On functors which fail to be monadic

Claudia Menini (University of Ferrara, Italy) men@unife.it

A relevant result concerning monads is the so called Beck's monadicity (tripleability) theorem which characterizes right adjoint functors R which are monadic, i.e., such that the Eilenberg-Moore category of algebras (over the canonical monad associated to the adjunction) is equivalent, through the so-called comparison functor, to the domain category of R. In this talk we investigate those right adjoint functors R which fail to be monadic and measure how far they are to fulfil monadicity. To this aim we propose the definition of comparable functor. The obtained results are tested on a series of examples which also involve (braided) Lie theory and Module theory. This is part of a joint research with A. Ardizzoni (University of Ferrara) and J. Gómez-Torrecillas (University of Granada).

Hopf algebras and tensor categories

July 4-8, 2011 University of Almería, Spain

Claudia Menini

On functors which fail to be monadic

Joint work with Alessandro Ardizzoni and José Gómez-Torrecillas

THANKS TO THE ORGANIZERS!!!

A monad on a category \mathscr{A} is a triple $\mathbb{T} = (T, m, u)$, where

- $T: \mathscr{A} \to \mathscr{A}$ is a functor,
- $m: TT \rightarrow T$ and
- $u: \mathrm{Id}_{\mathscr{A}} \to T$ are functorial morphisms

satisfying the associativity and the unitality conditions:

$$m \circ mT = m \circ Tm$$
 and $m \circ Tu = \operatorname{Id}_T = m \circ uT$.

A module for a monad $\mathbb{T} = (T, m, u)$ over \mathscr{A} is a pair (X, μ_X) where

- $X \in \mathscr{A}$ and
- $\mu_X : TX \to X$ is a morphism in \mathscr{A} such that

$$\mu_X \circ T \mu_X = \mu_X \circ mX$$
 and $\operatorname{Id}_X = \mu_X \circ uX$.

A morphism between two \mathbb{T} -modules (X, μ_X) and $(X', \mu_{X'})$ is a morphism $f: X \to X'$ in \mathscr{A} such that

$$\mu_{X'}\circ Tf=f\circ\mu_X.$$

We will denote by

$$\mathbb{T}^{\mathscr{A}}$$
 or simply by $\mathcal{T}^{\mathscr{A}}$

the category of $\ensuremath{\mathbb{T}}\xspace$ and their morphisms.

A module for a monad $\mathbb{T} = (T, m, u)$ over \mathscr{A} is a pair (X, μ_X) where

- $X \in \mathscr{A}$ and
- $\mu_X : TX \to X$ is a morphism in \mathscr{A} such that

$$\mu_X \circ T \mu_X = \mu_X \circ mX$$
 and $\operatorname{Id}_X = \mu_X \circ uX$.

A morphism between two \mathbb{T} -modules (X, μ_X) and $(X', \mu_{X'})$ is a morphism $f: X \to X'$ in \mathscr{A} such that

$$\mu_{X'}\circ Tf=f\circ\mu_X.$$

We will denote by

$$\mathbb{T}^{\mathscr{A}}$$
 or simply by $\mathcal{T}^{\mathscr{A}}$

the category of \mathbb{T} -modules and their morphisms. This is the so-called Eilenberg-Moore category.

$$(T, m, u) := (RL, R\varepsilon L, \eta)$$

where

$$(T, m, u) := (RL, R\varepsilon L, \eta)$$

where

• $\eta: \mathrm{Id}_{\mathscr{B}} o \mathsf{RL}$ is the unit of the adjunction

$$(T, m, u) := (RL, R\varepsilon L, \eta)$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \to \mathsf{RL}$ is the unit of the adjunction
- $\mathcal{E}: LR \to Id_{\mathscr{A}}$ is the counit of the adjunction.

$$(T, m, u) := (RL, R\varepsilon L, \eta)$$

where

- $\eta: \mathrm{Id}_\mathscr{B} o \mathsf{RL}$ is the unit of the adjunction
- $\varepsilon: LR \rightarrow Id_{\mathscr{A}}$ is the counit of the adjunction.

Denote by $_{RL}\mathscr{B}$ the category of modules over this monad.

$$(T, m, u) := (RL, R\varepsilon L, \eta)$$

where

- $\eta: \mathrm{Id}_\mathscr{B} o \mathsf{RL}$ is the unit of the adjunction
- $\varepsilon: LR \to Id_{\mathscr{A}}$ is the counit of the adjunction.
- Denote by $_{RL}\mathscr{B}$ the category of modules over this monad. We have a commutative diagram

$$(T, m, u) := (RL, R\varepsilon L, \eta)$$

where

- $\eta: \mathrm{Id}_\mathscr{B} o \mathsf{RL}$ is the unit of the adjunction
- $\mathcal{E}: LR \to \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.
- Denote by $_{RL}\mathscr{B}$ the category of modules over this monad. We have a commutative diagram

where

$$(T, m, u) := (RL, R\varepsilon L, \eta)$$

where

- $\eta: \mathrm{Id}_\mathscr{B} o \mathsf{RL}$ is the unit of the adjunction
- $\mathcal{E}: LR \to \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.
- Denote by $_{RL}\mathscr{B}$ the category of modules over this monad. We have a commutative diagram

where

• U is the forgetful functor: $U(B,\mu) := B$ and Uf := f.

$$(T, m, u) := (RL, R\varepsilon L, \eta)$$

where

- $\eta: \mathrm{Id}_\mathscr{B} o \mathsf{RL}$ is the unit of the adjunction
- $\mathcal{E}: LR \to \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.
- Denote by $_{RL}\mathscr{B}$ the category of modules over this monad. We have a commutative diagram

where

- U is the forgetful functor: $U(B,\mu) := B$ and Uf := f.
- K is comparison functor: $KA := (RA, R \varepsilon A)$ and Kf := Rf.

- U is the forgetful functor: $U(B,\mu) := B$ and Uf := f.
- K is comparison functor: $KA := (RA, R\varepsilon A)$ and Kf := Rf.

- U is the forgetful functor: $U(B,\mu) := B$ and Uf := f.
- K is comparison functor: $KA := (RA, R\varepsilon A)$ and Kf := Rf.

The adjunction (L, R) is called **monadic** = the comparison functor K is an equivalence of categories.

- U is the forgetful functor: $U(B,\mu) := B$ and Uf := f.
- K is comparison functor: $KA := (RA, R\varepsilon A)$ and Kf := Rf.

The adjunction (L, R) is called

monadic = the comparison functor K is an equivalence of categories. A functor R is called

monadic = R has a left adjoint L such that the adjunction (L, R) is monadic.

Let $(L: \mathscr{B} \to \mathscr{A}, R: \mathscr{A} \to \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively.

Let $(L: \mathscr{B} \to \mathscr{A}, R: \mathscr{A} \to \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Consider the comparison functor

 $K: \mathscr{A} \to {}_{RL}\mathscr{B}.$

Let $(L: \mathscr{B} \to \mathscr{A}, R: \mathscr{A} \to \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Consider the comparison functor

$$K: \mathscr{A} \to {}_{RL}\mathscr{B}.$$

The following assertions are equivalent:

Let $(L: \mathscr{B} \to \mathscr{A}, R: \mathscr{A} \to \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Consider the comparison functor

$$K: \mathscr{A} \to {}_{RL}\mathscr{B}.$$

The following assertions are equivalent: (1) K is an equivalence.

Let $(L: \mathscr{B} \to \mathscr{A}, R: \mathscr{A} \to \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Consider the comparison functor

 $K: \mathscr{A} \to {}_{RL}\mathscr{B}.$

The following assertions are equivalent:

(1) K is an equivalence.

(2) *R* reflects isomorphisms and for any reflexive *R*-contractible coequalizer pair we can choose a specific coequalizer in \mathscr{A} , which is preserved by *R*.

Let $(L: \mathscr{B} \to \mathscr{A}, R: \mathscr{A} \to \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Consider the comparison functor

 $K: \mathscr{A} \to {}_{RL}\mathscr{B}.$

The following assertions are equivalent:

(1) K is an equivalence.

(2) *R* reflects isomorphisms and for any reflexive *R*-contractible coequalizer pair we can choose a specific coequalizer in \mathscr{A} , which is preserved by *R*. (3) *R* reflects isomorphisms and for every element in $S := \{(L\mu, \varepsilon LB) \mid (B, \mu : RLB \to B) \in {}_{RL}\mathscr{B}\}$ we can choose a specific coequalizer in \mathscr{A} which is preserved by *R*.

Let $(L: \mathscr{B} \to \mathscr{A}, R: \mathscr{A} \to \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Consider the comparison functor

$$K: \mathscr{A} \to {}_{RL}\mathscr{B}.$$

The following assertions are equivalent:

(1) K is an equivalence.

(2) *R* reflects isomorphisms and for any reflexive *R*-contractible coequalizer pair we can choose a specific coequalizer in *A*, which is preserved by *R*.
(3) *R* reflects isomorphisms and for every element in *S* := {(*L*μ, ε*LB*) | (*B*, μ : *RLB* → *B*) ∈ _{*RL*}*B*} we can choose a specific coequalizer in *A* which is preserved by *R*.
(4) For every *A* ∈ *A* we have that (*A*, ε*A*) = Coequ_A (*LR*ε*A*, ε*LRA*). For every element in *S* := {(*L*μ, ε*LB*) | (*B*, μ : *RLB* → *B*) ∈ _{*RL*}*B*} we can choose a specific coequalizer in *S* which is preserved by *R*.

Let $(L: \mathscr{B} \to \mathscr{A}, R: \mathscr{A} \to \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Consider the comparison functor

$$K: \mathscr{A} \to {}_{RL}\mathscr{B}.$$

The following assertions are equivalent:

(1) K is an equivalence.

(2) *R* reflects isomorphisms and for any reflexive *R*-contractible coequalizer pair we can choose a specific coequalizer in *A*, which is preserved by *R*.
(3) *R* reflects isomorphisms and for every element in *S* := {(*L*μ, ε*LB*) | (*B*, μ : *RLB* → *B*) ∈ _{*RL*}*B*} we can choose a specific coequalizer in *A* which is preserved by *R*.
(4) For every *A* ∈ *A* we have that (*A*, ε*A*) = Coequ_A (*LR*ε*A*, ε*LRA*). For every element in *S* := {(*L*μ, ε*LB*) | (*B*, μ : *RLB* → *B*) ∈ _{*RL*}*B*} we can choose a specific coequalizer in *S* which is preserved by *R*.

Set $S := \{(L\mu, \varepsilon LB) \mid (B, \mu : RLB \to B) \in {}_{RL}\mathscr{B}\}.$

Set $S := \{(L\mu, \varepsilon LB) \mid (B, \mu : RLB \to B) \in {}_{RL}\mathscr{B}\}$. Then the following assertions are equivalent.

Set $S := \{(L\mu, \varepsilon LB) | (B, \mu : RLB \rightarrow B) \in _{RL} \mathscr{B}\}$. Then the following assertions are equivalent.

(1) K has a left adjoint, say Λ ,

Set $S := \{(L\mu, \varepsilon LB) | (B, \mu : RLB \rightarrow B) \in _{RL} \mathscr{B}\}$. Then the following assertions are equivalent.

(1) K has a left adjoint, say Λ ,

(2) For each element in S we can choose a specific coequalizer in \mathscr{A} .

Set $S := \{(L\mu, \varepsilon LB) | (B, \mu : RLB \rightarrow B) \in _{RL} \mathscr{B}\}$. Then the following assertions are equivalent.

(1) K has a left adjoint, say Λ ,

(2) For each element in S we can choose a specific coequalizer in \mathscr{A} . Assume that (2) holds.

Set $S := \{(L\mu, \varepsilon LB) | (B, \mu : RLB \rightarrow B) \in _{RL} \mathscr{B}\}$. Then the following assertions are equivalent.

(1) K has a left adjoint, say Λ ,

(2) For each element in S we can choose a specific coequalizer in \mathscr{A} . Assume that (2) holds.

Then, for every $(B,\mu) \in {}_{RL}\mathscr{B}$, $\Lambda(B,\mu)$ is defined to be the coequalizer

$$LRLB \stackrel{L\mu}{\underset{\varepsilon LB}{\overset{L}{\Rightarrow}}} LB \stackrel{\pi(B,\mu)}{\longrightarrow} \Lambda(B,\mu)$$

Set $S := \{(L\mu, \varepsilon LB) | (B, \mu : RLB \rightarrow B) \in _{RL} \mathscr{B}\}$. Then the following assertions are equivalent.

(1) K has a left adjoint, say Λ ,

(2) For each element in S we can choose a specific coequalizer in \mathscr{A} . Assume that (2) holds.

Then, for every $(B,\mu) \in {}_{RL}\mathscr{B}$, $\Lambda(B,\mu)$ is defined to be the coequalizer

$$LRLB \stackrel{L\mu}{\underset{\varepsilon LB}{\rightrightarrows}} LB \stackrel{\pi(B,\mu)}{\longrightarrow} \Lambda(B,\mu)$$

and for every morphism $f : (B, \mu) \to (B', \mu')$ the morphism $\Lambda(f) : \Lambda(B, \mu) \to \Lambda(B', \mu')$ is uniquely defined by

$$\Lambda(f) \circ \pi(B,\mu) = \pi(B',\mu') \circ LU(f).$$

Set $S := \{(L\mu, \varepsilon LB) | (B, \mu : RLB \rightarrow B) \in _{RL} \mathscr{B}\}$. Then the following assertions are equivalent.

(1) K has a left adjoint, say Λ ,

(2) For each element in S we can choose a specific coequalizer in \mathscr{A} . Assume that (2) holds.

Then, for every $(B,\mu) \in {}_{RL}\mathscr{B}$, $\Lambda(B,\mu)$ is defined to be the coequalizer

$$LRLB \stackrel{L\mu}{\underset{\varepsilon LB}{\rightrightarrows}} LB \stackrel{\pi(B,\mu)}{\longrightarrow} \Lambda(B,\mu)$$

and for every morphism $f : (B, \mu) \to (B', \mu')$ the morphism $\Lambda(f) : \Lambda(B, \mu) \to \Lambda(B', \mu')$ is uniquely defined by

$$\Lambda(f)\circ\pi(B,\mu)=\pi(B',\mu')\circ LU(f).$$

Moreover
THEOREM

Set $S := \{(L\mu, \varepsilon LB) | (B, \mu : RLB \rightarrow B) \in _{RL} \mathscr{B}\}$. Then the following assertions are equivalent.

(1) K has a left adjoint, say Λ ,

(2) For each element in S we can choose a specific coequalizer in \mathscr{A} . Assume that (2) holds.

Then, for every $(B,\mu) \in {}_{RL}\mathscr{B}$, $\Lambda(B,\mu)$ is defined to be the coequalizer

$$LRLB \stackrel{L\mu}{\underset{\varepsilon LB}{\rightrightarrows}} LB \stackrel{\pi(B,\mu)}{\longrightarrow} \Lambda(B,\mu)$$

and for every morphism $f : (B, \mu) \to (B', \mu')$ the morphism $\Lambda(f) : \Lambda(B, \mu) \to \Lambda(B', \mu')$ is uniquely defined by

$$\Lambda(f) \circ \pi(B,\mu) = \pi(B',\mu') \circ LU(f).$$

Moreover

A is full and faithful \Leftrightarrow R preserves coequalizers of elements in S.

•
$$R_0 = R$$

- $R_0 = R$
- for $n \ge 0$, the functor R_n has a left adjoint functor L_n

- $R_0 = R$
- for $n \ge 0$, the functor R_n has a left adjoint functor L_n
- R_{n+1} is the comparison functor induced by the adjunction (L_n, R_n) .

- $R_0 = R$
- for $n \ge 0$, the functor R_n has a left adjoint functor L_n
- R_{n+1} is the comparison functor induced by the adjunction (L_n, R_n) . Compare with the construction performed in Manes [1.5.5, page 49].

E. G. Manes, A TRIPLE MISCELLANY: SOME ASPECTS OF THE THEORY OF ALGEBRAS OVER A TRIPLE. Thesis (Ph.D.)–Wesleyan University. 1967.

where, for n = 0,

where, for n = 0,

• $\mathscr{B}_0 = \mathscr{B};$

where, for n = 0,

- $\mathscr{B}_0 = \mathscr{B};$
- $R_0 := R;$

where, for n = 0,

- $\mathscr{B}_0 = \mathscr{B};$
- $R_0 := R;$
- R_0 has a left adjoint L_0 ;

where, for n = 0,

- $\mathscr{B}_0 = \mathscr{B};$
- $R_0 := R;$
- R_0 has a left adjoint L_0 ;

where, for n = 0,

- $\mathscr{B}_0 = \mathscr{B};$
- $R_0 := R;$
- R₀ has a left adjoint L₀;

and, for n > 0,

• \mathscr{B}_n is the category of $(R_{n-1}L_{n-1})$ -modules $_{R_{n-1}L_{n-1}}\mathscr{B}_{n-1}$;

where, for n = 0,

- $\mathscr{B}_0 = \mathscr{B};$
- $R_0 := R;$
- R₀ has a left adjoint L₀;

- \mathscr{B}_n is the category of $(R_{n-1}L_{n-1})$ -modules $_{R_{n-1}L_{n-1}}\mathscr{B}_{n-1}$;
- R_n is the comparison functor of the adjunction (L_{n-1}, R_{n-1}) ;

where, for n = 0,

- $\mathscr{B}_0 = \mathscr{B};$
- $R_0 := R;$
- R₀ has a left adjoint L₀;

- \mathscr{B}_n is the category of $(R_{n-1}L_{n-1})$ -modules $_{R_{n-1}L_{n-1}}\mathscr{B}_{n-1}$;
- R_n is the comparison functor of the adjunction (L_{n-1}, R_{n-1}) ;
- R_n has a left adjoint L_n.

where, for n = 0,

- $\mathscr{B}_0 = \mathscr{B};$
- $R_0 := R;$
- R₀ has a left adjoint L₀;

- \mathscr{B}_n is the category of $(R_{n-1}L_{n-1})$ -modules $_{R_{n-1}L_{n-1}}\mathscr{B}_{n-1}$;
- R_n is the comparison functor of the adjunction (L_{n-1}, R_{n-1}) ;
- R_n has a left adjoint L_n.
- $U_{n-1,n}$ is the forgetful functor $R_{n-1}L_{n-1}U$.

Define a category \mathscr{B}_∞ as follows

Define a category \mathscr{B}_{∞} as follows

• An object in \mathscr{B}_∞ is a sequence $\mathbb{B}_\infty := (\mathbb{B}_n)_{n\in\mathbb{N}}$ where

$$\mathbb{B}_n \in \mathscr{B}_n$$
 and $U_{n,n+1}(\mathbb{B}_{n+1}) = \mathbb{B}_n$ for all $n \in \mathbb{N}$.

Define a category \mathscr{B}_{∞} as follows

• An object in \mathscr{B}_{∞} is a sequence $\mathbb{B}_{\infty} := (\mathbb{B}_n)_{n \in \mathbb{N}}$ where

$$\mathbb{B}_n \in \mathscr{B}_n$$
 and $U_{n,n+1}(\mathbb{B}_{n+1}) = \mathbb{B}_n$ for all $n \in \mathbb{N}$.

• A morphism $f_\infty:\mathbb{B}_\infty o\mathbb{B}'_\infty$ is a sequence $f_\infty:=(f_n)_{n\in\mathbb{N}}$ where

 $f_n: \mathbb{B}_n \to \mathbb{B}'_n$ is in \mathscr{B}_n and $U_{n,n+1}(f_{n+1}) = f_n$ for all $n \in \mathbb{N}$.

$$U_n = U_{n,\infty} : \mathscr{B}_\infty o \mathscr{B}_n$$

 $U_{n,\infty}(\mathbb{B}_\infty) := \mathbb{B}_n$ and $U_{n,\infty}(f_\infty) := f_n$

$$U_n = U_{n,\infty} : \mathscr{B}_\infty o \mathscr{B}_n$$

 $U_{n,\infty}(\mathbb{B}_\infty) := \mathbb{B}_n$ and $U_{n,\infty}(f_\infty) := f_n.$

$$R_{\infty}: \mathscr{A} \to \mathscr{B}_{\infty}$$

and

$$U_n = U_{n,\infty} : \mathscr{B}_\infty o \mathscr{B}_n$$

 $U_{n,\infty}(\mathbb{B}_\infty) := \mathbb{B}_n \quad \text{and} \quad U_{n,\infty}(f_\infty) := f_n.$
 $R_\infty : \mathscr{A} \to \mathscr{B}_\infty$

$$R_{\infty}(A):=\left(R_n(A)
ight)_{n\in\mathbb{N}}$$
 and $R_{\infty}(f):=\left(R_n(f)
ight)_{n\in\mathbb{N}}.$

and

$$U_n = U_{n,\infty} : \mathscr{B}_\infty \to \mathscr{B}_n$$

 $U_{n,\infty}(\mathbb{B}_\infty) := \mathbb{B}_n \quad \text{and} \quad U_{n,\infty}(f_\infty) := f_n.$
 $R_\infty : \mathscr{A} \to \mathscr{B}_\infty$

$$R_{\infty}(A) := (R_n(A))_{n \in \mathbb{N}}$$
 and $R_{\infty}(f) := (R_n(f))_{n \in \mathbb{N}}$.

Note that, for all $n \in \mathbb{N}$ the following diagram commutes.

and

$$L_n R_n L_n \mathbb{B}_n \overset{L_n \mu_n}{\underset{\varepsilon_n L_n \mathbb{B}_n}{\Longrightarrow}} L_n \mathbb{B}_n \overset{\pi_{n+1,n}}{\longrightarrow} L_{n+1} \mathbb{B}_{n+1}.$$

$$L_n R_n L_n \mathbb{B}_n \underset{\varepsilon_n L_n \mathbb{B}_n}{\overset{L_n \mu_n}{\Longrightarrow}} L_n \mathbb{B}_n \xrightarrow{\pi_{n+1,n}} L_{n+1} \mathbb{B}_{n+1}.$$

In this way we get a direct system

$$L_n R_n L_n \mathbb{B}_n \underset{\varepsilon_n L_n \mathbb{B}_n}{\overset{L_n \mu_n}{\Longrightarrow}} L_n \mathbb{B}_n \overset{\pi_{n+1,n}}{\longrightarrow} L_{n+1} \mathbb{B}_{n+1}.$$

In this way we get a direct system

$$L_0\mathbb{B}_0 \xrightarrow{\pi_{1,0}} L_1\mathbb{B}_1 \xrightarrow{\pi_{2,1}} L_2\mathbb{B}_2 \xrightarrow{\pi_{3,2}} \cdots$$

THEOREM

$$L_n R_n L_n \mathbb{B}_n \underset{\varepsilon_n L_n \mathbb{B}_n}{\overset{L_n \mu_n}{\Longrightarrow}} L_n \mathbb{B}_n \xrightarrow{\pi_{n+1,n}} L_{n+1} \mathbb{B}_{n+1}.$$

In this way we get a direct system

$$L_0\mathbb{B}_0 \xrightarrow{\pi_{1,0}} L_1\mathbb{B}_1 \xrightarrow{\pi_{2,1}} L_2\mathbb{B}_2 \xrightarrow{\pi_{3,2}} \cdots$$

THEOREM

The following assertions are equivalent.

$$L_n R_n L_n \mathbb{B}_n \underset{\varepsilon_n L_n \mathbb{B}_n}{\overset{L_n \mu_n}{\Longrightarrow}} L_n \mathbb{B}_n \xrightarrow{\pi_{n+1,n}} L_{n+1} \mathbb{B}_{n+1}.$$

In this way we get a direct system

$$L_0\mathbb{B}_0 \xrightarrow{\pi_{1,0}} L_1\mathbb{B}_1 \xrightarrow{\pi_{2,1}} L_2\mathbb{B}_2 \xrightarrow{\pi_{3,2}} \cdots$$

THEOREM

The following assertions are equivalent.

(1) R_{∞} has a left adjoint, say L_{∞} .

$$L_n R_n L_n \mathbb{B}_n \overset{L_n \mu_n}{\underset{\varepsilon_n L_n \mathbb{B}_n}{\rightrightarrows}} L_n \mathbb{B}_n \overset{\pi_{n+1,n}}{\longrightarrow} L_{n+1} \mathbb{B}_{n+1}.$$

In this way we get a direct system

$$L_0\mathbb{B}_0\xrightarrow{\pi_{1,0}}L_1\mathbb{B}_1\xrightarrow{\pi_{2,1}}L_2\mathbb{B}_2\xrightarrow{\pi_{3,2}}\cdots$$

THEOREM

The following assertions are equivalent.

- (1) R_{∞} has a left adjoint, say L_{∞} .
- (2) For each B_∞ ∈ ℬ_∞, we can choose a specific direct limit in 𝔄 for the direct system (L_nB_n, π_{n+1,n})_{n∈ℕ}.

$$L_n R_n L_n \mathbb{B}_n \overset{L_n \mu_n}{\underset{\varepsilon_n L_n \mathbb{B}_n}{\rightrightarrows}} L_n \mathbb{B}_n \overset{\pi_{n+1,n}}{\longrightarrow} L_{n+1} \mathbb{B}_{n+1}.$$

In this way we get a direct system

$$L_0 \mathbb{B}_0 \xrightarrow{\pi_{1,0}} L_1 \mathbb{B}_1 \xrightarrow{\pi_{2,1}} L_2 \mathbb{B}_2 \xrightarrow{\pi_{3,2}} \cdots$$

THEOREM

The following assertions are equivalent.

- (1) R_{∞} has a left adjoint, say L_{∞} .
- (2) For each B_∞ ∈ ℬ_∞, we can choose a specific direct limit in 𝔄 for the direct system (L_nB_n, π_{n+1,n})_{n∈ℕ}.

Assume (2) holds. Then

$$L_n R_n L_n \mathbb{B}_n \overset{L_n \mu_n}{\underset{\varepsilon_n L_n \mathbb{B}_n}{\rightrightarrows}} L_n \mathbb{B}_n \overset{\pi_{n+1,n}}{\longrightarrow} L_{n+1} \mathbb{B}_{n+1}.$$

In this way we get a direct system

$$L_0 \mathbb{B}_0 \xrightarrow{\pi_{1,0}} L_1 \mathbb{B}_1 \xrightarrow{\pi_{2,1}} L_2 \mathbb{B}_2 \xrightarrow{\pi_{3,2}} \cdots$$

THEOREM

The following assertions are equivalent.

(1)
$$R_{\infty}$$
 has a left adjoint, say L_{∞} .

(2) For each B_∞ ∈ ℬ_∞, we can choose a specific direct limit in 𝔄 for the direct system (L_nB_n, π_{n+1,n})_{n∈ℕ}.

Assume (2) holds. Then

$$(L_{\infty}\mathbb{B}_{\infty},\pi_{n}:L_{n}\mathbb{B}_{n}\to L_{\infty}\mathbb{B}_{\infty})=\varinjlim(L_{n}\mathbb{B}_{n},\pi_{n+1,n})_{n\in\mathbb{N}}$$

Moreover L_{∞} is full and faithful if and only if R preserves

$\varinjlim(L_n\mathbb{B}_n,\pi_{n+1,n})_{n\in\mathbb{N}}$

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$.

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. We will say that diagram Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. We will say that diagram

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. We will say that diagram

is stationary after *n* steps
Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. We will say that diagram

is stationary after *n* steps whenever $U_{t,t+1}$ is an isomorphism of categories, for all $t \ge n$.

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE (1) Diagram (1) is stationary after *n* steps.

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE

- (1) Diagram (1) is stationary after n steps.
- (2) $U_{n,n+1}$ is an isomorphism of categories.

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE

- (1) Diagram (1) is stationary after n steps.
- (2) $U_{n,n+1}$ is an isomorphism of categories.
- (3) L_n is full and faithful.

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE

- (1) Diagram (1) is stationary after n steps.
- (2) $U_{n,n+1}$ is an isomorphism of categories.
- (3) L_n is full and faithful.

If one of these conditions holds, then

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE

- (1) Diagram (1) is stationary after n steps.
- (2) $U_{n,n+1}$ is an isomorphism of categories.
- (3) L_n is full and faithful.

If one of these conditions holds, then $U_n: \mathscr{B}_\infty \to \mathscr{B}_n$ is an isomorphism of categories such that

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE

- (1) Diagram (1) is stationary after n steps.
- (2) $U_{n,n+1}$ is an isomorphism of categories.
- (3) L_n is full and faithful.

If one of these conditions holds, then $U_n : \mathscr{B}_{\infty} \to \mathscr{B}_n$ is an isomorphism of categories such that $U_n \circ R_{\infty} = R_n$ and $L_{\infty} := L_n \circ U_n$ is a left adjoint of R_{∞} .

Let $R : \mathscr{A} \to \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE

- (1) Diagram (1) is stationary after n steps.
- (2) $U_{n,n+1}$ is an isomorphism of categories.
- (3) L_n is full and faithful.

If one of these conditions holds, then $U_n : \mathscr{B}_{\infty} \to \mathscr{B}_n$ is an isomorphism of categories such that $U_n \circ R_{\infty} = R_n$ and $L_{\infty} := L_n \circ U_n$ is a left adjoint of R_{∞} . Therefore \mathscr{B}_{∞} and R_{∞} can be identified with \mathscr{B}_n and R_n respectively.

Let

and

$$U_{0,n} = U_{0,1}U_{1,2}\cdots U_{n-1,n}: \mathscr{B}_n \to \mathscr{B}_0$$
 for every $n \in \mathbb{N}$

$$U_{0,\infty}: \mathscr{B}_{\infty} \to \mathscr{B}_0, U_0(\mathbb{B}_{\infty}) := \mathbb{B}_0 \quad \text{and} \quad U_{0,\infty}(f_{\infty}) := f_0.$$

Let $R_0: \mathscr{A} \to \mathscr{B}_0$ be a comparable functor and let $n \in \mathbb{N} \cup \{\infty\}$.
Since $U_{0,n}R_n = R_0$, we have

$$\operatorname{Im} R_0 \subseteq \operatorname{Im} U_{0,n}$$
.

Moreover whenever R_n is surjective on objects up to isomorphism we also have

$$\operatorname{Im} U_{0,n} \subseteq \operatorname{Im} R_0.$$

Assume that there is an $n \in \mathbb{N}$ such that R_n has a left adjoint L_n which is full and faithful.

Assume that there is an $n \in \mathbb{N}$ such that R_n has a left adjoint L_n which is full and faithful. Then the unit of this adjunction $\eta_n : \mathrm{Id}_{\mathscr{B}_n} \to R_n L_n$ is a functorial isomorphism

 R_n has a left adjoint L_n which is full and faithful.

Then the unit of this adjunction $\eta_n : \mathrm{Id}_{\mathscr{B}_n} \to R_n L_n$ is a functorial isomorphism

so that R_n is surjective on objects up to isomorphism.

 R_n has a left adjoint L_n which is full and faithful.

Then the unit of this adjunction $\eta_n : \mathrm{Id}_{\mathscr{B}_n} \to R_n L_n$ is a functorial isomorphism

so that R_n is surjective on objects up to isomorphism.

Thus, in this case, we get

 R_n has a left adjoint L_n which is full and faithful.

Then the unit of this adjunction $\eta_n : \mathrm{Id}_{\mathscr{B}_n} \to R_n L_n$ is a functorial isomorphism

so that R_n is surjective on objects up to isomorphism.

Thus, in this case, we get

 $\mathrm{Im}R_0=\mathrm{Im}U_{0,n}.$

 R_n has a left adjoint L_n which is full and faithful.

Then the unit of this adjunction $\eta_n : \operatorname{Id}_{\mathscr{B}_n} \to R_n L_n$ is a functorial isomorphism

so that R_n is surjective on objects up to isomorphism.

Thus, in this case, we get

 $\operatorname{Im} R_0 = \operatorname{Im} U_{0,n}.$

This simple statement can be considered as a "general descent theory" result.

 R_n has a left adjoint L_n which is full and faithful.

Then the unit of this adjunction $\eta_n : \operatorname{Id}_{\mathscr{B}_n} \to R_n L_n$ is a functorial isomorphism

so that R_n is surjective on objects up to isomorphism.

Thus, in this case, we get

 $\operatorname{Im} R_0 = \operatorname{Im} U_{0,n}.$

This simple statement can be considered as a "general descent theory" result.

In fact we deduce that the objects of \mathscr{B}_0 which are isomorphic to objects of the form R_0A , for some $A \in \mathscr{A}$,

 R_n has a left adjoint L_n which is full and faithful.

Then the unit of this adjunction $\eta_n : \mathrm{Id}_{\mathscr{B}_n} \to R_n L_n$ is a functorial isomorphism

so that R_n is surjective on objects up to isomorphism.

Thus, in this case, we get

 $\operatorname{Im} R_0 = \operatorname{Im} U_{0,n}$.

This simple statement can be considered as a "general descent theory" result.

In fact we deduce that the objects of \mathscr{B}_0 which are isomorphic to objects of the form R_0A , for some $A \in \mathscr{A}$,

are exactly those of the form $U_{0,n}B_n$ where $B_n \in \mathscr{B}_n = {}_{R_{n-1}L_{n-1}}\mathscr{B}_{n-1}$.

 R_n has a left adjoint L_n which is full and faithful.

Then the unit of this adjunction $\eta_n : \mathrm{Id}_{\mathscr{B}_n} \to R_n L_n$ is a functorial isomorphism

so that R_n is surjective on objects up to isomorphism.

Thus, in this case, we get

 $\operatorname{Im} R_0 = \operatorname{Im} U_{0,n}.$

This simple statement can be considered as a "general descent theory" result.

In fact we deduce that the objects of \mathscr{B}_0 which are isomorphic to objects of the form R_0A , for some $A \in \mathscr{A}$,

are exactly those of the form $U_{0,n}B_n$ where $B_n \in \mathscr{B}_n = {}_{R_{n-1}L_{n-1}}\mathscr{B}_{n-1}$. In particular, when L_1 is full and faithful,

 R_n has a left adjoint L_n which is full and faithful.

Then the unit of this adjunction $\eta_n : \operatorname{Id}_{\mathscr{B}_n} \to R_n L_n$ is a functorial isomorphism

so that R_n is surjective on objects up to isomorphism.

Thus, in this case, we get

 $\operatorname{Im} R_0 = \operatorname{Im} U_{0,n}.$

This simple statement can be considered as a "general descent theory" result.

In fact we deduce that the objects of \mathscr{B}_0 which are isomorphic to objects of the form R_0A , for some $A \in \mathscr{A}$,

are exactly those of the form $U_{0,n}B_n$ where $B_n \in \mathscr{B}_n = {}_{R_{n-1}L_{n-1}}\mathscr{B}_{n-1}$. In particular, when L_1 is full and faithful,

these objects are of form $U_{0,1}B_1$ where $B_1 \in \mathscr{B}_1 = {}_{R_0L_0}\mathscr{B}_0$.

 R_n has a left adjoint L_n which is full and faithful.

Then the unit of this adjunction $\eta_n : \operatorname{Id}_{\mathscr{B}_n} \to R_n L_n$ is a functorial isomorphism

so that R_n is surjective on objects up to isomorphism.

Thus, in this case, we get

 $\operatorname{Im} R_0 = \operatorname{Im} U_{0,n}.$

This simple statement can be considered as a "general descent theory" result.

In fact we deduce that the objects of \mathscr{B}_0 which are isomorphic to objects of the form R_0A , for some $A \in \mathscr{A}$,

are exactly those of the form $U_{0,n}B_n$ where $B_n \in \mathscr{B}_n = {}_{R_{n-1}L_{n-1}}\mathscr{B}_{n-1}$. In particular, when L_1 is full and faithful,

these objects are of form $U_{0,1}B_1$ where $B_1 \in \mathscr{B}_1 = {}_{R_0L_0}\mathscr{B}_0$.

This is exactly the dual form of classical descent theory for modules.

 L_1 is full and faithful in the following situations:

 L_1 is full and faithful in the following situations:

1) $(L, \varepsilon L)$ is relatively projective as a right module functor on $(RL, R\varepsilon L, \eta)$ i.e. there is a natural transformation $\gamma: L \to LRL$ such that

$$\varepsilon L \circ \gamma = \mathrm{Id}_L$$
 and $LR \varepsilon L \circ \gamma RL = \gamma \circ \varepsilon L$

 L_1 is full and faithful in the following situations:

1) $(L, \varepsilon L)$ is relatively projective as a right module functor on $(RL, R\varepsilon L, \eta)$ i.e. there is a natural transformation $\gamma: L \to LRL$ such that

$$\varepsilon L \circ \gamma = \mathrm{Id}_L$$
 and $LR \varepsilon L \circ \gamma RL = \gamma \circ \varepsilon L$

2) L is $(\mathscr{A}, U_{0,1})$ -full and $(\mathscr{A}, U_{0,1})$ -faithful, i.e. $\eta U_{0,1}$ is an isomorphism.

C. Menini (University of Ferrara)

Let $(L: \mathcal{B} \to \mathcal{A}, R: \mathcal{A} \to \mathcal{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U = U_{0,1}: {}_{RL}\mathcal{B} \to \mathcal{B}$ be the forgetful functor. The following assertions are equivalent.

Let $(L: \mathcal{B} \to \mathcal{A}, R: \mathcal{A} \to \mathcal{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U = U_{0,1}: {}_{RL}\mathcal{B} \to \mathcal{B}$ be the forgetful functor. The following assertions are equivalent.

(a) L is (\mathscr{A}, U) -full and (\mathscr{A}, U) -faithful, i.e. ηU is a functorial isomorphism.

Let $(L: \mathcal{B} \to \mathcal{A}, R: \mathcal{A} \to \mathcal{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U = U_{0,1}: {}_{RL}\mathcal{B} \to \mathcal{B}$ be the forgetful functor. The following assertions are equivalent.

- (a) L is (\mathscr{A}, U) -full and (\mathscr{A}, U) -faithful, i.e. ηU is a functorial isomorphism.
- (b) U is full.

Let $(L: \mathcal{B} \to \mathcal{A}, R: \mathcal{A} \to \mathcal{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U = U_{0,1}: {}_{RL}\mathcal{B} \to \mathcal{B}$ be the forgetful functor. The following assertions are equivalent.

- (a) L is (\mathscr{A}, U) -full and (\mathscr{A}, U) -faithful, i.e. ηU is a functorial isomorphism.
- (b) U is full.
- (c) Either εLU or $L\eta U$ is a functorial isomorphism.

Let $(L: \mathcal{B} \to \mathcal{A}, R: \mathcal{A} \to \mathcal{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U = U_{0,1}: {}_{RL}\mathcal{B} \to \mathcal{B}$ be the forgetful functor. The following assertions are equivalent.

- (a) L is (\mathscr{A}, U) -full and (\mathscr{A}, U) -faithful, i.e. ηU is a functorial isomorphism.
- (b) U is full.
- (c) Either εLU or $L\eta U$ is a functorial isomorphism.

If (c) holds, then

Let $(L: \mathcal{B} \to \mathcal{A}, R: \mathcal{A} \to \mathcal{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U = U_{0,1}: {}_{RL}\mathcal{B} \to \mathcal{B}$ be the forgetful functor. The following assertions are equivalent.

- (a) L is (\mathscr{A}, U) -full and (\mathscr{A}, U) -faithful, i.e. ηU is a functorial isomorphism.
- (b) U is full.
- (c) Either εLU or $L\eta U$ is a functorial isomorphism.
- If (c) holds, then
 - 1) R is comparable,

Let $(L: \mathcal{B} \to \mathcal{A}, R: \mathcal{A} \to \mathcal{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U = U_{0,1}: {}_{RL}\mathcal{B} \to \mathcal{B}$ be the forgetful functor. The following assertions are equivalent.

- (a) L is (\mathscr{A}, U) -full and (\mathscr{A}, U) -faithful, i.e. ηU is a functorial isomorphism.
- (b) U is full.
- (c) Either εLU or $L\eta U$ is a functorial isomorphism.
- If (c) holds, then
 - 1) R is comparable,
 - 2) for every $n \in \mathbb{N}$, $L_{n+1} = L_n U_{n,n+1}$ and is full and faithful

Let us fix a field \Bbbk . Vector spaces and bialgebras are meant to be over \Bbbk .

Let us fix a field $\Bbbk.$ Vector spaces and bialgebras are meant to be over $\Bbbk.$ Let

• $\mathscr{A} = category of bialgebras.$
- $\mathscr{A} = category of bialgebras.$
- $\mathscr{B} = category of vector spaces.$

- $\mathscr{A} = category of bialgebras.$
- $\mathscr{B} = category of vector spaces.$

We have an adjunction $(T : \mathscr{B} \to \mathscr{A}, P : \mathscr{A} \to \mathscr{B})$

- $\mathscr{A} = category of bialgebras.$
- $\mathscr{B} = category of vector spaces.$

We have an adjunction $(T : \mathscr{B} \to \mathscr{A}, P : \mathscr{A} \to \mathscr{B})$

 $P: \mathscr{A} \to \mathscr{B}$, where PA = space of primitive elements in the bialgebra A

- $\mathscr{A} = category of bialgebras.$
- $\mathscr{B} = category of vector spaces.$

We have an adjunction $(T: \mathscr{B} \to \mathscr{A}, P: \mathscr{A} \to \mathscr{B})$

 $P: \mathscr{A} \to \mathscr{B}$, where PA = space of primitive elements in the bialgebra A

 $T: \mathscr{B} \to \mathscr{A}, \qquad \text{where} \quad TV = \Bbbk \oplus V \oplus V^{\otimes 2} \oplus \cdots \text{ is the tensor bialgebra of } V.$

- $\mathscr{A} = category of bialgebras.$
- $\mathscr{B} = category of vector spaces.$

We have an adjunction $(T: \mathscr{B} \to \mathscr{A}, P: \mathscr{A} \to \mathscr{B})$

 $P: \mathscr{A} \to \mathscr{B}$, where PA = space of primitive elements in the bialgebra A

 $T: \mathscr{B} \to \mathscr{A}$, where $TV = \Bbbk \oplus V \oplus V^{\otimes 2} \oplus \cdots$ is the tensor bialgebra of V.

In fact, essentially using the universal property of the tensor bialgebra, we can prove that there are natural transformations

- $\mathscr{A} = category of bialgebras.$
- $\mathscr{B} = category of vector spaces.$

We have an adjunction $(T: \mathscr{B} \to \mathscr{A}, P: \mathscr{A} \to \mathscr{B})$

 $P: \mathscr{A} \to \mathscr{B}$, where PA = space of primitive elements in the bialgebra A

 $T: \mathscr{B} \to \mathscr{A}$, where $TV = \Bbbk \oplus V \oplus V^{\otimes 2} \oplus \cdots$ is the tensor bialgebra of V.

In fact, essentially using the universal property of the tensor bialgebra, we can prove that there are natural transformations

$$\varepsilon: TP \to Id_{\mathscr{A}}$$
 and $\eta: Id_{\mathscr{B}} \to PT$

- $\mathscr{A} = category of bialgebras.$
- $\mathscr{B} = category of vector spaces.$

We have an adjunction $(T: \mathscr{B} \to \mathscr{A}, P: \mathscr{A} \to \mathscr{B})$

 $P: \mathscr{A} \to \mathscr{B}$, where PA = space of primitive elements in the bialgebra A

 $T: \mathscr{B} \to \mathscr{A}$, where $TV = \Bbbk \oplus V \oplus V^{\otimes 2} \oplus \cdots$ is the tensor bialgebra of V.

In fact, essentially using the universal property of the tensor bialgebra, we can prove that there are natural transformations

$$\varepsilon: TP \to \mathrm{Id}_{\mathscr{A}}$$
 and $\eta: \mathrm{Id}_{\mathscr{B}} \to PT$

satisfying the usual properties of unit and counit of an adjunction.

C. Menini (University of Ferrara)

$$(L,R) := (L_0,R_0) := (T,P).$$

$$(L,R) := (L_0,R_0) := (T,P).$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478])

$$(L,R) := (L_0,R_0) := (T,P).$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478]) so that R_0 is comparable and

$$(L,R) := (L_0,R_0) := (T,P).$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478]) so that R_0 is comparable and $R_{\infty} : \mathscr{A} \to \mathscr{B}_{\infty}$ has a left adjoint, say L_{∞} .

$$(L,R) := (L_0,R_0) := (T,P).$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478]) so that R_0 is comparable and $R_{\infty} : \mathscr{A} \to \mathscr{B}_{\infty}$ has a left adjoint, say L_{∞} . Moreover, by the same arguments used to prove [Ar2, Theorem 5.3], one can check that R preserves direct limits indexed by natural numbers with their usual order.

$$(L,R) := (L_0,R_0) := (T,P).$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478]) so that R_0 is comparable and $R_{\infty} : \mathscr{A} \to \mathscr{B}_{\infty}$ has a left adjoint, say L_{∞} . Moreover, by the same arguments used to prove [Ar2. T

Moreover, by the same arguments used to prove [Ar2, Theorem 5.3], one can check that R preserves direct limits indexed by natural numbers with their usual order.

As we saw before, this implies that L_{∞} is full and faithful.

$$(L,R) := (L_0,R_0) := (T,P).$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478]) so that R_0 is comparable and

 $R_{\infty}: \mathscr{A} \to \mathscr{B}_{\infty}$ has a left adjoint, say L_{∞} .

Moreover, by the same arguments used to prove [Ar2, Theorem 5.3], one can check that R preserves direct limits indexed by natural numbers with their usual order.

As we saw before, this implies that L_{∞} is full and faithful.

In fact we can prove much more, namely that L_2 is full and faithful.

[Ag] A. L. Agore, Categorical Constructions for Hopf Algebras. Comm. Algebra, 1532-4125, Vol. 39(4), (2011), 1476-1481.

[Ar2] A. Ardizzoni, A Milnor-Moore Type Theorem for Primitively Generated Braided Bialgebras, J. Algebra, Vol. 327(1) (2011), 337-365.

The functor L_2 is full and faithful and it is given, for all $(V_1, \mu_1) \in \mathscr{B}_2$, by

The functor L_2 is full and faithful and it is given, for all $(V_1, \mu_1) \in \mathscr{B}_2$, by

 $L_2(V_1, \mu_1) = L_1 V_1.$

The functor L_2 is full and faithful and it is given, for all $(V_1, \mu_1) \in \mathscr{B}_2$, by $L_2(V_1, \mu_1) = L_1V_1$.

Moreover, for all $V_2 := ((V_0, \mu_0), \mu_1) \in \mathscr{B}_2$, we have the following cases.

The functor L_2 is full and faithful and it is given, for all $(V_1, \mu_1) \in \mathscr{B}_2$, by $L_2(V_1, \mu_1) = L_1V_1$.

Moreover, for all $V_2 := ((V_0, \mu_0), \mu_1) \in \mathscr{B}_2$,, we have the following cases.

 chark = 0. Then, for all x, y ∈ V₀ we have that xy - yx ∈ R₀L₀V₀. Define a map [-,-]: V₀ ⊗ V₀ → V₀ by setting [x, y] := µ₀ (xy - yx). Then (V₀, [-,-]) is an ordinary Lie algebra and L₂V₂ is the universal enveloping algebra

$$L_2 V_2 = \mathfrak{U} V_0 := \frac{TV_0}{(xy - yx - [x, y] \mid x, y \in V_0)}.$$

The functor L_2 is full and faithful and it is given, for all $(V_1, \mu_1) \in \mathscr{B}_2$, by $L_2(V_1, \mu_1) = L_1V_1$.

Moreover, for all $V_2:=((V_0,\mu_0),\mu_1)\in \mathscr{B}_2,$, we have the following cases.

 chark = 0. Then, for all x, y ∈ V₀ we have that xy - yx ∈ R₀L₀V₀. Define a map [-,-]: V₀ ⊗ V₀ → V₀ by setting [x, y] := µ₀(xy - yx). Then (V₀, [-,-]) is an ordinary Lie algebra and L₂V₂ is the universal enveloping algebra

$$L_2 V_2 = \mathfrak{U} V_0 := \frac{T V_0}{(xy - yx - [x, y] \mid x, y \in V_0)}$$

• chark = p, a prime. Then, for all $x, y \in V_0$ we have that $xy - yx, x^p \in R_0L_0V_0$. Define two maps $[-, -] : V_0 \otimes V_0 \to V_0$ and $-^{[p]} : V_0 \to V_0$ by setting $[x, y] := \mu_0(xy - yx)$ and $x^{[p]} := \mu_0(x^p)$. Then $(V_0, [-, -], -^{[p]})$ is a restricted Lie algebra and L_2V_2 is the restricted enveloping algebra

$$L_2 V_2 = \mathfrak{u} V_0 := \frac{TV_0}{(xy - yx - [x, y], x^p - x^{[p]} \mid x, y \in V_0)}.$$

• Let
$$V_1 := (V_0, \mu_0 : R_0 L_0 V_0 = TPV_0 \to V_0) \in \mathscr{B}_1.$$

• Let
$$V_1 := (V_0, \mu_0 : R_0 L_0 V_0 = TPV_0 \rightarrow V_0) \in \mathscr{B}_1.$$
 Note that

$$R_0 L_0 V_0 = V_0 \oplus EV_0$$

where EV_0 denotes the subspace, of the vector space underlying L_0V_0 , spanned by primitive elements of homogeneous degree greater than one.

• Let
$$V_1 := (V_0, \mu_0 : R_0 L_0 V_0 = TPV_0 \rightarrow V_0) \in \mathscr{B}_1.$$
 Note that

$$R_0L_0V_0=V_0\oplus EV_0$$

where EV_0 denotes the subspace, of the vector space underlying L_0V_0 , spanned by primitive elements of homogeneous degree greater than one. Denote by

• Let
$$V_1 := (V_0, \mu_0 : R_0 L_0 V_0 = TPV_0 \rightarrow V_0) \in \mathscr{B}_1$$
. Note that

$$R_0 L_0 V_0 = V_0 \oplus E V_0$$

where EV_0 denotes the subspace, of the vector space underlying L_0V_0 , spanned by primitive elements of homogeneous degree greater than one. Denote by

•
$$b: E \rightarrow V_0 = \mu_0$$
 restricted to E.

• Let
$$V_1 := (V_0, \mu_0 : R_0 L_0 V_0 = TPV_0 \rightarrow V_0) \in \mathscr{B}_1.$$
 Note that

$$R_0L_0V_0=V_0\oplus EV_0$$

where EV_0 denotes the subspace, of the vector space underlying L_0V_0 , spanned by primitive elements of homogeneous degree greater than one. Denote by

- $b: E \rightarrow V_0 = \mu_0$ restricted to E.
- $c: V_0 \otimes V_0 \rightarrow V_0 \otimes V_0$ the canonical flip.

• Let
$$V_1 := (V_0, \mu_0 : R_0 L_0 V_0 = TPV_0 \rightarrow V_0) \in \mathscr{B}_1$$
. Note that

$$R_0 L_0 V_0 = V_0 \oplus E V_0$$

where EV_0 denotes the subspace, of the vector space underlying L_0V_0 , spanned by primitive elements of homogeneous degree greater than one. Denote by

- $b: E \to V_0 = \mu_0$ restricted to E.
- $c: V_0 \otimes V_0 \rightarrow V_0 \otimes V_0$ the canonical flip.

Then *b* is a bracket for the braided vector space (V_0, c) in the sense of [Ar1, Definition 3.2]

• Let
$$V_1 := (V_0, \mu_0 : R_0 L_0 V_0 = TPV_0 \rightarrow V_0) \in \mathscr{B}_1$$
. Note that

$$R_0 L_0 V_0 = V_0 \oplus E V_0$$

where EV_0 denotes the subspace, of the vector space underlying L_0V_0 , spanned by primitive elements of homogeneous degree greater than one. Denote by

- $b: E \to V_0 = \mu_0$ restricted to E.
- $c: V_0 \otimes V_0 \rightarrow V_0 \otimes V_0$ the canonical flip.

Then *b* is a bracket for the braided vector space (V_0, c) in the sense of [Ar1, Definition 3.2] and we can prove that

$$L_1V_1 = U(V_0, c, b)$$

in the sense of [Ar1, Definition 3.5].

• Let now $V_2 := (V_1, \mu_1) \in \mathscr{B}_2.$

• Let now $V_2 := (V_1, \mu_1) \in \mathscr{B}_2$. Then V_1 is of the form (V_0, μ_0) .

$$U_{0,1}\mu_1 \circ U_{0,1}\eta_1 V_1 = U_{0,1}(\mu_1 \circ \eta_1 V_1) = \mathrm{Id}_{V_0}$$

so that $U_{0,1}\eta_1 V_1$ is injective.

$$U_{0,1}\mu_1 \circ U_{0,1}\eta_1 V_1 = U_{0,1}(\mu_1 \circ \eta_1 V_1) = \mathrm{Id}_{V_0}$$

so that $U_{0,1}\eta_1 V_1$ is injective. Therefore i_U is injective.

$$U_{0,1}\mu_1 \circ U_{0,1}\eta_1 V_1 = U_{0,1}(\mu_1 \circ \eta_1 V_1) = \mathrm{Id}_{V_0}$$

so that $U_{0,1}\eta_1 V_1$ is injective. Therefore i_U is injective. This means that (V_0, c, b) is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

$$U_{0,1}\mu_1 \circ U_{0,1}\eta_1 V_1 = U_{0,1}(\mu_1 \circ \eta_1 V_1) = \mathrm{Id}_{V_0}$$

so that $U_{0,1}\eta_1 V_1$ is injective. Therefore i_U is injective. This means that (V_0, c, b) is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if $char(\Bbbk) = 0$,

$$U_{0,1}\mu_1 \circ U_{0,1}\eta_1 V_1 = U_{0,1}(\mu_1 \circ \eta_1 V_1) = \mathrm{Id}_{V_0}$$

so that $U_{0,1}\eta_1 V_1$ is injective. Therefore i_U is injective. This means that (V_0, c, b) is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if char(\Bbbk) = 0, and [Ar3, Example 3.13], if char(\Bbbk) \neq 0,
$$U_{0,1}\mu_1 \circ U_{0,1}\eta_1 V_1 = U_{0,1}(\mu_1 \circ \eta_1 V_1) = \mathrm{Id}_{V_0}$$

so that $U_{0,1}\eta_1 V_1$ is injective. Therefore i_U is injective. This means that (V_0, c, b) is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if char(\Bbbk) = 0, and [Ar3, Example 3.13], if char(\Bbbk) \neq 0, (V_0, c) is a braided vector spaces of combinatorial rank at most one.

$$U_{0,1}\mu_1 \circ U_{0,1}\eta_1 V_1 = U_{0,1}(\mu_1 \circ \eta_1 V_1) = \mathrm{Id}_{V_0}$$

so that $U_{0,1}\eta_1 V_1$ is injective. Therefore i_U is injective. This means that (V_0, c, b) is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if char(\Bbbk) = 0, and [Ar3, Example 3.13], if char(\Bbbk) \neq 0, (V_0, c) is a braided vector spaces of combinatorial rank at most one. This implies, by [Ar1, Corollary 5.5], that $U_{0,1}\eta_1V_1$ is an isomorphism.

$$U_{0,1}\mu_1 \circ U_{0,1}\eta_1 V_1 = U_{0,1}(\mu_1 \circ \eta_1 V_1) = \mathrm{Id}_{V_0}$$

so that $U_{0,1}\eta_1 V_1$ is injective. Therefore i_U is injective. This means that (V_0, c, b) is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if char(\Bbbk) = 0, and [Ar3, Example 3.13], if char(\Bbbk) \neq 0, (V_0, c) is a braided vector spaces of combinatorial rank at most one. This implies, by [Ar1, Corollary 5.5], that $U_{0,1}\eta_1V_1$ is an isomorphism.Since $U_{0,1}$ reflects isomorphism , we get that η_1V_1 is an isomorphism.

$$U_{0,1}\mu_1 \circ U_{0,1}\eta_1 V_1 = U_{0,1}(\mu_1 \circ \eta_1 V_1) = \mathrm{Id}_{V_0}$$

so that $U_{0,1}\eta_1 V_1$ is injective. Therefore i_U is injective. This means that (V_0, c, b) is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if char(\Bbbk) = 0, and [Ar3, Example 3.13], if char(\Bbbk) \neq 0, (V_0, c) is a braided vector spaces of combinatorial rank at most one. This implies, by [Ar1, Corollary 5.5], that $U_{0,1}\eta_1V_1$ is an isomorphism.Since $U_{0,1}$ reflects isomorphism , we get that η_1V_1 is an isomorphism.As we saw before this implies that L_2 is full and faithful.

- [Ar1] A. Ardizzoni, On Primitively Generated Braided Bialgebras, Algebr. Represent. Theory, to appear.
- [Ar3] A. Ardizzoni, Universal Enveloping Algebras of PBW Type, Glasg. Math. J., to appear. (arXiv:1008.4523)

C. Menini (University of Ferrara)

July 6, 2011 25 / 25