (v) and a nonsingular *S*-matrix given by

 $\overline{S}_{ab} = { ext{quantum trace}}(c_{b,a} \circ c_{a,b}) =$

ヘロト ヘアト ヘビト ヘビト

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(C)$ finite containing the unit object **1**,
 - (ii) duality $V \mapsto V^*$ (rigidity), \cup and \frown ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \succ
 - (iv) (a) a spherical pivotal structure $j : V \to V^{**}$ or (b) twist $\theta_V : V \to V$. Both are natural isomorphisms.

(v) and a nonsingular *S*-matrix given by

 $S_{ab} = quantum trace(c_{b,a} \circ c_{a,b}) =$

ヘロン 人間 とくほ とくほ とう

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(C)$ finite containing the unit object **1**,
 - (ii) duality $V \mapsto V^*$ (rigidity), \cup and \frown ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \succ
 - (iv) (a) a spherical pivotal structure $j : V \to V^{**}$ or (b) twist $\theta_V : V \to V$. Both are natural isomorphisms.

(v) and a nonsingular *S*-matrix given by

 $S_{ab} = quantum trace(c_{b,a} \circ c_{a,b}) =$

ヘロン 人間 とくほ とくほ とう

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(C)$ finite containing the unit object **1**,
 - (ii) duality $V \mapsto V^*$ (rigidity), \cup and \frown ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \succ
 - (iv) (a) a spherical pivotal structure $j : V \to V^{**}$ or (b) twist $\theta_V : V \to V$. Both are natural isomorphisms.

v) and a nonsingular *S*-matrix given by

 $S_{ab} = quantum trace(c_{b,a} \circ c_{a,b}) = c_{a,b}$

ヘロン 人間 とくほ とくほ とう

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(C)$ finite containing the unit object **1**,
 - (ii) duality $V \mapsto V^*$ (rigidity), \cup and \frown ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \succ
 - (iv) (a) a spherical pivotal structure $j : V \to V^{**}$ or (b) twist $\theta_V : V \to V$. Both are natural isomorphisms.
 - (v) and a nonsingular S-matrix given by

$$\overline{S}_{ab} =$$
quantum trace $(c_{b,a} \circ c_{a,b}) =$

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(C)$ finite containing the unit object **1**,
 - (ii) duality $V \mapsto V^*$ (rigidity), \cup and \frown ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \succ
 - (iv) (a) a spherical pivotal structure $j : V \to V^{**}$ or (b) twist $\theta_V : V \to V$. Both are natural isomorphisms.
 - (v) and a nonsingular S-matrix given by

$$\overline{S}_{ab} =$$
quantum trace $(c_{b,a} \circ c_{a,b}) =$

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(C)$ finite containing the unit object **1**,
 - (ii) duality $V \mapsto V^*$ (rigidity), \cup and \frown ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \succ
 - (iv) (a) a spherical pivotal structure $j : V \to V^{**}$ or (b) twist $\theta_V : V \to V$. Both are natural isomorphisms.
 - (v) and a nonsingular S-matrix given by

$$\overline{S}_{ab} =$$
 quantum trace $(c_{b,a} \circ c_{a,b}) =$

- Another formalism of RCFT
- Integral ingredient of quantum invariants of knots and 3-manifolds. (cf. Reshetikhin-Turaev)
- In short, a modular category is a C-linear semisimple tensor category C with
 - (i) $\Pi = Irr(C)$ finite containing the unit object **1**,
 - (ii) duality $V \mapsto V^*$ (rigidity), \cup and \frown ,
 - (iii) a natural isomorphism $c_{V,W}: V \otimes W \to W \otimes V$, called a braiding, \succ
 - (iv) (a) a spherical pivotal structure $j : V \to V^{**}$ or (b) twist $\theta_V : V \to V$. Both are natural isomorphisms.
 - (v) and a nonsingular S-matrix given by

$$\overline{S}_{ab} =$$
quantum trace $(c_{b,a} \circ c_{a,b}) = ($

Representations of $SL(2, \mathbb{Z})$ associated to a modular category

• [Vafa] If \mathcal{C} is modular, the matrix

 $T = [\delta_{ab}\theta_a]_{a,b\in\Pi}$

has finite order. Note that θ_a is a scalar for $a \in \Pi$. The assignment $\overline{\rho}_C : SL(2, \mathbb{Z}) \rightarrow PGL(\Pi, \mathbb{C})$ given by $s \mapsto S$ and $t \mapsto T$.

defines a projective representation of $SL(2, \mathbb{Z})$.

• $\overline{\rho}_{\mathcal{C}}$ can be lifted to a linear representation ρ of SL(2, \mathbb{Z}):

Representations of $SL(2, \mathbb{Z})$ associated to a modular category

• [Vafa] If \mathcal{C} is modular, the matrix

 $T = [\delta_{ab}\theta_a]_{a,b\in\Pi}$

has finite order. Note that θ_a is a scalar for $a \in \Pi$. The assignment $\overline{\rho}_C : SL(2, \mathbb{Z}) \rightarrow PGL(\Pi, \mathbb{C})$ given by $s \mapsto S$ and $t \mapsto T$.

defines a projective representation of $SL(2, \mathbb{Z})$.

• $\overline{\rho}_{\mathcal{C}}$ can be lifted to a linear representation ρ of SL(2, \mathbb{Z}):

Representations of $SL(2, \mathbb{Z})$ associated to a modular category

• [Vafa] If \mathcal{C} is modular, the matrix

 $T = [\delta_{ab}\theta_a]_{a,b\in\Pi}$

has finite order. Note that θ_a is a scalar for $a \in \Pi$.

• The assignment $\overline{p}_{\mathcal{C}}$: SL(2, \mathbb{Z}) \rightarrow PGL(Π, \mathbb{C}) given by

defines a projective representation of $SL(2, \mathbb{Z})$.

• $\overline{\rho}_{\mathcal{C}}$ can be lifted to a linear representation ρ of SL(2, \mathbb{Z}):
• [Vafa] If C is modular, the matrix

$$T = [\delta_{ab}\theta_a]_{a,b\in\Pi}$$

has finite order. Note that θ_a is a scalar for $a \in \Pi$.

• The assignment $\overline{\rho}_{\mathcal{C}} : SL(2, \mathbb{Z}) \to PGL(\Pi, \mathbb{C})$ given by

$$\mathfrak{s} \mapsto S$$
 and $\mathfrak{t} \mapsto T$,

defines a projective representation of $SL(2, \mathbb{Z})$.

• [Vafa] If C is modular, the matrix

$$T = [\delta_{ab}\theta_a]_{a,b\in\Pi}$$

has finite order. Note that θ_a is a scalar for $a \in \Pi$.

• The assignment $\overline{\rho}_{\mathcal{C}} : SL(2, \mathbb{Z}) \to PGL(\Pi, \mathbb{C})$ given by

$$\mathfrak{s} \mapsto S$$
 and $\mathfrak{t} \mapsto T$,

defines a projective representation of $SL(2, \mathbb{Z})$.

$$SL(2,\mathbb{Z}) \xrightarrow{\rho} GL(\Pi,\mathbb{C})$$

$$\overrightarrow{p_{\mathcal{C}}} \qquad \eta \downarrow$$

$$PGL(\Pi,\mathbb{C})$$

• [Vafa] If C is modular, the matrix

$$T = [\delta_{ab}\theta_a]_{a,b\in\Pi}$$

has finite order. Note that θ_a is a scalar for $a \in \Pi$.

• The assignment $\overline{\rho}_{\mathcal{C}} : SL(2, \mathbb{Z}) \to PGL(\Pi, \mathbb{C})$ given by

$$\mathfrak{s} \mapsto S$$
 and $\mathfrak{t} \mapsto T$,

defines a projective representation of $SL(2, \mathbb{Z})$.

$$SL(2,\mathbb{Z}) \xrightarrow{\rho} GL(\Pi,\mathbb{C})$$

$$\overrightarrow{p_{\mathcal{C}}} \qquad \eta \downarrow$$

$$PGL(\Pi,\mathbb{C})$$

• [Vafa] If C is modular, the matrix

$$T = [\delta_{ab}\theta_a]_{a,b\in\Pi}$$

has finite order. Note that θ_a is a scalar for $a \in \Pi$.

• The assignment $\overline{\rho}_{\mathcal{C}} : SL(2, \mathbb{Z}) \to PGL(\Pi, \mathbb{C})$ given by

$$\mathfrak{s} \mapsto S$$
 and $\mathfrak{t} \mapsto T$,

defines a projective representation of $SL(2, \mathbb{Z})$.

- Let C be a modular category,
- Π the set of isomorphism classes of simple objects of C.
- 1 $\in \Pi$ denotes the class of unit object.
- The fusion rules [N^c_{ab}]_{a,b,c∈Π} of C is the family of non-negative integers given by

$$a\otimes b=\sum_{c\in\Pi}N^c_{ab}\cdot c$$
 .

 Let ρ : SL(2, Z) → GL(Π, C) be a lifting of the canonical projective representation p
_C determined by

 $\rho: \mathfrak{s} \mapsto \mathfrak{s}, \quad \mathfrak{t} \mapsto \mathfrak{t}.$

• [B-K] Verlinde formula holds: $N_{ab}^{c} = \sum \frac{S_{ar}S_{br}S_{cr}}{S_{1r}}$

- Let C be a modular category,
- Π the set of isomorphism classes of simple objects of C.
- 1 $\in \Pi$ denotes the class of unit object.
- The fusion rules [N^c_{ab}]_{a,b,c∈Π} of C is the family of non-negative integers given by

$$a\otimes b=\sum_{c\in\Pi}N^c_{ab}\cdot c$$
 .

 Let ρ : SL(2, Z) → GL(Π, C) be a lifting of the canonical projective representation p
_C determined by

 $\rho: \mathfrak{s} \mapsto \mathfrak{s}, \quad \mathfrak{t} \mapsto \mathfrak{t}.$

• [B-K] Verlinde formula holds: $N_{ab}^{c} = \sum \frac{S_{ar}S_{br}S_{cr}}{S_{1r}}$

- Let C be a modular category,
- Π the set of isomorphism classes of simple objects of C.
- 1 ∈ Π denotes the class of unit object.
- The fusion rules [N^c_{ab}]_{a,b,c∈Π} of C is the family of non-negative integers given by

$$a\otimes b=\sum_{c\in\Pi}N^c_{ab}\cdot c$$
.

 Let ρ : SL(2, Z) → GL(Π, C) be a lifting of the canonical projective representation p
_C determined by

 $\rho: \mathfrak{s} \mapsto \mathfrak{s}, \quad \mathfrak{t} \mapsto \mathfrak{t}.$

• [B-K] Verlinde formula holds: $N_{ab}^{c} = \sum \frac{S_{ar}S_{br}S_{cr}}{S_{1r}}$

- Let C be a modular category,
- Π the set of isomorphism classes of simple objects of C.
- 1 ∈ Π denotes the class of unit object.
- The fusion rules [N^c_{ab}]_{a,b,c∈Π} of C is the family of non-negative integers given by

$$a\otimes b=\sum_{c\in\Pi}N^c_{ab}\cdot c$$
 .

 Let ρ : SL(2, Z) → GL(Π, C) be a lifting of the canonical projective representation p
_C determined by

 $\rho: \mathfrak{s} \mapsto \mathfrak{s}, \quad \mathfrak{t} \mapsto \mathfrak{t}.$

• [B-K] Verlinde formula holds: $N_{ab}^c = \sum_{r} \frac{S_{ar} S_{br} S_{cr}}{S_{1r}}$

- Let C be a modular category,
- Π the set of isomorphism classes of simple objects of C.
- 1 ∈ Π denotes the class of unit object.
- The fusion rules [N^c_{ab}]_{a,b,c∈Π} of C is the family of non-negative integers given by

$$a\otimes b=\sum_{c\in\Pi}N^c_{ab}\cdot c$$
.

 Let ρ : SL(2, Z) → GL(Π, C) be a lifting of the canonical projective representation ρ_C determined by

$$\rho: \mathfrak{s} \mapsto \mathbf{S}, \quad \mathfrak{t} \mapsto \mathbf{t}.$$

• [B-K] Verlinde formula holds: $N_{ab}^c = \sum \frac{s_{ar} s_{br} s_{cr}}{s_{1r}}$

- Let C be a modular category,
- Π the set of isomorphism classes of simple objects of C.
- $1 \in \Pi$ denotes the class of unit object.
- The fusion rules [N^c_{ab}]_{a,b,c∈Π} of C is the family of non-negative integers given by

$$a\otimes b=\sum_{c\in\Pi}N^c_{ab}\cdot c$$
.

 Let ρ : SL(2, Z) → GL(Π, C) be a lifting of the canonical projective representation ρ_C determined by

$$\rho: \mathfrak{s} \mapsto \boldsymbol{s}, \quad \mathfrak{t} \mapsto \boldsymbol{t}.$$

• [B-K] Verlinde formula holds: $N_{ab}^{c} = \sum_{r=1}^{c} \frac{s_{ar} s_{br} \bar{s}_{cr}}{s_{1r}}$

- Spherical pivotal structure: the natural isomorphism $j: V \rightarrow V^{**}$ of vector spaces.
- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = {V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of G.
- $c_{V_i,V_i} \circ c_{V_i,V_j} = \tau_{V_j,V_i} \circ \tau_{V_i,V_j} = \operatorname{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$. S is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

Let *G* be a finite group. Then C = Rep(G) is a fusion category over \mathbb{C} .

- Spherical pivotal structure: the natural isomorphism
 - $j: V \to V^{**}$ of vector spaces.
- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let II = {V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of G.
- $c_{V_i,V_i} \circ c_{V_i,V_j} = \tau_{V_j,V_i} \circ \tau_{V_i,V_j} = \operatorname{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$. S is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

1

Let *G* be a finite group. Then C = Rep(G) is a fusion category over \mathbb{C} .

- Spherical pivotal structure: the natural isomorphism
 - $j: V \to V^{**}$ of vector spaces.
- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let II = {V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of G.
- $c_{V_i,V_i} \circ c_{V_i,V_j} = \tau_{V_j,V_i} \circ \tau_{V_i,V_j} = \operatorname{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$. S is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

1

- Spherical pivotal structure: the natural isomorphism
 j : V → V^{**} of vector spaces.
- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = {V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of G.
- $c_{V_i,V_i} \circ c_{V_i,V_j} = \tau_{V_j,V_i} \circ \tau_{V_i,V_j} = \operatorname{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$. S is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

- Spherical pivotal structure: the natural isomorphism
 j : *V* → *V*^{**} of vector spaces.
- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = {V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of G.
- $c_{V_i,V_i} \circ c_{V_i,V_j} = \tau_{V_j,V_i} \circ \tau_{V_i,V_j} = \operatorname{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$. S is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

- Spherical pivotal structure: the natural isomorphism
 j : *V* → *V*^{**} of vector spaces.
- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = {V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of G.
- $c_{V_i,V_i} \circ c_{V_i,V_j} = \tau_{V_j,V_i} \circ \tau_{V_i,V_j} = \operatorname{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$. S is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

Let *G* be a finite group. Then C = Rep(G) is a fusion category over \mathbb{C} .

• Spherical pivotal structure: the natural isomorphism

 $j: V \rightarrow V^{**}$ of vector spaces.

- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let II = {V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of G.
- $c_{V_i,V_i} \circ c_{V_i,V_j} = \tau_{V_i,V_i} \circ \tau_{V_i,V_j} = \operatorname{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$. S is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

Let *G* be a finite group. Then C = Rep(G) is a fusion category over \mathbb{C} .

• Spherical pivotal structure: the natural isomorphism

 $j: V \to V^{**}$ of vector spaces.

- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = {V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of *G*.
- $C_{V_i,V_i} \circ C_{V_i,V_j} = \tau_{V_j,V_i} \circ \tau_{V_i,V_j} = \operatorname{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$. *S* is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

- Spherical pivotal structure: the natural isomorphism
 - $j: V \to V^{**}$ of vector spaces.
- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = { V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of *G*.
- $\mathbf{c}_{V_j,V_i} \circ \mathbf{c}_{V_i,V_j} = \tau_{V_j,V_i} \circ \tau_{V_i,V_j} = \mathrm{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$. *S* is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

Let *G* be a finite group. Then C = Rep(G) is a fusion category over \mathbb{C} .

• Spherical pivotal structure: the natural isomorphism

 $j: V \to V^{**}$ of vector spaces.

- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = { V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of *G*.
- $C_{V_i, V_i} \circ C_{V_i, V_j} = \tau_{V_j, V_i} \circ \tau_{V_i, V_j} = \operatorname{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \dim V_i \dim V_j$. *S* is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

Let *G* be a finite group. Then C = Rep(G) is a fusion category over \mathbb{C} .

• Spherical pivotal structure: the natural isomorphism

 $j: V \to V^{**}$ of vector spaces.

- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = { V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of *G*.
- $\mathbf{C}_{\mathbf{V}_{j},\mathbf{V}_{i}} \circ \mathbf{C}_{\mathbf{V}_{i},\mathbf{V}_{j}} = \tau_{\mathbf{V}_{j},\mathbf{V}_{i}} \circ \tau_{\mathbf{V}_{i},\mathbf{V}_{j}} = \mathrm{id}_{\mathbf{V}_{i}\otimes\mathbf{V}_{j}}$.

•
$$S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$$
. *S* is singular.

 Rep(G) is not modular with the ordinary pivotal structure and braiding.

Let *G* be a finite group. Then C = Rep(G) is a fusion category over \mathbb{C} .

• Spherical pivotal structure: the natural isomorphism

 $j: V \to V^{**}$ of vector spaces.

- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = { V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of *G*.
- $\mathbf{C}_{\mathbf{V}_{j},\mathbf{V}_{i}} \circ \mathbf{C}_{\mathbf{V}_{i},\mathbf{V}_{j}} = \tau_{\mathbf{V}_{j},\mathbf{V}_{i}} \circ \tau_{\mathbf{V}_{i},\mathbf{V}_{j}} = \mathrm{id}_{\mathbf{V}_{i}\otimes\mathbf{V}_{j}}$.

•
$$S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$$
. *S* is singular.

 Rep(G) is not modular with the ordinary pivotal structure and braiding.

Let *G* be a finite group. Then C = Rep(G) is a fusion category over \mathbb{C} .

• Spherical pivotal structure: the natural isomorphism

 $j: V \to V^{**}$ of vector spaces.

- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = { V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of *G*.
- $C_{V_i,V_i} \circ C_{V_i,V_j} = \tau_{V_j,V_i} \circ \tau_{V_i,V_j} = \operatorname{id}_{V_i \otimes V_j}$.

•
$$S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$$
. *S* is singular.

 Rep(G) is not modular with the ordinary pivotal structure and braiding.

Let *G* be a finite group. Then C = Rep(G) is a fusion category over \mathbb{C} .

• Spherical pivotal structure: the natural isomorphism

 $j: V \rightarrow V^{**}$ of vector spaces.

- Braiding of C: the flip map $\tau_{V,W}: V \otimes W \to W \otimes V$.
- Is Rep(G) modular?
- Let Π = { V₁,..., V_n} be a complete set of non-isomorphic irreducible representations of *G*.
- $C_{V_i,V_i} \circ C_{V_i,V_j} = \tau_{V_j,V_i} \circ \tau_{V_i,V_j} = \operatorname{id}_{V_i \otimes V_j}$.
- $S_{ij} = \text{Tr}(\text{id}_{V_i, V_j}) = \text{dim } V_i \text{ dim } V_j$. *S* is singular.
- Rep(G) is not modular with the ordinary pivotal structure and braiding.

- Let G be a finite abelian group of odd order with a non-degenerate quadratic form q : G → Q/Z.
- q(g) = q(g⁻¹) and b_q(g, h) = q(gh) q(g) q(h) is a non-degenerate bilinear map.
- C = Rep(C[G]*)=category finite dimensional G-graded
 C-linear spaces.
- Note that C[G][∗] is a commutative semisimple Hopf algebra over C.
- C is a fusion category over \mathbb{C} with $\Pi = \{ e(g) \mid g \in G \}$.

ヘロア 人間 アメヨア 人口 ア

- Let G be a finite abelian group of odd order with a non-degenerate quadratic form q : G → Q/Z.
- q(g) = q(g⁻¹) and b_q(g, h) = q(gh) q(g) q(h) is a non-degenerate bilinear map.
- C = Rep(C[G]*)=category finite dimensional G-graded
 C-linear spaces.
- Note that C[G][∗] is a commutative semisimple Hopf algebra over C.
- C is a fusion category over \mathbb{C} with $\Pi = \{ e(g) \mid g \in G \}$.

ヘロン ヘアン ヘビン ヘビン

- Let G be a finite abelian group of odd order with a non-degenerate quadratic form q : G → Q/Z.
- q(g) = q(g⁻¹) and b_q(g, h) = q(gh) q(g) q(h) is a non-degenerate bilinear map.
- C = Rep(C[G]*)=category finite dimensional G-graded
 C-linear spaces.
- Note that C[G][∗] is a commutative semisimple Hopf algebra over C.
- C is a fusion category over \mathbb{C} with $\Pi = \{ e(g) \mid g \in G \}$.

ヘロン ヘアン ヘビン ヘビン

- Let G be a finite abelian group of odd order with a non-degenerate quadratic form q : G → Q/Z.
- q(g) = q(g⁻¹) and b_q(g, h) = q(gh) q(g) q(h) is a non-degenerate bilinear map.
- C = Rep(C[G]*)=category finite dimensional G-graded
 C-linear spaces.
- Note that C[G][∗] is a commutative semisimple Hopf algebra over C.
- C is a fusion category over \mathbb{C} with $\Pi = \{e(g) \mid g \in G\}$.

・ロト ・ 理 ト ・ ヨ ト ・

- Let G be a finite abelian group of odd order with a non-degenerate quadratic form q : G → Q/Z.
- q(g) = q(g⁻¹) and b_q(g, h) = q(gh) q(g) q(h) is a non-degenerate bilinear map.
- C = Rep(C[G]*)=category finite dimensional G-graded
 C-linear spaces.
- Note that C[G][∗] is a commutative semisimple Hopf algebra over C.
- C is a fusion category over \mathbb{C} with $\Pi = \{ e(g) \mid g \in G \}.$

・ロト ・ 理 ト ・ ヨ ト ・

• The dual of e(g) is $e(g^{-1})$.

- braiding $c_{e(g),e(h)}: e(g) \otimes e(h) \rightarrow e(h) \otimes e(g)$ is the scalar $\exp(2\pi i b_q(g,h)/2)$
- ribbon structure (or twist) $\theta_{e(g)} = \exp(2\pi i q(g))$.
- Thus $T = [\delta_{gh} \exp(2\pi i q(g))]$ and

$$S_{hg} = \exp(-2\pi i b_q(h,g))$$

 The projective representation of SL(2, ℤ) associated to C is equivalent to the Weil representation of associated with the pair (G, q).

・ロト ・ 理 ト ・ ヨ ト ・

- The dual of e(g) is $e(g^{-1})$.
- braiding $c_{e(g),e(h)}: e(g) \otimes e(h) \to e(h) \otimes e(g)$ is the scalar $\exp(2\pi i b_q(g,h)/2)$
- ribbon structure (or twist) $\theta_{e(g)} = \exp(2\pi i q(g))$.
- Thus $T = [\delta_{gh} \exp(2\pi i q(g))]$ and

$$S_{hg} = \exp(-2\pi i b_q(h,g))$$

 The projective representation of SL(2, ℤ) associated to C is equivalent to the Weil representation of associated with the pair (G, q).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- The dual of e(g) is $e(g^{-1})$.
- braiding $c_{e(g),e(h)}: e(g) \otimes e(h) \to e(h) \otimes e(g)$ is the scalar $\exp(2\pi i b_q(g,h)/2)$
- ribbon structure (or twist) $\theta_{e(g)} = \exp(2\pi i q(g))$.
- Thus $T = [\delta_{gh} \exp(2\pi i q(g))]$ and

$$S_{hg} = \exp(-2\pi i b_q(h,g))$$

 The projective representation of SL(2, ℤ) associated to C is equivalent to the Weil representation of associated with the pair (G, q).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- The dual of e(g) is $e(g^{-1})$.
- braiding $c_{e(g),e(h)}: e(g) \otimes e(h) \to e(h) \otimes e(g)$ is the scalar $\exp(2\pi i b_q(g,h)/2)$
- ribbon structure (or twist) $\theta_{e(g)} = \exp(2\pi i q(g))$.

• Thus
$$T = [\delta_{gh} \exp(2\pi i q(g))]$$
 and

$$S_{hg} = \exp(-2\pi i b_q(h,g))$$

 The projective representation of SL(2, ℤ) associated to C is equivalent to the Weil representation of associated with the pair (G, q).

イロン 不良 とくほう 不良 とうほ

- The dual of e(g) is $e(g^{-1})$.
- braiding $c_{e(g),e(h)}: e(g) \otimes e(h) \to e(h) \otimes e(g)$ is the scalar $\exp(2\pi i b_q(g,h)/2)$
- ribbon structure (or twist) $\theta_{e(g)} = \exp(2\pi i q(g))$.

• Thus
$$T = [\delta_{gh} \exp(2\pi i q(g))]$$
 and

$$S_{hg} = \exp(-2\pi i b_q(h,g))$$

 The projective representation of SL(2, ℤ) associated to C is equivalent to the Weil representation of associated with the pair (G, q).

イロト イポト イヨト イヨト 三日

Weil Representation of (G, q)

 Recall the Weil representation of (G, q) is the linear representation of the metaplectic group Mp(2, Z),

• which is a central extension of $SL(2,\mathbb{Z})$ by \mathbb{Z}_2 :

$$0 o \mathbb{Z}_2 o \operatorname{Mp}(2,\mathbb{Z}) o \operatorname{SL}(2,\mathbb{Z}) o 1$$
 .

• $Mp(2,\mathbb{Z})$ admits a presentation similar to $SL(2,\mathbb{Z})$:

$$\operatorname{Mp}(2,\mathbb{Z}) = \langle \mathfrak{s}, \mathfrak{t} \mid (\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2, \mathfrak{s}^8 = 1 \rangle$$

The Weil representation ρ : Mp(2, Z) → GL(G, C) of (G, q) is given

$$\rho: \mathfrak{s} \mapsto \frac{g(G,q)}{|G|}S, \quad \mathfrak{t} \mapsto T$$

where $g(G,q) = \sum_{a \in G} \exp(2\pi i q(a))$ is the Gauss sum.

▲■ ▶ ▲ 国 ▶ ▲ 国 ▶ ...

Weil Representation of (G, q)

- Recall the Weil representation of (G, q) is the linear representation of the metaplectic group Mp(2, Z),
- which is a central extension of SL(2, ℤ) by ℤ₂:

$$0 o \mathbb{Z}_2 o \operatorname{Mp}(2,\mathbb{Z}) o \operatorname{SL}(2,\mathbb{Z}) o 1$$
 .

• Mp(2, Z) admits a presentation similar to SL(2, Z):

$$\operatorname{Mp}(2,\mathbb{Z}) = \langle \mathfrak{s}, \mathfrak{t} \mid (\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2, \mathfrak{s}^8 = 1 \rangle$$

The Weil representation ρ : Mp(2, Z) → GL(G, C) of (G, q) is given

$$\rho: \mathfrak{s} \mapsto \frac{g(G,q)}{|G|}S, \quad \mathfrak{t} \mapsto T$$

where $g(G,q) = \sum_{a \in G} \exp(2\pi i q(a))$ is the Gauss sum.

同トイヨトイヨト
- Recall the Weil representation of (G, q) is the linear representation of the metaplectic group Mp(2, Z),
- which is a central extension of SL(2, ℤ) by ℤ₂:

$$0
ightarrow \mathbb{Z}_2
ightarrow Mp(2,\mathbb{Z})
ightarrow SL(2,\mathbb{Z})
ightarrow 1$$
 .

Mp(2, Z) admits a presentation similar to SL(2, Z):

$$\operatorname{Mp}(2,\mathbb{Z}) = \langle \mathfrak{s}, \mathfrak{t} \mid (\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2, \mathfrak{s}^8 = 1 \rangle$$

The Weil representation ρ : Mp(2, Z) → GL(G, C) of (G, q) is given

$$\rho: \mathfrak{s} \mapsto \frac{g(G,q)}{|G|}S, \quad \mathfrak{t} \mapsto T$$

where $g(G,q) = \sum_{a \in G} \exp(2\pi i q(a))$ is the Gauss sum.

- Recall the Weil representation of (G, q) is the linear representation of the metaplectic group Mp(2, Z),
- which is a central extension of SL(2, ℤ) by ℤ₂:

$$0
ightarrow \mathbb{Z}_2
ightarrow \mathrm{Mp}(2,\mathbb{Z})
ightarrow \mathrm{SL}(2,\mathbb{Z})
ightarrow 1$$
 .

Mp(2, Z) admits a presentation similar to SL(2, Z):

$$\operatorname{Mp}(2,\mathbb{Z}) = \langle \mathfrak{s}, \mathfrak{t} \mid (\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2, \mathfrak{s}^8 = 1 \rangle$$
.

The Weil representation ρ : Mp(2, Z) → GL(G, C) of (G, q) is given

$$\rho: \mathfrak{s} \mapsto \frac{g(G, q)}{|G|} S, \quad \mathfrak{t} \mapsto T$$

where $g(G,q) = \sum_{a \in G} \exp(2\pi i q(a))$ is the Gauss sum

- (三)

- Recall the Weil representation of (G, q) is the linear representation of the metaplectic group Mp(2, Z),
- which is a central extension of SL(2, ℤ) by ℤ₂:

$$0
ightarrow \mathbb{Z}_2
ightarrow \mathrm{Mp}(2,\mathbb{Z})
ightarrow \mathrm{SL}(2,\mathbb{Z})
ightarrow 1$$
 .

Mp(2, Z) admits a presentation similar to SL(2, Z):

$$\operatorname{Mp}(2,\mathbb{Z}) = \langle \mathfrak{s}, \mathfrak{t} \mid (\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2, \mathfrak{s}^8 = 1 \rangle$$
.

The Weil representation ρ : Mp(2, Z) → GL(G, C) of (G, q) is given

$$\rho: \mathfrak{s} \mapsto \frac{g(G, q)}{|G|} S, \quad \mathfrak{t} \mapsto T$$

where $g(G,q) = \sum_{a \in G} \exp(2\pi i q(a))$ is the Gauss sum

- (三)

- Recall the Weil representation of (G, q) is the linear representation of the metaplectic group Mp(2, Z),
- which is a central extension of SL(2, ℤ) by ℤ₂:

$$0
ightarrow \mathbb{Z}_2
ightarrow Mp(2,\mathbb{Z})
ightarrow SL(2,\mathbb{Z})
ightarrow 1$$
 .

Mp(2, ℤ) admits a presentation similar to SL(2, ℤ):

$$\operatorname{Mp}(2,\mathbb{Z}) = \langle \mathfrak{s}, \mathfrak{t} \mid (\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2, \mathfrak{s}^8 = 1 \rangle$$
.

The Weil representation ρ : Mp(2, Z) → GL(G, C) of (G, q) is given

$$\rho: \mathfrak{s} \mapsto \frac{g(G,q)}{|G|}S, \quad \mathfrak{t} \mapsto T$$

where $g(G,q) = \sum_{a \in G} \exp(2\pi i q(a))$ is the Gauss sum.

- Recall the Weil representation of (G, q) is the linear representation of the metaplectic group Mp(2, Z),
- which is a central extension of SL(2, ℤ) by ℤ₂:

$$0
ightarrow \mathbb{Z}_2
ightarrow Mp(2,\mathbb{Z})
ightarrow SL(2,\mathbb{Z})
ightarrow 1$$
 .

Mp(2, ℤ) admits a presentation similar to SL(2, ℤ):

$$\operatorname{Mp}(2,\mathbb{Z}) = \langle \mathfrak{s}, \mathfrak{t} \mid (\mathfrak{s}\mathfrak{t})^3 = \mathfrak{s}^2, \mathfrak{s}^8 = 1 \rangle$$
.

The Weil representation ρ : Mp(2, Z) → GL(G, C) of (G, q) is given

$$\rho: \mathfrak{s} \mapsto \frac{g(G,q)}{|G|}S, \quad \mathfrak{t} \mapsto T$$

where $g(G,q) = \sum_{a \in G} \exp(2\pi i q(a))$ is the Gauss sum.

- [Müger] Given any spherical fusion category C, the center
 Z(C) of C is modular.
- If *H* is a semisimple Hopf algebra, then
 Rep(D(H)) = Z(Rep(H)) where D(H) is called the Drinfeld
 double of *H*.
- D(H) is generally a non-commutative and non-cocommutative semisimple Hopf algebra.
- If G is abelian, D(G) is again a group algebra C[Ĝ × G], and Rep(D(G)) is a modular category.
- The associated projective representation of SL(2, Z) is equivalent to the Weil representation of the pair (Ĝ × G, q) where q(χ, a) = χ(a).

イロト 不得 とくほと くほとう

- [Müger] Given any spherical fusion category C, the center
 Z(C) of C is modular.
- If *H* is a semisimple Hopf algebra, then
 Rep(D(H)) = Z(Rep(H)) where D(H) is called the Drinfeld
 double of *H*.
- D(H) is generally a non-commutative and non-cocommutative semisimple Hopf algebra.
- If G is abelian, D(G) is again a group algebra C[Ĝ × G], and Rep(D(G)) is a modular category.
- The associated projective representation of SL(2, Z) is equivalent to the Weil representation of the pair (Ĝ × G, q) where q(χ, a) = χ(a).

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- [Müger] Given any spherical fusion category C, the center
 Z(C) of C is modular.
- If *H* is a semisimple Hopf algebra, then
 Rep(D(H)) = Z(Rep(H)) where D(H) is called the Drinfeld
 double of *H*.
- D(H) is generally a non-commutative and non-cocommutative semisimple Hopf algebra.
- If G is abelian, D(G) is again a group algebra C[Ĝ × G], and Rep(D(G)) is a modular category.
- The associated projective representation of SL(2, Z) is equivalent to the Weil representation of the pair (Ĝ × G, q) where q(χ, a) = χ(a).

イロン 不良 とくほう 不良 とうほ

- [Müger] Given any spherical fusion category C, the center
 Z(C) of C is modular.
- If *H* is a semisimple Hopf algebra, then
 Rep(D(H)) = Z(Rep(H)) where D(H) is called the Drinfeld
 double of *H*.
- D(H) is generally a non-commutative and non-cocommutative semisimple Hopf algebra.
- If G is abelian, D(G) is again a group algebra C[Ĝ × G], and Rep(D(G)) is a modular category.
- The associated projective representation of SL(2, Z) is equivalent to the Weil representation of the pair (Ĝ × G, q) where q(χ, a) = χ(a).

イロン 不良 とくほう 不良 とうほ

- [Müger] Given any spherical fusion category C, the center
 Z(C) of C is modular.
- If *H* is a semisimple Hopf algebra, then
 Rep(D(H)) = Z(Rep(H)) where D(H) is called the Drinfeld
 double of *H*.
- D(H) is generally a non-commutative and non-cocommutative semisimple Hopf algebra.
- If G is abelian, D(G) is again a group algebra C[Ĝ × G], and Rep(D(G)) is a modular category.
- The associated projective representation of SL(2, Z) is equivalent to the Weil representation of the pair (Ĝ × G, q) where q(χ, a) = χ(a).

イロン 不良 とくほう 不良 とうほ

- [Müger] Given any spherical fusion category C, the center
 Z(C) of C is modular.
- If *H* is a semisimple Hopf algebra, then Rep(D(H)) = Z(Rep(H)) where D(H) is called the Drinfeld double of *H*.
- *D*(*H*) is generally a non-commutative and non-cocommutative semisimple Hopf algebra.
- If G is abelian, D(G) is again a group algebra C[Ĝ × G], and Rep(D(G)) is a modular category.
- The associated projective representation of SL(2, Z) is equivalent to the Weil representation of the pair (Ĝ × G, q) where q(χ, a) = χ(a).

イロト 不得 とくほ とくほとう

- [Müger] Given any spherical fusion category C, the center
 Z(C) of C is modular.
- If *H* is a semisimple Hopf algebra, then Rep(D(H)) = Z(Rep(H)) where D(H) is called the Drinfeld double of *H*.
- *D*(*H*) is generally a non-commutative and non-cocommutative semisimple Hopf algebra.
- If G is abelian, D(G) is again a group algebra C[Ĝ × G], and Rep(D(G)) is a modular category.
- The associated projective representation of SL(2, Z) is equivalent to the Weil representation of the pair (Ĝ × G, q) where q(χ, a) = χ(a).

イロト 不得 とくほ とくほとう

- [Müger] Given any spherical fusion category C, the center
 Z(C) of C is modular.
- If *H* is a semisimple Hopf algebra, then
 Rep(D(H)) = Z(Rep(H)) where D(H) is called the Drinfeld
 double of *H*.
- *D*(*H*) is generally a non-commutative and non-cocommutative semisimple Hopf algebra.
- If G is abelian, D(G) is again a group algebra C[Ĝ × G], and Rep(D(G)) is a modular category.
- The associated projective representation of SL(2, Z) is equivalent to the Weil representation of the pair (Ĝ × G, q) where q(χ, a) = χ(a).

イロト 不得 とくほ とくほとう

- Projective representations of SL(2, Z) associated to modular categories are generalized Weil representations projectively.
- Question:
 - What arithmetic property does this generalized Weil representation have?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Projective representations of SL(2, Z) associated to modular categories are generalized Weil representations projectively.
- Question:
 - What arithmetic property does this generalized Weil representation have?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Projective representations of SL(2, Z) associated to modular categories are generalized Weil representations projectively.
- Question:

What arithmetic property does this generalized Weil representation have?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Projective representations of SL(2, Z) associated to modular categories are generalized Weil representations projectively.
- Question:

What arithmetic property does this generalized Weil representation have?

< 回 > < 回 > < 回 > .

Theorem (Ng and Schauenburg)

Let C be a modular category and $\overline{\rho}_{C}$: SL(2, \mathbb{Z}) \rightarrow PGL(Π , \mathbb{C}) the associated projective representation of SL(2, \mathbb{Z}).

- Then ker $\overline{\rho}_{C}$ is a congruence subgroup of level N where N = ord T.
- Every lifting ρ of ρ_C has finite image and is Q_m-rational, where m = ord(ρ(t)).
- **Remark:** [S-Z] established (1) in the case of factorizable semisimple Hopf algebras.
- **Question:** Will one of these liftings ρ of $\overline{\rho}_{C}$ has non-congruence kernel?

ヘロト ヘアト ヘビト ヘビト

Theorem (Ng and Schauenburg)

Let C be a modular category and $\overline{\rho}_{C}$: SL(2, \mathbb{Z}) \rightarrow PGL(Π , \mathbb{C}) the associated projective representation of SL(2, \mathbb{Z}).

- Then ker $\overline{\rho}_{C}$ is a congruence subgroup of level N where N = ord T.
- Every lifting ρ of ρ_C has finite image and is Q_m-rational, where m = ord(ρ(t)).
- **Remark:** [S-Z] established (1) in the case of factorizable semisimple Hopf algebras.
- **Question:** Will one of these liftings ρ of $\overline{\rho}_{C}$ has non-congruence kernel?

ヘロト ヘアト ヘビト ヘビト

Theorem (Ng and Schauenburg)

Let C be a modular category and $\overline{\rho}_{C}$: SL(2, \mathbb{Z}) \rightarrow PGL(Π , \mathbb{C}) the associated projective representation of SL(2, \mathbb{Z}).

- Then ker $\overline{\rho}_{C}$ is a congruence subgroup of level N where N = ord T.
- Every lifting ρ of ρ_C has finite image and is Q_m-rational, where m = ord(ρ(t)).
 - **Remark:** [S-Z] established (1) in the case of factorizable semisimple Hopf algebras.
 - **Question:** Will one of these liftings ρ of $\overline{\rho}_{C}$ has non-congruence kernel?

ヘロン 人間 とくほ とくほ とう

Theorem (Ng and Schauenburg)

Let C be a modular category and $\overline{\rho}_{C}$: SL(2, \mathbb{Z}) \rightarrow PGL(Π , \mathbb{C}) the associated projective representation of SL(2, \mathbb{Z}).

- Then ker $\overline{\rho}_{C}$ is a congruence subgroup of level N where N = ord T.
- Every lifting ρ of p
 _C has finite image and is Q_m-rational, where m = ord(ρ(t)).
 - **Remark:** [S-Z] established (1) in the case of factorizable semisimple Hopf algebras.
 - **Question:** Will one of these liftings ρ of $\overline{\rho}_{C}$ has non-congruence kernel?

ヘロン 人間 とくほ とくほ とう

Theorem (Ng and Schauenburg)

Let C be a modular category and $\overline{\rho}_{C}$: SL(2, \mathbb{Z}) \rightarrow PGL(Π , \mathbb{C}) the associated projective representation of SL(2, \mathbb{Z}).

- Then ker $\overline{\rho}_{C}$ is a congruence subgroup of level N where N = ord T.
- Every lifting ρ of p
 _C has finite image and is Q_m-rational, where m = ord(ρ(t)).
 - **Remark:** [S-Z] established (1) in the case of factorizable semisimple Hopf algebras.
 - **Question:** Will one of these liftings ρ of $\overline{\rho}_{C}$ has non-congruence kernel?

ヘロン 人間 とくほ とくほ とう

 [Bass-Lazard-Serre, [Mennicke] No noncongruence subgroup of finite index in SL(n, ℤ) for n ≥ 3

• The exact sequence

$$0 \rightarrow \ker \rho \cap \Gamma(N) \rightarrow \Gamma(N) \rightarrow C_n \rightarrow 0$$

is insufficient for the congruence of ker ρ (cf. Kurth-Long).

ヘロト ヘ戸ト ヘヨト ヘヨト

- [Bass-Lazard-Serre, [Mennicke] No noncongruence subgroup of finite index in SL(n, Z) for n ≥ 3
- The exact sequence

$$0 \rightarrow \ker \rho \cap \Gamma(N) \rightarrow \Gamma(N) \rightarrow C_n \rightarrow 0$$

is insufficient for the congruence of ker ρ (cf. Kurth-Long).

(個) (目) (日)

- Let C be a modular category with Π = Irr(C), and ρ : SL(2, Z) → GL(Π, Q_m) a lifting of the projective representation ρ_C : SL(2, Z) → PGL(Π, C), where m = ord ρ(t).
- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s)=sG_{\sigma}=G_{\sigma}^{-1}s$$
 .

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1} t G_{\sigma}$.
- [S-Z] Affirmative answer for factorizable Hopf algebras.

イロン 不良 とくほう 不良 とうしょう

- Let C be a modular category with Π = Irr(C), and ρ : SL(2, Z) → GL(Π, Q_m) a lifting of the projective representation ρ_C : SL(2, Z) → PGL(Π, C), where m = ord ρ(t).
- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s)=sG_{\sigma}=G_{\sigma}^{-1}s$$
 .

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1} t G_{\sigma}$.
- [S-Z] Affirmative answer for factorizable Hopf algebras.

イロン 不良 とくほう 不良 とうしょう

- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s)=sG_{\sigma}=G_{\sigma}^{-1}s$$
 .

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1}tG_{\sigma}$.
- [S-Z] Affirmative answer for factorizable Hopf algebras.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s) = sG_{\sigma} = G_{\sigma}^{-1}s.$$

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1}tG_{\sigma}$.
- [S-Z] Affirmative answer for factorizable Hopf algebras.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s) = sG_{\sigma} = G_{\sigma}^{-1}s.$$

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1}tG_{\sigma}$.
- [S-Z] Affirmative answer for factorizable Hopf algebras.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s) = sG_{\sigma} = G_{\sigma}^{-1}s.$$

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1}tG_{\sigma}$.
- [S-Z] Affirmative answer for factorizable Hopf algebras.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s) = sG_{\sigma} = G_{\sigma}^{-1}s.$$

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1}tG_{\sigma}$.
- [S-Z] Affirmative answer for factorizable Hopf algebras.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s) = sG_{\sigma} = G_{\sigma}^{-1}s.$$

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1}tG_{\sigma}$.
- [S-Z] Affirmative answer for factorizable Hopf algebras.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s) = sG_{\sigma} = G_{\sigma}^{-1}s.$$

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1}tG_{\sigma}$.
- [S-Z] Affirmative answer for factorizable Hopf algebras.

白 マイド・ モー うくら

- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s) = sG_{\sigma} = G_{\sigma}^{-1}s.$$

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1} t G_{\sigma}$.

• [S-Z] Affirmative answer for factorizable Hopf algebras.

同 ト イヨ ト イヨ ト ・ ヨ ・ の へ ()

- [Coste-Gannon] Suppose s = ρ(s). For σ ∈ Gal(Q_m/Q), there exists a signed permutation matrix G_σ ∈ GL(Π, Q_m) such that

$$\sigma(s) = sG_{\sigma} = G_{\sigma}^{-1}s.$$

- Moreover, Gal(Q_m/Q) → GL(Π, C), σ → G_σ, is a group homomorphism.
- [Coste-Gannon] **Conjecture**: $\sigma^2(t) = G_{\sigma}^{-1} t G_{\sigma}$.
- [S-Z] Affirmative answer for factorizable Hopf algebras.

★ E + ★ E + O < C</p>

Affirmative Answer to the conjectures of Eholzer, Coste and Gannon

Theorem (Ng)

Let C be a modular category, and $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{Q}_m)$ a lifting of the projective representation $\overline{\rho}_C : SL(2, \mathbb{Z}) \to PGL(\Pi, \mathbb{C})$, where $m = \text{ord } \rho(\mathfrak{t})$.

- $lacksymbol{0}$ Then ho has a congruence kernel of level m.
- ② If $\sigma \in \text{Gal}(\mathbb{Q}_m/\mathbb{Q})$, then $\sigma^2(\rho(\mathfrak{g})) = G_{\sigma}^{-1}\rho(\mathfrak{g})G_{\sigma}$ for all $\mathfrak{g} \in \text{SL}(2,\mathbb{Z})$.
- 3 In particular, $\sigma^2 \rho$ and ρ are equivalent representations.

Remark: This proves the conjectures of Eholzer, Coste and Gannon completely for modular categories.

ヘロア 人間 アメヨア 人口 ア
Theorem (Ng)

Let C be a modular category, and $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{Q}_m)$ a lifting of the projective representation $\overline{\rho}_C : SL(2, \mathbb{Z}) \to PGL(\Pi, \mathbb{C})$, where $m = \text{ord } \rho(\mathfrak{t})$.

- Then ρ has a congruence kernel of level m.
- 2 If $\sigma \in \text{Gal}(\mathbb{Q}_m/\mathbb{Q})$, then $\sigma^2(\rho(\mathfrak{g})) = G_{\sigma}^{-1}\rho(\mathfrak{g})G_{\sigma}$ for all $\mathfrak{g} \in \text{SL}(2,\mathbb{Z})$.
- ③ In particular, $\sigma^2 \rho$ and ρ are equivalent representations.

Remark: This proves the conjectures of Eholzer, Coste and Gannon completely for modular categories.

ヘロア 人間 アメヨア 人口 ア

Theorem (Ng)

Let C be a modular category, and $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{Q}_m)$ a lifting of the projective representation $\overline{\rho}_C : SL(2, \mathbb{Z}) \to PGL(\Pi, \mathbb{C})$, where $m = \text{ord } \rho(\mathfrak{t})$.

- Then ρ has a congruence kernel of level m.
- 2 If $\sigma \in \text{Gal}(\mathbb{Q}_m/\mathbb{Q})$, then $\sigma^2(\rho(\mathfrak{g})) = G_{\sigma}^{-1}\rho(\mathfrak{g})G_{\sigma}$ for all $\mathfrak{g} \in \text{SL}(2,\mathbb{Z})$.
- 3 In particular, $\sigma^2 \rho$ and ρ are equivalent representations.

Remark: This proves the conjectures of Eholzer, Coste and Gannon completely for modular categories.

ヘロア 人間 アメヨア 人口 ア

Theorem (Ng)

Let C be a modular category, and $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{Q}_m)$ a lifting of the projective representation $\overline{\rho}_C : SL(2, \mathbb{Z}) \to PGL(\Pi, \mathbb{C})$, where $m = \text{ord } \rho(\mathfrak{t})$.

- Then ρ has a congruence kernel of level m.
- ⁽²⁾ If $\sigma \in \text{Gal}(\mathbb{Q}_m/\mathbb{Q})$, then $\sigma^2(\rho(\mathfrak{g})) = G_{\sigma}^{-1}\rho(\mathfrak{g})G_{\sigma}$ for all $\mathfrak{g} \in \text{SL}(2,\mathbb{Z})$.
- **③** In particular, $\sigma^2 \rho$ and ρ are equivalent representations.

Remark: This proves the conjectures of Eholzer, Coste and Gannon completely for modular categories.

ヘロン ヘアン ヘビン ヘビン

Theorem (Ng)

Let C be a modular category, and $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{Q}_m)$ a lifting of the projective representation $\overline{\rho}_C : SL(2, \mathbb{Z}) \to PGL(\Pi, \mathbb{C})$, where $m = \text{ord } \rho(\mathfrak{t})$.

- Then ρ has a congruence kernel of level m.
- ⁽²⁾ If $\sigma \in \text{Gal}(\mathbb{Q}_m/\mathbb{Q})$, then $\sigma^2(\rho(\mathfrak{g})) = G_{\sigma}^{-1}\rho(\mathfrak{g})G_{\sigma}$ for all $\mathfrak{g} \in \text{SL}(2,\mathbb{Z})$.
- **③** In particular, $\sigma^2 \rho$ and ρ are equivalent representations.

Remark: This proves the conjectures of Eholzer, Coste and Gannon completely for modular categories.

ヘロン ヘアン ヘビン ヘビン

Theorem (Ng)

Let C be a modular category, and $\rho : SL(2, \mathbb{Z}) \to GL(\Pi, \mathbb{Q}_m)$ a lifting of the projective representation $\overline{\rho}_C : SL(2, \mathbb{Z}) \to PGL(\Pi, \mathbb{C})$, where $m = \text{ord } \rho(\mathfrak{t})$.

- Then ρ has a congruence kernel of level m.
- ² If $\sigma \in \text{Gal}(\mathbb{Q}_m/\mathbb{Q})$, then $\sigma^2(\rho(\mathfrak{g})) = G_{\sigma}^{-1}\rho(\mathfrak{g})G_{\sigma}$ for all $\mathfrak{g} \in \text{SL}(2,\mathbb{Z})$.
- **③** In particular, $\sigma^2 \rho$ and ρ are equivalent representations.

Remark: This proves the conjectures of Eholzer, Coste and Gannon completely for modular categories.

・ロト ・ 理 ト ・ ヨ ト ・

Some applications of Galois symmetry

- Let C be an integral modular category.
- The quotient $\frac{p^+}{p^-}$ is a 4-th root of unity, where

$$p^{\pm} = \sum_{a \in \Pi} d(a)^2 \theta_a^{\pm 1}$$

are the Gauss sums of C.

In particular, if *H* is semisimple quasi-Hopf algebra, the quotient p⁺/_{p⁻} is a 4-th root of unity.

Some applications of Galois symmetry

- Let C be an integral modular category.
- The quotient $\frac{p^+}{p^-}$ is a 4-th root of unity, where

$$p^{\pm} = \sum_{a \in \Pi} d(a)^2 \theta_a^{\pm 1}$$

are the Gauss sums of \mathcal{C} .

In particular, if *H* is semisimple quasi-Hopf algebra, the quotient p⁺/_{p⁻} is a 4-th root of unity.

Some applications of Galois symmetry

- Let C be an integral modular category.
- The quotient $\frac{p^+}{p^-}$ is a 4-th root of unity, where

$$p^{\pm} = \sum_{a \in \Pi} d(a)^2 \theta_a^{\pm 1}$$

are the Gauss sums of C.

In particular, if *H* is semisimple quasi-Hopf algebra, the quotient \frac{\rho^+}{\rho^-}\$ is a 4-th root of unity.

Thanks for your attention!

Siu-Hung Ng Congruence property and Galois symmetry

ヘロト 人間 とくほとくほとう