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A relevant result concerning monads is the so called Beck’s monadicity (tripleabil-
ity) theorem which characterizes right adjoint functors R which are monadic, i.e.,
such that the Eilenberg-Moore category of algebras (over the canonical monad as-
sociated to the adjunction) is equivalent, through the so-called comparison functor,
to the domain category of R. In this talk we investigate those right adjoint functors
R which fail to be monadic and measure how far they are to fulfil monadicity. To
this aim we propose the definition of comparable functor. The obtained results are
tested on a series of examples which also involve (braided) Lie theory and Module
theory. This is part of a joint research with A. Ardizzoni (University of Ferrara)
and J. Gómez-Torrecillas (University of Granada).
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A monad on a category A is a triple T = (T ,m,u) , where
T : A →A is a functor,
m : TT → T and
u : IdA → T are functorial morphisms

satisfying the associativity and the unitality conditions:

m ◦ mT = m ◦Tm and m ◦Tu = IdT = m ◦uT .
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A module for a monad T = (T ,m,u) over A is a pair (X ,µX ) where
X ∈A and
µX : TX → X is a morphism in A such that

µX ◦T µX = µX ◦mX and IdX = µX ◦uX .

A morphism between two T-modules (X ,µX ) and (X ′,µX ′) is a morphism
f : X → X ′ in A such that

µX ′ ◦Tf = f ◦µX .

We will denote by

TA or simply by TA

the category of T-modules and their morphisms.

This is the so-called Eilenberg-Moore category.
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Associated to any adjoint pair of functors
(L : B→A ,R : A →B) we have a canonical monad over B namely

(T ,m,u) := (RL,RεL,η)

where
η : IdB→ RL is the unit of the adjunction
ε : LR → IdA is the counit of the adjunction.

Denote by RLB the category of modules over this monad.
We have a commutative diagram

A

R
��

A
IdAoo

K
��

B RLBU
oo

where
U is the forgetful functor: U (B,µ) := B and Uf := f .
K is comparison functor: KA := (RA,RεA) and Kf := Rf .
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A

R
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A
IdAoo

K
��

B RLBU
oo

U is the forgetful functor: U (B,µ) := B and Uf := f .
K is comparison functor: KA := (RA,RεA) and Kf := Rf .

The adjunction (L,R) is called
monadic = the comparison functor K is an equivalence of categories.
A functor R is called
monadic = R has a left adjoint L such that the adjunction (L,R) is
monadic.
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BECK’S PRECISE MONADICITY THEOREM

Let (L : B→A ,R : A →B) be an adjunction.
Let η and ε be the unit and counit of (L,R) respectively.
Consider the comparison functor

K : A → RLB.

The following assertions are equivalent:
(1) K is an equivalence.
(2) R reflects isomorphisms and for any reflexive R-contractible coequalizer
pair we can choose a specific coequalizer in A , which is preserved by R .
(3) R reflects isomorphisms and for every element in
S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} we can choose a specific
coequalizer in A which is preserved by R .
(4) For every A ∈A we have that (A,εA) = CoequA (LRεA,εLRA). For
every element in S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} we can
choose a specific coequalizer in A which is preserved by R .
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THEOREM

Set S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} .Then the following
assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in A .
Assume that (2) holds.
Then, for every (B,µ) ∈ RLB, Λ(B,µ) is defined to be the coequalizer

LRLB
Lµ

⇒
εLB

LB
π(B,µ)−→ Λ(B,µ)

and for every morphism f : (B,µ)→ (B ′,µ ′) the morphism
Λ(f ) : Λ(B,µ)→ Λ(B ′,µ ′) is uniquely defined by

Λ(f )◦π (B,µ) = π
(
B ′,µ

′)◦LU (f ) .

Moreover
Λ is full and faithful ⇔ R preserves coequalizers of elements in S .

C. Menini (University of Ferrara) July 6, 2011 8 / 25



THEOREM
Set S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} .

Then the following
assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in A .
Assume that (2) holds.
Then, for every (B,µ) ∈ RLB, Λ(B,µ) is defined to be the coequalizer

LRLB
Lµ

⇒
εLB

LB
π(B,µ)−→ Λ(B,µ)

and for every morphism f : (B,µ)→ (B ′,µ ′) the morphism
Λ(f ) : Λ(B,µ)→ Λ(B ′,µ ′) is uniquely defined by

Λ(f )◦π (B,µ) = π
(
B ′,µ

′)◦LU (f ) .

Moreover
Λ is full and faithful ⇔ R preserves coequalizers of elements in S .

C. Menini (University of Ferrara) July 6, 2011 8 / 25



THEOREM
Set S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} .Then the following
assertions are equivalent.

(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in A .
Assume that (2) holds.
Then, for every (B,µ) ∈ RLB, Λ(B,µ) is defined to be the coequalizer

LRLB
Lµ

⇒
εLB

LB
π(B,µ)−→ Λ(B,µ)

and for every morphism f : (B,µ)→ (B ′,µ ′) the morphism
Λ(f ) : Λ(B,µ)→ Λ(B ′,µ ′) is uniquely defined by

Λ(f )◦π (B,µ) = π
(
B ′,µ

′)◦LU (f ) .

Moreover
Λ is full and faithful ⇔ R preserves coequalizers of elements in S .

C. Menini (University of Ferrara) July 6, 2011 8 / 25



THEOREM
Set S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} .Then the following
assertions are equivalent.
(1) K has a left adjoint, say Λ,

(2) For each element in S we can choose a specific coequalizer in A .
Assume that (2) holds.
Then, for every (B,µ) ∈ RLB, Λ(B,µ) is defined to be the coequalizer

LRLB
Lµ

⇒
εLB

LB
π(B,µ)−→ Λ(B,µ)

and for every morphism f : (B,µ)→ (B ′,µ ′) the morphism
Λ(f ) : Λ(B,µ)→ Λ(B ′,µ ′) is uniquely defined by

Λ(f )◦π (B,µ) = π
(
B ′,µ

′)◦LU (f ) .

Moreover
Λ is full and faithful ⇔ R preserves coequalizers of elements in S .

C. Menini (University of Ferrara) July 6, 2011 8 / 25



THEOREM
Set S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} .Then the following
assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in A .

Assume that (2) holds.
Then, for every (B,µ) ∈ RLB, Λ(B,µ) is defined to be the coequalizer

LRLB
Lµ

⇒
εLB

LB
π(B,µ)−→ Λ(B,µ)

and for every morphism f : (B,µ)→ (B ′,µ ′) the morphism
Λ(f ) : Λ(B,µ)→ Λ(B ′,µ ′) is uniquely defined by

Λ(f )◦π (B,µ) = π
(
B ′,µ

′)◦LU (f ) .

Moreover
Λ is full and faithful ⇔ R preserves coequalizers of elements in S .

C. Menini (University of Ferrara) July 6, 2011 8 / 25



THEOREM
Set S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} .Then the following
assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in A .
Assume that (2) holds.

Then, for every (B,µ) ∈ RLB, Λ(B,µ) is defined to be the coequalizer

LRLB
Lµ

⇒
εLB

LB
π(B,µ)−→ Λ(B,µ)

and for every morphism f : (B,µ)→ (B ′,µ ′) the morphism
Λ(f ) : Λ(B,µ)→ Λ(B ′,µ ′) is uniquely defined by

Λ(f )◦π (B,µ) = π
(
B ′,µ

′)◦LU (f ) .

Moreover
Λ is full and faithful ⇔ R preserves coequalizers of elements in S .

C. Menini (University of Ferrara) July 6, 2011 8 / 25



THEOREM
Set S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} .Then the following
assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in A .
Assume that (2) holds.
Then, for every (B,µ) ∈ RLB, Λ(B,µ) is defined to be the coequalizer

LRLB
Lµ

⇒
εLB

LB
π(B,µ)−→ Λ(B,µ)

and for every morphism f : (B,µ)→ (B ′,µ ′) the morphism
Λ(f ) : Λ(B,µ)→ Λ(B ′,µ ′) is uniquely defined by

Λ(f )◦π (B,µ) = π
(
B ′,µ

′)◦LU (f ) .

Moreover
Λ is full and faithful ⇔ R preserves coequalizers of elements in S .

C. Menini (University of Ferrara) July 6, 2011 8 / 25



THEOREM
Set S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} .Then the following
assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in A .
Assume that (2) holds.
Then, for every (B,µ) ∈ RLB, Λ(B,µ) is defined to be the coequalizer

LRLB
Lµ

⇒
εLB

LB
π(B,µ)−→ Λ(B,µ)

and for every morphism f : (B,µ)→ (B ′,µ ′) the morphism
Λ(f ) : Λ(B,µ)→ Λ(B ′,µ ′) is uniquely defined by

Λ(f )◦π (B,µ) = π
(
B ′,µ

′)◦LU (f ) .

Moreover
Λ is full and faithful ⇔ R preserves coequalizers of elements in S .

C. Menini (University of Ferrara) July 6, 2011 8 / 25



THEOREM
Set S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} .Then the following
assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in A .
Assume that (2) holds.
Then, for every (B,µ) ∈ RLB, Λ(B,µ) is defined to be the coequalizer

LRLB
Lµ

⇒
εLB

LB
π(B,µ)−→ Λ(B,µ)

and for every morphism f : (B,µ)→ (B ′,µ ′) the morphism
Λ(f ) : Λ(B,µ)→ Λ(B ′,µ ′) is uniquely defined by

Λ(f )◦π (B,µ) = π
(
B ′,µ

′)◦LU (f ) .

Moreover

Λ is full and faithful ⇔ R preserves coequalizers of elements in S .

C. Menini (University of Ferrara) July 6, 2011 8 / 25



THEOREM
Set S := {(Lµ,εLB) | (B,µ : RLB → B) ∈ RLB} .Then the following
assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in A .
Assume that (2) holds.
Then, for every (B,µ) ∈ RLB, Λ(B,µ) is defined to be the coequalizer

LRLB
Lµ

⇒
εLB

LB
π(B,µ)−→ Λ(B,µ)

and for every morphism f : (B,µ)→ (B ′,µ ′) the morphism
Λ(f ) : Λ(B,µ)→ Λ(B ′,µ ′) is uniquely defined by

Λ(f )◦π (B,µ) = π
(
B ′,µ

′)◦LU (f ) .

Moreover
Λ is full and faithful ⇔ R preserves coequalizers of elements in S .

C. Menini (University of Ferrara) July 6, 2011 8 / 25



We say that a functor R is comparable whenever there exists a sequence
(Rn)n∈N of functors Rn such that

R0 = R
for n ≥ 0, the functor Rn has a left adjoint functor Ln

Rn+1 is the comparison functor induced by the adjunction (Ln,Rn) .
Compare with the construction performed in Manes [1.5.5, page 49] .

E. G. Manes, A TRIPLE MISCELLANY: SOME ASPECTS OF THE
THEORY OF ALGEBRAS OVER A TRIPLE. Thesis (Ph.D.)–Wesleyan
University. 1967.
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Note that for a comparable functor R : A →B, we have a diagram

A

R0
��

A
IdAoo

R1
��

A
IdAoo

R2
��

. . .IdAoo

B0

L0

OO

B1U0,1

oo

L1

OO

B2U1,2

oo

L2

OO

. . .
U2,3

oo

where, for n = 0,

B0 = B;
R0 := R;

R0 has a left adjoint L0;

and, for n > 0,

Bn is the category of (Rn−1Ln−1)-modules Rn−1Ln−1Bn−1;
Rn is the comparison functor of the adjunction (Ln−1,Rn−1);
Rn has a left adjoint Ln.

Un−1,n is the forgetful functor Rn−1Ln−1U.
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Define a category B∞ as follows

An object in B∞ is a sequence B∞ := (Bn)n∈N where

Bn ∈Bn and Un,n+1 (Bn+1) = Bn for all n ∈ N.

A morphism f ∞ : B∞→ B′∞ is a sequence f ∞ := (fn)n∈N where

fn : Bn→ B′n is in Bn and Un,n+1 (fn+1) = fn for all n ∈N.
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For all n ∈ N, consider the functors

Un = Un,∞ : B∞→Bn

Un,∞ (B∞) := Bn and Un,∞ (f ∞) := fn.

and
R∞ : A →B∞

R∞ (A) := (Rn (A))n∈N and R∞ (f ) := (Rn (f ))n∈N .

Note that, for all n ∈ N the following diagram commutes.

A

Rn
��

A
IdAoo

R∞

��
Bn B∞Un,∞

oo
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As explained before, we can choose Ln+1 to be defined by the coequalizer

LnRnLnBn
Lnµn
⇒

εnLnBn

LnBn
πn+1,n−→ Ln+1Bn+1.

In this way we get a direct system

L0B0
π1,0−→ L1B1

π2,1−→ L2B2
π3,2−→ ·· · .

THEOREM
The following assertions are equivalent.
(1) R∞ has a left adjoint, say L∞.

(2) For each B∞ ∈B∞, we can choose a specific direct limit in A for the
direct system (LnBn,πn+1,n)n∈N.

Assume (2) holds. Then

(L∞B∞,πn : LnBn→L∞B∞) = lim−→(LnBn,πn+1,n)n∈N
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Moreover L∞ is full and faithful if and only if R preserves

lim−→(LnBn,πn+1,n)n∈N

C. Menini (University of Ferrara) July 6, 2011 14 / 25



Let R : A →B be a comparable functor. Let n ∈ N.

We will say that diagram

A

R0
��

A
IdAoo

R1
��

A
IdAoo

R2
��

. . .IdAoo

B0

L0

OO

B1U0,1

oo

L1

OO

B2U1,2

oo

L2

OO

. . .
U2,3

oo

is stationary after n steps
whenever Ut,t+1 is an isomorphism of categories, for all t ≥ n.
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Let
U0,n = U0,1U1,2 · · ·Un−1,n : Bn→B0 for every n ∈ N

and

U0,∞ : B∞→B0,U0 (B∞) := B0 and U0,∞ (f ∞) := f0.

Let R0 : A →B0 be a comparable functor and let n ∈ N∪{∞}.
Since U0,nRn = R0, we have

ImR0 ⊆ ImU0,n.

Moreover whenever Rn is surjective on objects up to isomorphism we also
have

ImU0,n ⊆ ImR0.
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Assume that there is an n ∈ N such that

Rn has a left adjoint Ln which is full and faithful.
Then the unit of this adjunction ηn : IdBn → RnLn is a functorial
isomorphism
so that Rn is surjective on objects up to isomorphism.
Thus, in this case, we get

ImR0 = ImU0,n.

This simple statement can be considered as a "general descent theory"
result.
In fact we deduce that the objects of B0 which are isomorphic to objects
of the form R0A, for some A ∈A ,
are exactly those of the form U0,nBn where Bn ∈Bn = Rn−1Ln−1Bn−1.
In particular, when L1 is full and faithful,
these objects are of form U0,1B1 where B1 ∈B1 = R0L0B0.
This is exactly the dual form of classical descent theory for modules.
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L1 is full and faithful in the following situations:

1) (L,εL) is relatively projective as a right module functor on
(RL,RεL,η) i.e. there is a natural transformation γ : L→ LRL such
that

εL◦ γ = IdL and LRεL◦ γRL = γ ◦ εL

2) L is (A ,U0,1)-full and (A ,U0,1)-faithful, i.e. ηU0,1 is an isomorphism.
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PROPOSITION

Let (L : B→A ,R : A →B) be an adjunction. Let η and ε be the unit
and counit of (L,R) respectively. Let U = U0,1 : RLB→B be the forgetful
functor. The following assertions are equivalent.

(a) L is (A ,U)-full and (A ,U)-faithful, i.e. ηU is a functorial
isomorphism.

(b) U is full.
(c) Either εLU or LηU is a functorial isomorphism.

If (c) holds, then
1) R is comparable,
2) for every n ∈ N, Ln+1 = LnUn,n+1 and is full and faithful
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(c) Either εLU or LηU is a functorial isomorphism.

If (c) holds, then

1) R is comparable,
2) for every n ∈ N, Ln+1 = LnUn,n+1 and is full and faithful
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Let us fix a field k. Vector spaces and bialgebras are meant to be over k.

Let
A = category of bialgebras.
B = category of vector spaces.

We have an adjunction (T : B→A ,P : A →B)

P : A →B, where PA = space of primitive elements in the bialgebra A

T : B→A , where TV = k⊕V ⊕V⊗2⊕·· · is the tensor bialgebra of V .

In fact, essentially using the universal property of the tensor bialgebra, we
can prove that there are natural transformations

ε : TP → IdA and η : IdB→ PT

satisfying the usual properties of unit and counit of an adjunction.
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Set
(L,R) := (L0,R0) := (T ,P) .

Note that A has colimits (see e.g. [Ag, page 1478])
so that R0 is comparable and
R∞ : A →B∞ has a left adjoint, say L∞.
Moreover, by the same arguments used to prove [Ar2, Theorem 5.3], one
can check that R preserves direct limits indexed by natural numbers with
their usual order.
As we saw before, this implies that L∞ is full and faithful.
In fact we can prove much more, namely that L2 is full and faithful.

[Ag] A. L. Agore, Categorical Constructions for Hopf Algebras. Comm.
Algebra, 1532-4125, Vol. 39(4), (2011), 1476-1481.

[Ar2] A. Ardizzoni, A Milnor-Moore Type Theorem for Primitively
Generated Braided Bialgebras, J. Algebra, Vol. 327(1) (2011),
337-365.
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THEOREM

The functor L2 is full and faithful and it is given, for all (V1,µ1) ∈B2, by

L2 (V1,µ1) = L1V1.

Moreover, for all V2 := ((V0,µ0) ,µ1) ∈B2,, we have the following cases.
chark = 0. Then, for all x ,y ∈ V0 we have that xy − yx ∈ R0L0V0.
Define a map [−,−] : V0⊗V0→ V0 by setting [x ,y ] := µ0 (xy − yx) .
Then (V0, [−,−]) is an ordinary Lie algebra and L2V2 is the universal
enveloping algebra

L2V2 = UV0 :=
TV0

(xy − yx− [x ,y ] | x ,y ∈ V0)
.

chark = p, a prime. Then, for all x ,y ∈ V0 we have that
xy − yx ,xp ∈ R0L0V0. Define two maps [−,−] : V0⊗V0→ V0 and
−[p] : V0→ V0 by setting [x ,y ] := µ0 (xy − yx) and x [p] := µ0 (xp) .
Then

(
V0, [−,−] ,−[p]

)
is a restricted Lie algebra and L2V2 is the

restricted enveloping algebra

L2V2 = uV0 :=
TV0(

xy − yx− [x ,y ] ,xp− x [p] | x ,y ∈ V0
) .
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To prove that L2 is full and faithful we proceed as follows.

Let V1 := (V0,µ0 : R0L0V0 = TPV0→ V0) ∈B1.Note that

R0L0V0 = V0⊕EV0

where EV0 denotes the subspace, of the vector space underlying L0V0,
spanned by primitive elements of homogeneous degree greater than
one. Denote by

b : E → V0 = µ0 restricted to E .
c : V0⊗V0→ V0⊗V0 the canonical flip.

Then b is a bracket for the braided vector space (V0,c) in the sense of
[Ar1, Definition 3.2] and we can prove that

L1V1 = U (V0,c ,b)

in the sense of [Ar1, Definition 3.5].
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Then b is a bracket for the braided vector space (V0,c) in the sense of
[Ar1, Definition 3.2] and we can prove that

L1V1 = U (V0,c ,b)
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Let now V2 := (V1,µ1) ∈B2.

Then V1 is of the form (V0,µ0).Thus
the canonical map iU : V0→ U (V0,c ,b) corestricts to
U0,1η1V1 : U0,1V1 = V0→ R0U (V0,c ,b) = U0,1R1L1V1. Now

U0,1µ1 ◦U0,1η1V1 = U0,1 (µ1 ◦η1V1) = IdV0

so that U0,1η1V1 is injective. Therefore iU is injective. This means
that (V0,c ,b) is a braided Lie algebra in the sense of [Ar1, Definition
4.1].

Now, by [Ar2, Example 6.10], if char(k) = 0, and [Ar3, Example 3.13], if
char(k) 6= 0, (V0,c) is a braided vector spaces of combinatorial rank at
most one. This implies, by [Ar1, Corollary 5.5], that U0,1η1V1 is an
isomorphism.Since U0,1 reflects isomorphism , we get that η1V1 is an
isomorphism.As we saw before this implies that L2 is full and faithful.

[Ar1] A. Ardizzoni, On Primitively Generated Braided Bialgebras,
Algebr. Represent. Theory, to appear.

[Ar3] A. Ardizzoni, Universal Enveloping Algebras of PBW Type,
Glasg. Math. J., to appear. (arXiv:1008.4523)
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