On functors which fail to be monadic
 Claudia Menini (University of Ferrara, Italy)
 men@unife.it

A relevant result concerning monads is the so called Beck's monadicity (tripleability) theorem which characterizes right adjoint functors R which are monadic, i.e., such that the Eilenberg-Moore category of algebras (over the canonical monad associated to the adjunction) is equivalent, through the so-called comparison functor, to the domain category of R. In this talk we investigate those right adjoint functors R which fail to be monadic and measure how far they are to fulfil monadicity. To this aim we propose the definition of comparable functor. The obtained results are tested on a series of examples which also involve (braided) Lie theory and Module theory. This is part of a joint research with A. Ardizzoni (University of Ferrara) and J. Gómez-Torrecillas (University of Granada).

Hopf algebras and tensor categories

July 4-8, 2011
University of Almería, Spain

Claudia Menini
On functors which fail to be monadic

Joint work with
Alessandro Ardizzoni and José Gómez-Torrecillas

THANKS TO THE ORGANIZERS!!!

A monad on a category \mathscr{A} is a triple $\mathbb{T}=(T, m, u)$, where

- $T: \mathscr{A} \rightarrow \mathscr{A}$ is a functor,
- $m: T T \rightarrow T$ and
- $u: \mathrm{Id}_{\mathscr{A}} \rightarrow T$ are functorial morphisms satisfying the associativity and the unitality conditions:

$$
m \circ m T=m \circ T m \quad \text { and } \quad m \circ T u=\operatorname{Id}_{T}=m \circ u T .
$$

A module for a monad $\mathbb{T}=(T, m, u)$ over \mathscr{A} is a pair $\left(X, \mu_{X}\right)$ where

- $X \in \mathscr{A}$ and
- $\mu_{X}: T X \rightarrow X$ is a morphism in \mathscr{A} such that

$$
\mu_{X} \circ T \mu_{X}=\mu_{X} \circ m X \quad \text { and } \quad \operatorname{Id}_{X}=\mu_{X} \circ u X
$$

A morphism between two \mathbb{T}-modules $\left(X, \mu_{X}\right)$ and $\left(X^{\prime}, \mu_{X^{\prime}}\right)$ is a morphism $f: X \rightarrow X^{\prime}$ in \mathscr{A} such that

$$
\mu_{X^{\prime}} \circ T f=f \circ \mu_{X}
$$

We will denote by

$$
\mathbb{T}^{\mathscr{A}} \quad \text { or simply by } \quad T \mathscr{A}
$$

the category of \mathbb{T}-modules and their morphisms.

A module for a monad $\mathbb{T}=(T, m, u)$ over \mathscr{A} is a pair $\left(X, \mu_{X}\right)$ where

- $X \in \mathscr{A}$ and
- $\mu_{X}: T X \rightarrow X$ is a morphism in \mathscr{A} such that

$$
\mu_{X} \circ T \mu_{X}=\mu_{X} \circ m X \quad \text { and } \quad \operatorname{Id}_{X}=\mu_{X} \circ u X
$$

A morphism between two \mathbb{T}-modules $\left(X, \mu_{X}\right)$ and $\left(X^{\prime}, \mu_{X^{\prime}}\right)$ is a morphism $f: X \rightarrow X^{\prime}$ in \mathscr{A} such that

$$
\mu_{X^{\prime}} \circ T f=f \circ \mu_{X}
$$

We will denote by

$$
\mathbb{T} \mathscr{A} \quad \text { or simply by } \quad T \mathscr{A}
$$

the category of \mathbb{T}-modules and their morphisms.
This is the so-called Eilenberg-Moore category.

Associated to any adjoint pair of functors

$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad over \mathscr{B} namely

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad over \mathscr{B} namely

$$
(T, m, u):=(R L, R \varepsilon L, \eta)
$$

where

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad over \mathscr{B} namely

$$
(T, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad over \mathscr{B} namely

$$
(T, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad over \mathscr{B} namely

$$
(T, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Denote by ${ }_{R L} \mathscr{B}$ the category of modules over this monad.

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad over \mathscr{B} namely

$$
(T, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Denote by ${ }_{R L} \mathscr{B}$ the category of modules over this monad.
We have a commutative diagram

Associated to any adjoint pair of functors $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad over \mathscr{B} namely

$$
(T, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Denote by ${ }_{R L} \mathscr{B}$ the category of modules over this monad.
We have a commutative diagram

where

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad over \mathscr{B} namely

$$
(T, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Denote by ${ }_{R L} \mathscr{B}$ the category of modules over this monad.
We have a commutative diagram

where

- U is the forgetful functor: $U(B, \mu):=B$ and $U f:=f$.

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad over \mathscr{B} namely

$$
(T, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \operatorname{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Denote by ${ }_{R L} \mathscr{B}$ the category of modules over this monad.
We have a commutative diagram

where

- U is the forgetful functor: $U(B, \mu):=B$ and $U f:=f$.
- K is comparison functor: $K A:=(R A, R \varepsilon A)$ and $K f:=R f$.

- U is the forgetful functor: $U(B, \mu):=B$ and $U f:=f$.
- K is comparison functor: $K A:=(R A, R \varepsilon A)$ and $K f:=R f$.

- U is the forgetful functor: $U(B, \mu):=B$ and $U f:=f$.
- K is comparison functor: $K A:=(R A, R \varepsilon A)$ and $K f:=R f$.

The adjunction (L, R) is called
monadic $=$ the comparison functor K is an equivalence of categories.

- U is the forgetful functor: $U(B, \mu):=B$ and $U f:=f$.
- K is comparison functor: $K A:=(R A, R \varepsilon A)$ and $K f:=R f$.

The adjunction (L, R) is called
monadic $=$ the comparison functor K is an equivalence of categories.
A functor R is called monadic $=R$ has a left adjoint L such that the adjunction (L, R) is monadic.

BECK'S PRECISE MONADICITY THEOREM

BECK'S PRECISE MONADICITY THEOREM

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction.
Let η and ε be the unit and counit of (L, R) respectively.

BECK'S PRECISE MONADICITY THEOREM

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction.
Let η and ε be the unit and counit of (L, R) respectively. Consider the comparison functor

$$
K: \mathscr{A} \rightarrow R L \mathscr{B} .
$$

BECK'S PRECISE MONADICITY THEOREM

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction.
Let η and ε be the unit and counit of (L, R) respectively. Consider the comparison functor

$$
K: \mathscr{A} \rightarrow R L \mathscr{B} .
$$

The following assertions are equivalent:

BECK'S PRECISE MONADICITY THEOREM

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction.
Let η and ε be the unit and counit of (L, R) respectively. Consider the comparison functor

$$
K: \mathscr{A} \rightarrow R L \mathscr{B} .
$$

The following assertions are equivalent:
(1) K is an equivalence.

BECK'S PRECISE MONADICITY THEOREM

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction.
Let η and ε be the unit and counit of (L, R) respectively.
Consider the comparison functor

$$
K: \mathscr{A} \rightarrow R L \mathscr{B} .
$$

The following assertions are equivalent:
(1) K is an equivalence.
(2) R reflects isomorphisms and for any reflexive R-contractible coequalizer pair we can choose a specific coequalizer in \mathscr{A}, which is preserved by R.

BECK'S PRECISE MONADICITY THEOREM

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction.
Let η and ε be the unit and counit of (L, R) respectively.
Consider the comparison functor

$$
K: \mathscr{A} \rightarrow R L \mathscr{B} .
$$

The following assertions are equivalent:
(1) K is an equivalence.
(2) R reflects isomorphisms and for any reflexive R-contractible coequalizer pair we can choose a specific coequalizer in \mathscr{A}, which is preserved by R. (3) R reflects isomorphisms and for every element in $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in R_{R L}\right\}$ we can choose a specific coequalizer in \mathscr{A} which is preserved by R.

BECK'S PRECISE MONADICITY THEOREM

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction.
Let η and ε be the unit and counit of (L, R) respectively.
Consider the comparison functor

$$
K: \mathscr{A} \rightarrow R L \mathscr{B} .
$$

The following assertions are equivalent:
(1) K is an equivalence.
(2) R reflects isomorphisms and for any reflexive R-contractible coequalizer pair we can choose a specific coequalizer in \mathscr{A}, which is preserved by R.
(3) R reflects isomorphisms and for every element in
$S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in{ }_{R L} \mathscr{B}\right\}$ we can choose a specific coequalizer in \mathscr{A} which is preserved by R.
(4) For every $A \in \mathscr{A}$ we have that $(A, \varepsilon A)=\operatorname{Coequ}_{\mathscr{A}}(L R \varepsilon A, \varepsilon L R A)$. For every element in $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in{ }_{R L} \mathscr{B}\right\}$ we can choose a specific coequalizer in \mathscr{A} which is preserved by R.

BECK'S PRECISE MONADICITY THEOREM

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction.
Let η and ε be the unit and counit of (L, R) respectively.
Consider the comparison functor

$$
K: \mathscr{A} \rightarrow R L \mathscr{B} .
$$

The following assertions are equivalent:
(1) K is an equivalence.
(2) R reflects isomorphisms and for any reflexive R-contractible coequalizer pair we can choose a specific coequalizer in \mathscr{A}, which is preserved by R.
(3) R reflects isomorphisms and for every element in
$S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in{ }_{R L} \mathscr{B}\right\}$ we can choose a specific coequalizer in \mathscr{A} which is preserved by R.
(4) For every $A \in \mathscr{A}$ we have that $(A, \varepsilon A)=\operatorname{Coequ}_{\mathscr{A}}(L R \varepsilon A, \varepsilon L R A)$. For every element in $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in{ }_{R L} \mathscr{B}\right\}$ we can choose a specific coequalizer in \mathscr{A} which is preserved by R.

THEOREM

THEOREM

Set $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in_{R L} \mathscr{B}\right\}$.

THEOREM

Set $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in{ }_{R L} \mathscr{B}\right\}$. Then the following assertions are equivalent.

THEOREM

Set $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in_{R L} \mathscr{B}\right\}$. Then the following assertions are equivalent.
(1) K has a left adjoint, say Λ,

THEOREM

Set $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in_{R L} \mathscr{B}\right\}$. Then the following assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in \mathscr{A}.

THEOREM

Set $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in_{R L} \mathscr{B}\right\}$. Then the following assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in \mathscr{A}. Assume that (2) holds.

THEOREM

Set $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in_{R L} \mathscr{B}\right\}$. Then the following assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in \mathscr{A}.

Assume that (2) holds.
Then, for every $(B, \mu) \in R_{L} \mathscr{B}, \Lambda(B, \mu)$ is defined to be the coequalizer

$$
L R L B \underset{\varepsilon L B}{\stackrel{L \mu}{\rightrightarrows}} L B \xrightarrow{\pi(B, \mu)} \Lambda(B, \mu)
$$

THEOREM

Set $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in_{R L} \mathscr{B}\right\}$. Then the following assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in \mathscr{A}.

Assume that (2) holds.
Then, for every $(B, \mu) \in_{R L} \mathscr{B}, \Lambda(B, \mu)$ is defined to be the coequalizer

$$
L R L B \underset{\varepsilon L B}{\stackrel{L \mu}{\rightrightarrows}} L B \xrightarrow{\pi(B, \mu)} \Lambda(B, \mu)
$$

and for every morphism $f:(B, \mu) \rightarrow\left(B^{\prime}, \mu^{\prime}\right)$ the morphism $\Lambda(f): \Lambda(B, \mu) \rightarrow \Lambda\left(B^{\prime}, \mu^{\prime}\right)$ is uniquely defined by

$$
\Lambda(f) \circ \pi(B, \mu)=\pi\left(B^{\prime}, \mu^{\prime}\right) \circ L U(f)
$$

THEOREM

Set $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in_{R L} \mathscr{B}\right\}$. Then the following assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in \mathscr{A}.

Assume that (2) holds.
Then, for every $(B, \mu) \in_{R L} \mathscr{B}, \Lambda(B, \mu)$ is defined to be the coequalizer

$$
L R L B \underset{\varepsilon L B}{\stackrel{L \mu}{\rightrightarrows}} L B \xrightarrow{\pi(B, \mu)} \Lambda(B, \mu)
$$

and for every morphism $f:(B, \mu) \rightarrow\left(B^{\prime}, \mu^{\prime}\right)$ the morphism $\Lambda(f): \Lambda(B, \mu) \rightarrow \Lambda\left(B^{\prime}, \mu^{\prime}\right)$ is uniquely defined by

$$
\Lambda(f) \circ \pi(B, \mu)=\pi\left(B^{\prime}, \mu^{\prime}\right) \circ L U(f)
$$

Moreover

THEOREM

Set $S:=\left\{(L \mu, \varepsilon L B) \mid(B, \mu: R L B \rightarrow B) \in_{R L} \mathscr{B}\right\}$. Then the following assertions are equivalent.
(1) K has a left adjoint, say Λ,
(2) For each element in S we can choose a specific coequalizer in \mathscr{A}.

Assume that (2) holds.
Then, for every $(B, \mu) \in_{R L} \mathscr{B}, \Lambda(B, \mu)$ is defined to be the coequalizer

$$
L R L B \underset{\varepsilon L B}{\stackrel{L \mu}{\rightrightarrows}} L B \xrightarrow{\pi(B, \mu)} \Lambda(B, \mu)
$$

and for every morphism $f:(B, \mu) \rightarrow\left(B^{\prime}, \mu^{\prime}\right)$ the morphism $\Lambda(f): \Lambda(B, \mu) \rightarrow \Lambda\left(B^{\prime}, \mu^{\prime}\right)$ is uniquely defined by

$$
\Lambda(f) \circ \pi(B, \mu)=\pi\left(B^{\prime}, \mu^{\prime}\right) \circ L U(f)
$$

Moreover
Λ is full and faithful $\Leftrightarrow R$ preserves coequalizers of elements in S.

We say that a functor R is comparable whenever there exists a sequence $\left(R_{n}\right)_{n \in \mathbb{N}}$ of functors R_{n} such that

We say that a functor R is comparable whenever there exists a sequence $\left(R_{n}\right)_{n \in \mathbb{N}}$ of functors R_{n} such that

- $R_{0}=R$

We say that a functor R is comparable whenever there exists a sequence $\left(R_{n}\right)_{n \in \mathbb{N}}$ of functors R_{n} such that

- $R_{0}=R$
- for $n \geq 0$, the functor R_{n} has a left adjoint functor L_{n}

We say that a functor R is comparable whenever there exists a sequence $\left(R_{n}\right)_{n \in \mathbb{N}}$ of functors R_{n} such that

- $R_{0}=R$
- for $n \geq 0$, the functor R_{n} has a left adjoint functor L_{n}
- R_{n+1} is the comparison functor induced by the adjunction $\left(L_{n}, R_{n}\right)$.

We say that a functor R is comparable whenever there exists a sequence $\left(R_{n}\right)_{n \in \mathbb{N}}$ of functors R_{n} such that

- $R_{0}=R$
- for $n \geq 0$, the functor R_{n} has a left adjoint functor L_{n}
- R_{n+1} is the comparison functor induced by the adjunction $\left(L_{n}, R_{n}\right)$. Compare with the construction performed in Manes [1.5.5, page 49] .
E. G. Manes, A TRIPLE MISCELLANY: SOME ASPECTS OF THE THEORY OF ALGEBRAS OVER A TRIPLE. Thesis (Ph.D.)-Wesleyan University. 1967.

Note that for a comparable functor $R: \mathscr{A} \rightarrow \mathscr{B}$, we have a diagram

where, for $n=0$,

Note that for a comparable functor $R: \mathscr{A} \rightarrow \mathscr{B}$, we have a diagram

where, for $n=0$,

- $\mathscr{B}_{0}=\mathscr{B}$;

Note that for a comparable functor $R: \mathscr{A} \rightarrow \mathscr{B}$, we have a diagram

where, for $n=0$,

- $\mathscr{B}_{0}=\mathscr{B}$;
- $R_{0}:=R$;

Note that for a comparable functor $R: \mathscr{A} \rightarrow \mathscr{B}$, we have a diagram

where, for $n=0$,

- $\mathscr{B}_{0}=\mathscr{B}$;
- $R_{0}:=R$;
- R_{0} has a left adjoint L_{0};

Note that for a comparable functor $R: \mathscr{A} \rightarrow \mathscr{B}$, we have a diagram

where, for $n=0$,

- $\mathscr{B}_{0}=\mathscr{B}$;
- $R_{0}:=R$;
- R_{0} has a left adjoint L_{0};
and, for $n>0$,

Note that for a comparable functor $R: \mathscr{A} \rightarrow \mathscr{B}$, we have a diagram

where, for $n=0$,

- $\mathscr{B}_{0}=\mathscr{B}$;
- $R_{0}:=R$;
- R_{0} has a left adjoint L_{0};
and, for $n>0$,
- \mathscr{B}_{n} is the category of $\left(R_{n-1} L_{n-1}\right)$-modules $R_{n-1} L_{n-1} \mathscr{B}_{n-1}$;

Note that for a comparable functor $R: \mathscr{A} \rightarrow \mathscr{B}$, we have a diagram

where, for $n=0$,

- $\mathscr{B}_{0}=\mathscr{B}$;
- $R_{0}:=R$;
- R_{0} has a left adjoint L_{0};
and, for $n>0$,
- \mathscr{B}_{n} is the category of $\left(R_{n-1} L_{n-1}\right)$-modules $R_{n-1} L_{n-1} \mathscr{B}_{n-1}$;
- R_{n} is the comparison functor of the adjunction $\left(L_{n-1}, R_{n-1}\right)$;

Note that for a comparable functor $R: \mathscr{A} \rightarrow \mathscr{B}$, we have a diagram

where, for $n=0$,

- $\mathscr{B}_{0}=\mathscr{B}$;
- $R_{0}:=R$;
- R_{0} has a left adjoint L_{0};
and, for $n>0$,
- \mathscr{B}_{n} is the category of $\left(R_{n-1} L_{n-1}\right)$-modules $R_{n-1} L_{n-1} \mathscr{B}_{n-1}$;
- R_{n} is the comparison functor of the adjunction $\left(L_{n-1}, R_{n-1}\right)$;
- R_{n} has a left adjoint L_{n}.

Note that for a comparable functor $R: \mathscr{A} \rightarrow \mathscr{B}$, we have a diagram

where, for $n=0$,

- $\mathscr{B}_{0}=\mathscr{B}$;
- $R_{0}:=R$;
- R_{0} has a left adjoint L_{0};
and, for $n>0$,
- \mathscr{B}_{n} is the category of $\left(R_{n-1} L_{n-1}\right)$-modules $R_{n-1} L_{n-1} \mathscr{B}_{n-1}$;
- R_{n} is the comparison functor of the adjunction $\left(L_{n-1}, R_{n-1}\right)$;
- R_{n} has a left adjoint L_{n}.
- $U_{n-1, n}$ is the forgetful functor $R_{n-1} L_{n-1} U$.

Define a category \mathscr{B}_{∞} as follows

Define a category \mathscr{B}_{∞} as follows

- An object in \mathscr{B}_{∞} is a sequence $\mathbb{B}_{\infty}:=\left(\mathbb{B}_{n}\right)_{n \in \mathbb{N}}$ where

$$
\mathbb{B}_{n} \in \mathscr{B}_{n} \quad \text { and } \quad U_{n, n+1}\left(\mathbb{B}_{n+1}\right)=\mathbb{B}_{n} \quad \text { for all } \quad n \in \mathbb{N} .
$$

Define a category \mathscr{B}_{∞} as follows

- An object in \mathscr{B}_{∞} is a sequence $\mathbb{B}_{\infty}:=\left(\mathbb{B}_{n}\right)_{n \in \mathbb{N}}$ where

$$
\mathbb{B}_{n} \in \mathscr{B}_{n} \quad \text { and } \quad U_{n, n+1}\left(\mathbb{B}_{n+1}\right)=\mathbb{B}_{n} \quad \text { for all } \quad n \in \mathbb{N} .
$$

- A morphism $f_{\infty}: \mathbb{B}_{\infty} \rightarrow \mathbb{B}_{\infty}^{\prime}$ is a sequence $f_{\infty}:=\left(f_{n}\right)_{n \in \mathbb{N}}$ where $f_{n}: \mathbb{B}_{n} \rightarrow \mathbb{B}_{n}^{\prime} \quad$ is in $\mathscr{B}_{n} \quad$ and $\quad U_{n, n+1}\left(f_{n+1}\right)=f_{n} \quad$ for all $\quad n \in \mathbb{N}$.

For all $n \in \mathbb{N}$, consider the functors

$$
\begin{gathered}
U_{n}=U_{n, \infty}: \mathscr{B}_{\infty} \rightarrow \mathscr{B}_{n} \\
U_{n, \infty}\left(\mathbb{B}_{\infty}\right):=\mathbb{B}_{n} \quad \text { and } \quad U_{n, \infty}\left(f_{\infty}\right):=f_{n} .
\end{gathered}
$$

For all $n \in \mathbb{N}$, consider the functors

$$
\begin{gathered}
U_{n}=U_{n, \infty}: \mathscr{B}_{\infty} \rightarrow \mathscr{B}_{n} \\
U_{n, \infty}\left(\mathbb{B}_{\infty}\right):=\mathbb{B}_{n} \quad \text { and } \quad U_{n, \infty}\left(f_{\infty}\right):=f_{n} .
\end{gathered}
$$

and

$$
R_{\infty}: \mathscr{A} \rightarrow \mathscr{B}_{\infty}
$$

For all $n \in \mathbb{N}$, consider the functors

$$
\begin{gathered}
U_{n}=U_{n, \infty}: \mathscr{B}_{\infty} \rightarrow \mathscr{B}_{n} \\
U_{n, \infty}\left(\mathbb{B}_{\infty}\right):=\mathbb{B}_{n} \quad \text { and } \quad U_{n, \infty}\left(f_{\infty}\right):=f_{n} .
\end{gathered}
$$

and

$$
\begin{gathered}
R_{\infty}: \mathscr{A} \rightarrow \mathscr{B}_{\infty} \\
R_{\infty}(A):=\left(R_{n}(A)\right)_{n \in \mathbb{N}} \quad \text { and } \quad R_{\infty}(f):=\left(R_{n}(f)\right)_{n \in \mathbb{N}} .
\end{gathered}
$$

For all $n \in \mathbb{N}$, consider the functors

$$
\begin{gathered}
U_{n}=U_{n, \infty}: \mathscr{B}_{\infty} \rightarrow \mathscr{B}_{n} \\
U_{n, \infty}\left(\mathbb{B}_{\infty}\right):=\mathbb{B}_{n} \quad \text { and } \quad U_{n, \infty}\left(f_{\infty}\right):=f_{n} .
\end{gathered}
$$

and

$$
\begin{gathered}
R_{\infty}: \mathscr{A} \rightarrow \mathscr{B}_{\infty} \\
R_{\infty}(A):=\left(R_{n}(A)\right)_{n \in \mathbb{N}} \quad \text { and } \quad R_{\infty}(f):=\left(R_{n}(f)\right)_{n \in \mathbb{N}} .
\end{gathered}
$$

Note that, for all $n \in \mathbb{N}$ the following diagram commutes.

As explained before, we can choose L_{n+1} to be defined by the coequalizer

As explained before, we can choose L_{n+1} to be defined by the coequalizer

$$
L_{n} R_{n} L_{n} \mathbb{B}_{n} \underset{\varepsilon_{n}}{\stackrel{L_{n} \mu_{n}}{\rightrightarrows}} L_{n} \mathbb{B}_{n} \xrightarrow{\pi_{n+1, n}} L_{n+1} \mathbb{B}_{n+1}
$$

As explained before, we can choose L_{n+1} to be defined by the coequalizer

$$
L_{n} R_{n} L_{n} \mathbb{B}_{n} \underset{\varepsilon_{n}}{\stackrel{L_{n} \mu_{n}}{\rightrightarrows}} L_{n} \mathbb{B}_{n} \xrightarrow{\pi_{n+1, n}} L_{n+1} \mathbb{B}_{n+1}
$$

In this way we get a direct system

As explained before, we can choose L_{n+1} to be defined by the coequalizer

$$
L_{n} R_{n} L_{n} \mathbb{B}_{n} \underset{\varepsilon_{n}}{\stackrel{L_{n} \mu_{n}}{\rightrightarrows}} L_{n} \mathbb{B}_{n} \xrightarrow{\pi_{n+1, n}} L_{n+1} \mathbb{B}_{n+1}
$$

In this way we get a direct system

$$
L_{0} \mathbb{B}_{0} \xrightarrow{\pi_{1,0}} L_{1} \mathbb{B}_{1} \xrightarrow{\pi_{2,1}} L_{2} \mathbb{B}_{2} \xrightarrow{\pi_{3,2}} \cdots
$$

THEOREM

As explained before, we can choose L_{n+1} to be defined by the coequalizer

$$
L_{n} R_{n} L_{n} \mathbb{B}_{n} \underset{\varepsilon_{n}}{\stackrel{L_{n} \mu_{n}}{\rightrightarrows}} L_{n} \mathbb{B}_{n} \xrightarrow{\pi_{n+1, n}} L_{n+1} \mathbb{B}_{n+1}
$$

In this way we get a direct system

$$
L_{0} \mathbb{B}_{0} \xrightarrow{\pi_{1,0}} L_{1} \mathbb{B}_{1} \xrightarrow{\pi_{2,1}} L_{2} \mathbb{B}_{2} \xrightarrow{\pi_{3,2}} \cdots
$$

THEOREM

The following assertions are equivalent.

As explained before, we can choose L_{n+1} to be defined by the coequalizer

$$
L_{n} R_{n} L_{n} \mathbb{B}_{n} \underset{\varepsilon_{n}}{\stackrel{L_{n} \mu_{n}}{\rightrightarrows}} L_{n} \mathbb{B}_{n} \xrightarrow{\pi_{n+1, n}} L_{n+1} \mathbb{B}_{n+1}
$$

In this way we get a direct system

$$
L_{0} \mathbb{B}_{0} \xrightarrow{\pi_{1,0}} L_{1} \mathbb{B}_{1} \xrightarrow{\pi_{2,1}} L_{2} \mathbb{B}_{2} \xrightarrow{\pi_{3,2}} \cdots
$$

THEOREM

The following assertions are equivalent.
(1) R_{∞} has a left adjoint, say L_{∞}.

As explained before, we can choose L_{n+1} to be defined by the coequalizer

$$
L_{n} R_{n} L_{n} \mathbb{B}_{n} \underset{\varepsilon_{n} L_{n} \mathbb{B}_{n}}{\stackrel{L_{n} \mu_{n}}{\rightrightarrows}} L_{n} \mathbb{B}_{n} \xrightarrow{\pi_{n+1, n}} L_{n+1} \mathbb{B}_{n+1}
$$

In this way we get a direct system

$$
L_{0} \mathbb{B}_{0} \xrightarrow{\pi_{1,0}} L_{1} \mathbb{B}_{1} \xrightarrow{\pi_{2,1}} L_{2} \mathbb{B}_{2} \xrightarrow{\pi_{3,2}} \cdots
$$

THEOREM
The following assertions are equivalent.
(1) R_{∞} has a left adjoint, say L_{∞}.
(2) For each $\mathbb{B}_{\infty} \in \mathscr{B}_{\infty}$, we can choose a specific direct limit in \mathscr{A} for the direct system $\left(L_{n} \mathbb{B}_{n}, \pi_{n+1, n}\right)_{n \in \mathbb{N}}$.

As explained before, we can choose L_{n+1} to be defined by the coequalizer

$$
L_{n} R_{n} L_{n} \mathbb{B}_{n} \underset{\varepsilon_{n} L_{n} \mathbb{B}_{n}}{\stackrel{L_{n} \mu_{n}}{\rightrightarrows}} L_{n} \mathbb{B}_{n} \xrightarrow{\pi_{n+1, n}} L_{n+1} \mathbb{B}_{n+1}
$$

In this way we get a direct system

$$
L_{0} \mathbb{B}_{0} \xrightarrow{\pi_{1,0}} L_{1} \mathbb{B}_{1} \xrightarrow{\pi_{2,1}} L_{2} \mathbb{B}_{2} \xrightarrow{\pi_{3,2}} \cdots
$$

THEOREM
The following assertions are equivalent.
(1) R_{∞} has a left adjoint, say L_{∞}.
(2) For each $\mathbb{B}_{\infty} \in \mathscr{B}_{\infty}$, we can choose a specific direct limit in \mathscr{A} for the direct system $\left(L_{n} \mathbb{B}_{n}, \pi_{n+1, n}\right)_{n \in \mathbb{N}}$.
Assume (2) holds. Then

As explained before, we can choose L_{n+1} to be defined by the coequalizer

$$
L_{n} R_{n} L_{n} \mathbb{B}_{n} \underset{\varepsilon_{n} L_{n} \mathbb{B}_{n}}{\stackrel{L_{n} \mu_{n}}{\rightrightarrows}} L_{n} \mathbb{B}_{n} \xrightarrow{\pi_{n+1, n}} L_{n+1} \mathbb{B}_{n+1}
$$

In this way we get a direct system

$$
L_{0} \mathbb{B}_{0} \xrightarrow{\pi_{1,0}} L_{1} \mathbb{B}_{1} \xrightarrow{\pi_{2,1}} L_{2} \mathbb{B}_{2} \xrightarrow{\pi_{3,2}} \cdots
$$

THEOREM

The following assertions are equivalent.
(1) R_{∞} has a left adjoint, say L_{∞}.
(2) For each $\mathbb{B}_{\infty} \in \mathscr{B}_{\infty}$, we can choose a specific direct limit in \mathscr{A} for the direct system $\left(L_{n} \mathbb{B}_{n}, \pi_{n+1, n}\right)_{n \in \mathbb{N}}$.
Assume (2) holds. Then

$$
\left(L_{\infty} \mathbb{B}_{\infty}, \pi_{n}: L_{n} \mathbb{B}_{n} \rightarrow L_{\infty} \mathbb{B}_{\infty}\right)=\lim _{\longrightarrow}\left(L_{n} \mathbb{B}_{n}, \pi_{n+1, n}\right)_{n \in \mathbb{N}}
$$

Moreover L_{∞} is full and faithful if and only if R preserves

$$
\xrightarrow{\lim }\left(L_{n} \mathbb{B}_{n}, \pi_{n+1, n}\right)_{n \in \mathbb{N}}
$$

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$.

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. We will say that diagram

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. We will say that diagram

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. We will say that diagram

is stationary after n steps

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. We will say that diagram

is stationary after n steps
whenever $U_{t, t+1}$ is an isomorphism of categories, for all $t \geq n$.

THEOREM

THEOREM

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE

THEOREM

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE (1) Diagram (1) is stationary after n steps.

THEOREM

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE (1) Diagram (1) is stationary after n steps.
(2) $U_{n, n+1}$ is an isomorphism of categories.

THEOREM

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE
(1) Diagram (1) is stationary after n steps.
(2) $U_{n, n+1}$ is an isomorphism of categories.
(3) L_{n} is full and faithful.

THEOREM

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE
(1) Diagram (1) is stationary after n steps.
(2) $U_{n, n+1}$ is an isomorphism of categories.
(3) L_{n} is full and faithful.

If one of these conditions holds, then

THEOREM

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE
(1) Diagram (1) is stationary after n steps.
(2) $U_{n, n+1}$ is an isomorphism of categories.
(3) L_{n} is full and faithful.

If one of these conditions holds, then $U_{n}: \mathscr{B}_{\infty} \rightarrow \mathscr{B}_{n}$ is an isomorphism of categories such that

THEOREM

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE
(1) Diagram (1) is stationary after n steps.
(2) $U_{n, n+1}$ is an isomorphism of categories.
(3) L_{n} is full and faithful.

If one of these conditions holds, then $U_{n}: \mathscr{B}_{\infty} \rightarrow \mathscr{B}_{n}$ is an isomorphism of categories such that $U_{n} \circ R_{\infty}=R_{n}$ and $L_{\infty}:=L_{n} \circ U_{n}$ is a left adjoint of R_{∞}.

THEOREM

Let $R: \mathscr{A} \rightarrow \mathscr{B}$ be a comparable functor. Let $n \in \mathbb{N}$. TFAE (1) Diagram (1) is stationary after n steps.
(2) $U_{n, n+1}$ is an isomorphism of categories.
(3) L_{n} is full and faithful.

If one of these conditions holds, then $U_{n}: \mathscr{B}_{\infty} \rightarrow \mathscr{B}_{n}$ is an isomorphism of categories such that $U_{n} \circ R_{\infty}=R_{n}$ and $L_{\infty}:=L_{n} \circ U_{n}$ is a left adjoint of R_{∞}. Therefore \mathscr{B}_{∞} and R_{∞} can be identified with \mathscr{B}_{n} and R_{n} respectively.

Let

$$
U_{0, n}=U_{0,1} U_{1,2} \cdots U_{n-1, n}: \mathscr{B}_{n} \rightarrow \mathscr{B}_{0} \quad \text { for every } n \in \mathbb{N}
$$

and

$$
U_{0, \infty}: \mathscr{B}_{\infty} \rightarrow \mathscr{B}_{0}, U_{0}\left(\mathbb{B}_{\infty}\right):=\mathbb{B}_{0} \quad \text { and } \quad U_{0, \infty}\left(f_{\infty}\right):=f_{0}
$$

Let $R_{0}: \mathscr{A} \rightarrow \mathscr{B}_{0}$ be a comparable functor and let $n \in \mathbb{N} \cup\{\infty\}$. Since $U_{0, n} R_{n}=R_{0}$, we have

$$
\operatorname{Im} R_{0} \subseteq \operatorname{Im} U_{0, n} .
$$

Moreover whenever R_{n} is surjective on objects up to isomorphism we also have

$$
\operatorname{Im} U_{0, n} \subseteq \operatorname{Im} R_{0}
$$

Assume that there is an $n \in \mathbb{N}$ such that

Assume that there is an $n \in \mathbb{N}$ such that R_{n} has a left adjoint L_{n} which is full and faithful.

Assume that there is an $n \in \mathbb{N}$ such that R_{n} has a left adjoint L_{n} which is full and faithful. Then the unit of this adjunction $\eta_{n}: \operatorname{Id}_{\mathscr{B}_{n}} \rightarrow R_{n} L_{n}$ is a functorial isomorphism

Assume that there is an $n \in \mathbb{N}$ such that R_{n} has a left adjoint L_{n} which is full and faithful.
Then the unit of this adjunction $\eta_{n}: \operatorname{Id}_{\mathscr{B}_{n}} \rightarrow R_{n} L_{n}$ is a functorial isomorphism
so that R_{n} is surjective on objects up to isomorphism.

Assume that there is an $n \in \mathbb{N}$ such that R_{n} has a left adjoint L_{n} which is full and faithful.
Then the unit of this adjunction $\eta_{n}: \operatorname{Id}_{\mathscr{B}_{n}} \rightarrow R_{n} L_{n}$ is a functorial isomorphism
so that R_{n} is surjective on objects up to isomorphism.
Thus, in this case, we get

Assume that there is an $n \in \mathbb{N}$ such that R_{n} has a left adjoint L_{n} which is full and faithful.
Then the unit of this adjunction $\eta_{n}: \operatorname{Id}_{\mathscr{B}_{n}} \rightarrow R_{n} L_{n}$ is a functorial isomorphism
so that R_{n} is surjective on objects up to isomorphism.
Thus, in this case, we get

$$
\operatorname{Im} R_{0}=\operatorname{Im} U_{0, n} .
$$

Assume that there is an $n \in \mathbb{N}$ such that R_{n} has a left adjoint L_{n} which is full and faithful.
Then the unit of this adjunction $\eta_{n}: \operatorname{Id}_{\mathscr{B}_{n}} \rightarrow R_{n} L_{n}$ is a functorial isomorphism
so that R_{n} is surjective on objects up to isomorphism.
Thus, in this case, we get

$$
\operatorname{Im} R_{0}=\operatorname{Im} U_{0, n} .
$$

This simple statement can be considered as a "general descent theory" result.

Assume that there is an $n \in \mathbb{N}$ such that R_{n} has a left adjoint L_{n} which is full and faithful.
Then the unit of this adjunction $\eta_{n}: \operatorname{Id}_{\mathscr{B}_{n}} \rightarrow R_{n} L_{n}$ is a functorial isomorphism
so that R_{n} is surjective on objects up to isomorphism.
Thus, in this case, we get

$$
\operatorname{Im} R_{0}=\operatorname{Im} U_{0, n} .
$$

This simple statement can be considered as a "general descent theory" result.
In fact we deduce that the objects of \mathscr{B}_{0} which are isomorphic to objects of the form $R_{0} A$, for some $A \in \mathscr{A}$,

Assume that there is an $n \in \mathbb{N}$ such that R_{n} has a left adjoint L_{n} which is full and faithful.
Then the unit of this adjunction $\eta_{n}: \operatorname{Id}_{\mathscr{B}_{n}} \rightarrow R_{n} L_{n}$ is a functorial isomorphism
so that R_{n} is surjective on objects up to isomorphism.
Thus, in this case, we get

$$
\operatorname{Im} R_{0}=\operatorname{Im} U_{0, n} .
$$

This simple statement can be considered as a "general descent theory" result.
In fact we deduce that the objects of \mathscr{B}_{0} which are isomorphic to objects of the form $R_{0} A$, for some $A \in \mathscr{A}$, are exactly those of the form $U_{0, n} B_{n}$ where $B_{n} \in \mathscr{B}_{n}=R_{n-1} L_{n-1} \mathscr{B}_{n-1}$.

Assume that there is an $n \in \mathbb{N}$ such that R_{n} has a left adjoint L_{n} which is full and faithful.
Then the unit of this adjunction $\eta_{n}: \operatorname{Id}_{\mathscr{B}_{n}} \rightarrow R_{n} L_{n}$ is a functorial isomorphism
so that R_{n} is surjective on objects up to isomorphism.
Thus, in this case, we get

$$
\operatorname{Im} R_{0}=\operatorname{Im} U_{0, n} .
$$

This simple statement can be considered as a "general descent theory" result.
In fact we deduce that the objects of \mathscr{B}_{0} which are isomorphic to objects of the form $R_{0} A$, for some $A \in \mathscr{A}$, are exactly those of the form $U_{0, n} B_{n}$ where $B_{n} \in \mathscr{B}_{n}=R_{n-1} L_{n-1} \mathscr{B}_{n-1}$. In particular, when L_{1} is full and faithful,

Assume that there is an $n \in \mathbb{N}$ such that R_{n} has a left adjoint L_{n} which is full and faithful.
Then the unit of this adjunction $\eta_{n}: \operatorname{Id}_{\mathscr{B}_{n}} \rightarrow R_{n} L_{n}$ is a functorial isomorphism
so that R_{n} is surjective on objects up to isomorphism.
Thus, in this case, we get

$$
\operatorname{Im} R_{0}=\operatorname{Im} U_{0, n} .
$$

This simple statement can be considered as a "general descent theory" result.
In fact we deduce that the objects of \mathscr{B}_{0} which are isomorphic to objects of the form $R_{0} A$, for some $A \in \mathscr{A}$, are exactly those of the form $U_{0, n} B_{n}$ where $B_{n} \in \mathscr{B}_{n}=R_{n-1} L_{n-1} \mathscr{B}_{n-1}$. In particular, when L_{1} is full and faithful, these objects are of form $U_{0,1} B_{1}$ where $B_{1} \in \mathscr{B}_{1}=R_{0} L_{0} \mathscr{B}_{0}$.

Assume that there is an $n \in \mathbb{N}$ such that
R_{n} has a left adjoint L_{n} which is full and faithful.
Then the unit of this adjunction $\eta_{n}: \operatorname{Id}_{\mathscr{B}_{n}} \rightarrow R_{n} L_{n}$ is a functorial isomorphism
so that R_{n} is surjective on objects up to isomorphism.
Thus, in this case, we get

$$
\operatorname{Im} R_{0}=\operatorname{Im} U_{0, n} .
$$

This simple statement can be considered as a "general descent theory" result.
In fact we deduce that the objects of \mathscr{B}_{0} which are isomorphic to objects of the form $R_{0} A$, for some $A \in \mathscr{A}$, are exactly those of the form $U_{0, n} B_{n}$ where $B_{n} \in \mathscr{B}_{n}=R_{n-1} L_{n-1} \mathscr{B}_{n-1}$. In particular, when L_{1} is full and faithful, these objects are of form $U_{0,1} B_{1}$ where $B_{1} \in \mathscr{B}_{1}={ }_{R_{0} L_{0}} \mathscr{B}_{0}$. This is exactly the dual form of classical descent theory for modules.

L_{1} is full and faithful in the following situations:

L_{1} is full and faithful in the following situations:

1) $(L, \varepsilon L)$ is relatively projective as a right module functor on $(R L, \operatorname{R\varepsilon } L, \eta)$ i.e. there is a natural transformation $\gamma: L \rightarrow L R L$ such that

$$
\varepsilon L \circ \gamma=\mathrm{Id}_{L} \quad \text { and } \quad L R \varepsilon L \circ \gamma R L=\gamma \circ \varepsilon L
$$

L_{1} is full and faithful in the following situations:

1) $(L, \varepsilon L)$ is relatively projective as a right module functor on $(R L, R \varepsilon L, \eta)$ i.e. there is a natural transformation $\gamma: L \rightarrow L R L$ such that

$$
\varepsilon L \circ \gamma=\operatorname{Id}_{L} \quad \text { and } \quad L R \varepsilon L \circ \gamma R L=\gamma \circ \varepsilon L
$$

2) L is $\left(\mathscr{A}, U_{0,1}\right)$-full and $\left(\mathscr{A}, U_{0,1}\right)$-faithful, i.e. $\eta U_{0,1}$ is an isomorphism.

PROPOSITION

PROPOSITION

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U=U_{0,1}: R L \mathscr{B} \rightarrow \mathscr{B}$ be the forgetful functor. The following assertions are equivalent.

PROPOSITION

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U=U_{0,1}: R L \mathscr{B} \rightarrow \mathscr{B}$ be the forgetful functor. The following assertions are equivalent.
(a) L is (\mathscr{A}, U)-full and (\mathscr{A}, U)-faithful, i.e. ηU is a functorial isomorphism.

PROPOSITION

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U=U_{0,1}: R L \mathscr{B} \rightarrow \mathscr{B}$ be the forgetful functor. The following assertions are equivalent.
(a) L is (\mathscr{A}, U)-full and (\mathscr{A}, U)-faithful, i.e. ηU is a functorial isomorphism.
(b) U is full.

PROPOSITION

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U=U_{0,1}: R L \mathscr{B} \rightarrow \mathscr{B}$ be the forgetful functor. The following assertions are equivalent.
(a) L is (\mathscr{A}, U)-full and (\mathscr{A}, U)-faithful, i.e. ηU is a functorial isomorphism.
(b) U is full.
(c) Either $\varepsilon L U$ or $L \eta U$ is a functorial isomorphism.

PROPOSITION

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U=U_{0,1}: R L \mathscr{B} \rightarrow \mathscr{B}$ be the forgetful functor. The following assertions are equivalent.
(a) L is (\mathscr{A}, U)-full and (\mathscr{A}, U)-faithful, i.e. ηU is a functorial isomorphism.
(b) U is full.
(c) Either $\varepsilon L U$ or $L \eta U$ is a functorial isomorphism.

If (c) holds, then

PROPOSITION

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U=U_{0,1}: R L \mathscr{B} \rightarrow \mathscr{B}$ be the forgetful functor. The following assertions are equivalent.
(a) L is (\mathscr{A}, U)-full and (\mathscr{A}, U)-faithful, i.e. ηU is a functorial isomorphism.
(b) U is full.
(c) Either $\varepsilon L U$ or $L \eta U$ is a functorial isomorphism.

If (c) holds, then

1) R is comparable,

PROPOSITION

Let $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ be an adjunction. Let η and ε be the unit and counit of (L, R) respectively. Let $U=U_{0,1}: R L \mathscr{B} \rightarrow \mathscr{B}$ be the forgetful functor. The following assertions are equivalent.
(a) L is (\mathscr{A}, U)-full and (\mathscr{A}, U)-faithful, i.e. ηU is a functorial isomorphism.
(b) U is full.
(c) Either $\varepsilon L U$ or $L \eta U$ is a functorial isomorphism.

If (c) holds, then

1) R is comparable,
2) for every $n \in \mathbb{N}, L_{n+1}=L_{n} U_{n, n+1}$ and is full and faithful

Let us fix a field \mathbb{k}. Vector spaces and bialgebras are meant to be over \mathbb{k}.

Let us fix a field \mathbb{k}. Vector spaces and bialgebras are meant to be over \mathbb{k}. Let

- $\mathscr{A}=$ category of bialgebras.

Let us fix a field \mathbb{k}. Vector spaces and bialgebras are meant to be over \mathbb{k}. Let

- $\mathscr{A}=$ category of bialgebras.
- $\mathscr{B}=$ category of vector spaces.

Let us fix a field \mathbb{k}. Vector spaces and bialgebras are meant to be over \mathbb{k}. Let

- $\mathscr{A}=$ category of bialgebras.
- $\mathscr{B}=$ category of vector spaces.

We have an adjunction $(T: \mathscr{B} \rightarrow \mathscr{A}, P: \mathscr{A} \rightarrow \mathscr{B})$

Let us fix a field \mathbb{k}. Vector spaces and bialgebras are meant to be over \mathbb{k}. Let

- $\mathscr{A}=$ category of bialgebras.
- $\mathscr{B}=$ category of vector spaces.

We have an adjunction $(T: \mathscr{B} \rightarrow \mathscr{A}, P: \mathscr{A} \rightarrow \mathscr{B})$
$P: \mathscr{A} \rightarrow \mathscr{B}, \quad$ where $\quad P A=$ space of primitive elements in the bialgebra A

Let us fix a field \mathbb{k}. Vector spaces and bialgebras are meant to be over \mathbb{k}. Let

- $\mathscr{A}=$ category of bialgebras.
- $\mathscr{B}=$ category of vector spaces.

We have an adjunction $(T: \mathscr{B} \rightarrow \mathscr{A}, P: \mathscr{A} \rightarrow \mathscr{B})$
$P: \mathscr{A} \rightarrow \mathscr{B}, \quad$ where $\quad P A=$ space of primitive elements in the bialgebra A
$T: \mathscr{B} \rightarrow \mathscr{A}, \quad$ where $\quad T V=\mathbb{k} \oplus V \oplus V^{\otimes 2} \oplus \cdots$ is the tensor bialgebra of V.

Let us fix a field \mathbb{k}. Vector spaces and bialgebras are meant to be over \mathbb{k}. Let

- $\mathscr{A}=$ category of bialgebras.
- $\mathscr{B}=$ category of vector spaces.

We have an adjunction $(T: \mathscr{B} \rightarrow \mathscr{A}, P: \mathscr{A} \rightarrow \mathscr{B})$
$P: \mathscr{A} \rightarrow \mathscr{B}, \quad$ where $\quad P A=$ space of primitive elements in the bialgebra A
$T: \mathscr{B} \rightarrow \mathscr{A}, \quad$ where $\quad T V=\mathbb{k} \oplus V \oplus V^{\otimes 2} \oplus \cdots$ is the tensor bialgebra of V.

In fact, essentially using the universal property of the tensor bialgebra, we can prove that there are natural transformations

Let us fix a field \mathbb{k}. Vector spaces and bialgebras are meant to be over \mathbb{k}. Let

- $\mathscr{A}=$ category of bialgebras.
- $\mathscr{B}=$ category of vector spaces.

We have an adjunction $(T: \mathscr{B} \rightarrow \mathscr{A}, P: \mathscr{A} \rightarrow \mathscr{B})$
$P: \mathscr{A} \rightarrow \mathscr{B}, \quad$ where $\quad P A=$ space of primitive elements in the bialgebra A
$T: \mathscr{B} \rightarrow \mathscr{A}, \quad$ where $\quad T V=\mathbb{k} \oplus V \oplus V^{\otimes 2} \oplus \cdots$ is the tensor bialgebra of V.

In fact, essentially using the universal property of the tensor bialgebra, we can prove that there are natural transformations

$$
\varepsilon: T P \rightarrow \operatorname{Id}_{\mathscr{A}} \quad \text { and } \quad \eta: \mathrm{Id}_{\mathscr{B}} \rightarrow P T
$$

Let us fix a field \mathbb{k}. Vector spaces and bialgebras are meant to be over \mathbb{k}. Let

- $\mathscr{A}=$ category of bialgebras.
- $\mathscr{B}=$ category of vector spaces.

We have an adjunction $(T: \mathscr{B} \rightarrow \mathscr{A}, P: \mathscr{A} \rightarrow \mathscr{B})$
$P: \mathscr{A} \rightarrow \mathscr{B}, \quad$ where $\quad P A=$ space of primitive elements in the bialgebra A
$T: \mathscr{B} \rightarrow \mathscr{A}, \quad$ where $\quad T V=\mathbb{k} \oplus V \oplus V^{\otimes 2} \oplus \cdots$ is the tensor bialgebra of V.

In fact, essentially using the universal property of the tensor bialgebra, we can prove that there are natural transformations

$$
\varepsilon: T P \rightarrow \operatorname{Id}_{\mathscr{A}} \quad \text { and } \quad \eta: \operatorname{Id}_{\mathscr{B}} \rightarrow P T
$$

satisfying the usual properties of unit and counit of an adjunction.

$$
(L, R):=\left(L_{0}, R_{0}\right):=(T, P) .
$$

Set

$$
(L, R):=\left(L_{0}, R_{0}\right):=(T, P) .
$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478])

Set

$$
(L, R):=\left(L_{0}, R_{0}\right):=(T, P)
$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478]) so that R_{0} is comparable and

Set

$$
(L, R):=\left(L_{0}, R_{0}\right):=(T, P) .
$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478]) so that R_{0} is comparable and $R_{\infty}: \mathscr{A} \rightarrow \mathscr{B}_{\infty}$ has a left adjoint, say L_{∞}.

Set

$$
(L, R):=\left(L_{0}, R_{0}\right):=(T, P) .
$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478])
so that R_{0} is comparable and
$R_{\infty}: \mathscr{A} \rightarrow \mathscr{B}_{\infty}$ has a left adjoint, say L_{∞}.
Moreover, by the same arguments used to prove [Ar2, Theorem 5.3], one can check that R preserves direct limits indexed by natural numbers with their usual order.

Set

$$
(L, R):=\left(L_{0}, R_{0}\right):=(T, P) .
$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478])
so that R_{0} is comparable and
$R_{\infty}: \mathscr{A} \rightarrow \mathscr{B}_{\infty}$ has a left adjoint, say L_{∞}.
Moreover, by the same arguments used to prove [Ar2, Theorem 5.3], one can check that R preserves direct limits indexed by natural numbers with their usual order.
As we saw before, this implies that L_{∞} is full and faithful.

Set

$$
(L, R):=\left(L_{0}, R_{0}\right):=(T, P) .
$$

Note that \mathscr{A} has colimits (see e.g. [Ag, page 1478])
so that R_{0} is comparable and
$R_{\infty}: \mathscr{A} \rightarrow \mathscr{B}_{\infty}$ has a left adjoint, say L_{∞}.
Moreover, by the same arguments used to prove [Ar2, Theorem 5.3], one can check that R preserves direct limits indexed by natural numbers with their usual order.
As we saw before, this implies that L_{∞} is full and faithful.
In fact we can prove much more, namely that L_{2} is full and faithful.
囯 [Ag] A. L. Agore, Categorical Constructions for Hopf Algebras. Comm. Algebra, 1532-4125, Vol. 39(4), (2011), 1476-1481.

囲 [Ar2] A. Ardizzoni, A Milnor-Moore Type Theorem for Primitively Generated Braided Bialgebras, J. Algebra, Vol. 327(1) (2011), 337-365.

THEOREM

THEOREM

The functor L_{2} is full and faithful and it is given, for all $\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$, by

THEOREM

The functor L_{2} is full and faithful and it is given, for all $\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$, by

$$
L_{2}\left(V_{1}, \mu_{1}\right)=L_{1} V_{1} .
$$

THEOREM

The functor L_{2} is full and faithful and it is given, for all $\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$, by

$$
L_{2}\left(V_{1}, \mu_{1}\right)=L_{1} V_{1} .
$$

Moreover, for all $V_{2}:=\left(\left(V_{0}, \mu_{0}\right), \mu_{1}\right) \in \mathscr{B}_{2}$, , we have the following cases.

THEOREM

The functor L_{2} is full and faithful and it is given, for all $\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$, by

$$
L_{2}\left(V_{1}, \mu_{1}\right)=L_{1} V_{1} .
$$

Moreover, for all $V_{2}:=\left(\left(V_{0}, \mu_{0}\right), \mu_{1}\right) \in \mathscr{B}_{2}$,, we have the following cases.

- chark $=0$. Then, for all $x, y \in V_{0}$ we have that $x y-y x \in R_{0} L_{0} V_{0}$. Define a map $[-,-]: V_{0} \otimes V_{0} \rightarrow V_{0}$ by setting $[x, y]:=\mu_{0}(x y-y x)$. Then $\left(V_{0},[-,-]\right)$ is an ordinary Lie algebra and $L_{2} V_{2}$ is the universal enveloping algebra

$$
L_{2} V_{2}=\mathfrak{U} V_{0}:=\frac{T V_{0}}{\left(x y-y x-[x, y] \mid x, y \in V_{0}\right)}
$$

THEOREM

The functor L_{2} is full and faithful and it is given, for all $\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$, by

$$
L_{2}\left(V_{1}, \mu_{1}\right)=L_{1} V_{1} .
$$

Moreover, for all $V_{2}:=\left(\left(V_{0}, \mu_{0}\right), \mu_{1}\right) \in \mathscr{B}_{2}$, , we have the following cases.

- chark $=0$. Then, for all $x, y \in V_{0}$ we have that $x y-y x \in R_{0} L_{0} V_{0}$. Define a map $[-,-]: V_{0} \otimes V_{0} \rightarrow V_{0}$ by setting $[x, y]:=\mu_{0}(x y-y x)$. Then $\left(V_{0},[-,-]\right)$ is an ordinary Lie algebra and $L_{2} V_{2}$ is the universal enveloping algebra

$$
L_{2} V_{2}=\mathfrak{U} V_{0}:=\frac{T V_{0}}{\left(x y-y x-[x, y] \mid x, y \in V_{0}\right)} .
$$

- chark $=p$, a prime. Then, for all $x, y \in V_{0}$ we have that $x y-y x, x^{p} \in R_{0} L_{0} V_{0}$. Define two maps $[-,-]: V_{0} \otimes V_{0} \rightarrow V_{0}$ and ${ }_{-}^{[p]}: V_{0} \rightarrow V_{0}$ by setting $[x, y]:=\mu_{0}(x y-y x)$ and $x^{[p]}:=\mu_{0}\left(x^{p}\right)$. Then $\left(V_{0},[-,-],{ }^{[p]}\right)$ is a restricted Lie algebra and $L_{2} V_{2}$ is the restricted enveloping algebra

$$
L_{2} V_{2}=\mathfrak{u} V_{0}:=\frac{T V_{0}}{\left(x y-y x-[x, y], x^{p}-x^{[p]} \mid x, y \in V_{0}\right)}
$$

To prove that L_{2} is full and faithful we proceed as follows.

To prove that L_{2} is full and faithful we proceed as follows.

- Let $V_{1}:=\left(V_{0}, \mu_{0}: R_{0} L_{0} V_{0}=T P V_{0} \rightarrow V_{0}\right) \in \mathscr{B}_{1}$.

To prove that L_{2} is full and faithful we proceed as follows.

- Let $V_{1}:=\left(V_{0}, \mu_{0}: R_{0} L_{0} V_{0}=T P V_{0} \rightarrow V_{0}\right) \in \mathscr{B}_{1}$. Note that

$$
R_{0} L_{0} V_{0}=V_{0} \oplus E V_{0}
$$

where $E V_{0}$ denotes the subspace, of the vector space underlying $L_{0} V_{0}$, spanned by primitive elements of homogeneous degree greater than one.

To prove that L_{2} is full and faithful we proceed as follows.

- Let $V_{1}:=\left(V_{0}, \mu_{0}: R_{0} L_{0} V_{0}=T P V_{0} \rightarrow V_{0}\right) \in \mathscr{B}_{1}$. Note that

$$
R_{0} L_{0} V_{0}=V_{0} \oplus E V_{0}
$$

where $E V_{0}$ denotes the subspace, of the vector space underlying $L_{0} V_{0}$, spanned by primitive elements of homogeneous degree greater than one. Denote by

To prove that L_{2} is full and faithful we proceed as follows.

- Let $V_{1}:=\left(V_{0}, \mu_{0}: R_{0} L_{0} V_{0}=T P V_{0} \rightarrow V_{0}\right) \in \mathscr{B}_{1}$. Note that

$$
R_{0} L_{0} V_{0}=V_{0} \oplus E V_{0}
$$

where $E V_{0}$ denotes the subspace, of the vector space underlying $L_{0} V_{0}$, spanned by primitive elements of homogeneous degree greater than one. Denote by

- $b: E \rightarrow V_{0}=\mu_{0}$ restricted to E.

To prove that L_{2} is full and faithful we proceed as follows.

- Let $V_{1}:=\left(V_{0}, \mu_{0}: R_{0} L_{0} V_{0}=T P V_{0} \rightarrow V_{0}\right) \in \mathscr{B}_{1}$. Note that

$$
R_{0} L_{0} V_{0}=V_{0} \oplus E V_{0}
$$

where $E V_{0}$ denotes the subspace, of the vector space underlying $L_{0} V_{0}$, spanned by primitive elements of homogeneous degree greater than one. Denote by

- $b: E \rightarrow V_{0}=\mu_{0}$ restricted to E.
- c: $V_{0} \otimes V_{0} \rightarrow V_{0} \otimes V_{0}$ the canonical flip.

To prove that L_{2} is full and faithful we proceed as follows.

- Let $V_{1}:=\left(V_{0}, \mu_{0}: R_{0} L_{0} V_{0}=T P V_{0} \rightarrow V_{0}\right) \in \mathscr{B}_{1}$. Note that

$$
R_{0} L_{0} V_{0}=V_{0} \oplus E V_{0}
$$

where $E V_{0}$ denotes the subspace, of the vector space underlying $L_{0} V_{0}$, spanned by primitive elements of homogeneous degree greater than one. Denote by

- $b: E \rightarrow V_{0}=\mu_{0}$ restricted to E.
- c: $V_{0} \otimes V_{0} \rightarrow V_{0} \otimes V_{0}$ the canonical flip.

Then b is a bracket for the braided vector space $\left(V_{0}, c\right)$ in the sense of [Ar1, Definition 3.2]

To prove that L_{2} is full and faithful we proceed as follows.

- Let $V_{1}:=\left(V_{0}, \mu_{0}: R_{0} L_{0} V_{0}=T P V_{0} \rightarrow V_{0}\right) \in \mathscr{B}_{1}$. Note that

$$
R_{0} L_{0} V_{0}=V_{0} \oplus E V_{0}
$$

where $E V_{0}$ denotes the subspace, of the vector space underlying $L_{0} V_{0}$, spanned by primitive elements of homogeneous degree greater than one. Denote by

- $b: E \rightarrow V_{0}=\mu_{0}$ restricted to E.
- c: $V_{0} \otimes V_{0} \rightarrow V_{0} \otimes V_{0}$ the canonical flip.

Then b is a bracket for the braided vector space $\left(V_{0}, c\right)$ in the sense of [Ar1, Definition 3.2] and we can prove that

$$
L_{1} V_{1}=U\left(V_{0}, c, b\right)
$$

in the sense of [Ar1, Definition 3.5].

- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$.
- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.
- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.Thus the canonical map iu: $V_{0} \rightarrow U\left(V_{0}, c, b\right)$ corestricts to $U_{0,1} \eta_{1} V_{1}: U_{0,1} V_{1}=V_{0} \rightarrow R_{0} U\left(V_{0}, c, b\right)=U_{0,1} R_{1} L_{1} V_{1}$.
- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.Thus the canonical map iu: $V_{0} \rightarrow U\left(V_{0}, c, b\right)$ corestricts to $U_{0,1} \eta_{1} V_{1}: U_{0,1} V_{1}=V_{0} \rightarrow R_{0} U\left(V_{0}, c, b\right)=U_{0,1} R_{1} L_{1} V_{1}$. Now

$$
U_{0,1} \mu_{1} \circ U_{0,1} \eta_{1} V_{1}=U_{0,1}\left(\mu_{1} \circ \eta_{1} V_{1}\right)=\operatorname{Id}_{V_{0}}
$$

so that $U_{0,1} \eta_{1} V_{1}$ is injective.

- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.Thus the canonical map iu: $V_{0} \rightarrow U\left(V_{0}, c, b\right)$ corestricts to $U_{0,1} \eta_{1} V_{1}: U_{0,1} V_{1}=V_{0} \rightarrow R_{0} U\left(V_{0}, c, b\right)=U_{0,1} R_{1} L_{1} V_{1}$. Now

$$
U_{0,1} \mu_{1} \circ U_{0,1} \eta_{1} V_{1}=U_{0,1}\left(\mu_{1} \circ \eta_{1} V_{1}\right)=\operatorname{Id}_{V_{0}}
$$

so that $U_{0,1} \eta_{1} V_{1}$ is injective. Therefore i_{U} is injective.

- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.Thus the canonical map iu: $V_{0} \rightarrow U\left(V_{0}, c, b\right)$ corestricts to $U_{0,1} \eta_{1} V_{1}: U_{0,1} V_{1}=V_{0} \rightarrow R_{0} U\left(V_{0}, c, b\right)=U_{0,1} R_{1} L_{1} V_{1}$. Now

$$
U_{0,1} \mu_{1} \circ U_{0,1} \eta_{1} V_{1}=U_{0,1}\left(\mu_{1} \circ \eta_{1} V_{1}\right)=\operatorname{Id}_{V_{0}}
$$

so that $U_{0,1} \eta_{1} V_{1}$ is injective. Therefore i_{U} is injective. This means that $\left(V_{0}, c, b\right)$ is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.Thus the canonical map iu: $V_{0} \rightarrow U\left(V_{0}, c, b\right)$ corestricts to $U_{0,1} \eta_{1} V_{1}: U_{0,1} V_{1}=V_{0} \rightarrow R_{0} U\left(V_{0}, c, b\right)=U_{0,1} R_{1} L_{1} V_{1}$. Now

$$
U_{0,1} \mu_{1} \circ U_{0,1} \eta_{1} V_{1}=U_{0,1}\left(\mu_{1} \circ \eta_{1} V_{1}\right)=\operatorname{Id}_{V_{0}}
$$

so that $U_{0,1} \eta_{1} V_{1}$ is injective. Therefore i_{U} is injective. This means that $\left(V_{0}, c, b\right)$ is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if $\operatorname{char}(\mathbb{k})=0$,

- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.Thus the canonical map iu: $V_{0} \rightarrow U\left(V_{0}, c, b\right)$ corestricts to $U_{0,1} \eta_{1} V_{1}: U_{0,1} V_{1}=V_{0} \rightarrow R_{0} U\left(V_{0}, c, b\right)=U_{0,1} R_{1} L_{1} V_{1}$. Now

$$
U_{0,1} \mu_{1} \circ U_{0,1} \eta_{1} V_{1}=U_{0,1}\left(\mu_{1} \circ \eta_{1} V_{1}\right)=\operatorname{Id}_{V_{0}}
$$

so that $U_{0,1} \eta_{1} V_{1}$ is injective. Therefore i_{U} is injective. This means that $\left(V_{0}, c, b\right)$ is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if $\operatorname{char}(\mathbb{k})=0$, and [Ar3, Example 3.13], if $\operatorname{char}(\mathbb{k}) \neq 0$,

- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.Thus the canonical map iu: $V_{0} \rightarrow U\left(V_{0}, c, b\right)$ corestricts to $U_{0,1} \eta_{1} V_{1}: U_{0,1} V_{1}=V_{0} \rightarrow R_{0} U\left(V_{0}, c, b\right)=U_{0,1} R_{1} L_{1} V_{1}$. Now

$$
U_{0,1} \mu_{1} \circ U_{0,1} \eta_{1} V_{1}=U_{0,1}\left(\mu_{1} \circ \eta_{1} V_{1}\right)=\operatorname{Id}_{V_{0}}
$$

so that $U_{0,1} \eta_{1} V_{1}$ is injective. Therefore i_{U} is injective. This means that $\left(V_{0}, c, b\right)$ is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if $\operatorname{char}(\mathbb{k})=0$, and [Ar3, Example 3.13], if char $(\mathbb{k}) \neq 0,\left(V_{0}, c\right)$ is a braided vector spaces of combinatorial rank at most one.

- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.Thus the canonical map $i_{U}: V_{0} \rightarrow U\left(V_{0}, c, b\right)$ corestricts to $U_{0,1} \eta_{1} V_{1}: U_{0,1} V_{1}=V_{0} \rightarrow R_{0} U\left(V_{0}, c, b\right)=U_{0,1} R_{1} L_{1} V_{1}$. Now

$$
U_{0,1} \mu_{1} \circ U_{0,1} \eta_{1} V_{1}=U_{0,1}\left(\mu_{1} \circ \eta_{1} V_{1}\right)=\operatorname{Id}_{V_{0}}
$$

so that $U_{0,1} \eta_{1} V_{1}$ is injective. Therefore i_{U} is injective. This means that $\left(V_{0}, c, b\right)$ is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if $\operatorname{char}(\mathbb{k})=0$, and [Ar3, Example 3.13], if $\operatorname{char}(\mathbb{k}) \neq 0,\left(V_{0}, c\right)$ is a braided vector spaces of combinatorial rank at most one. This implies, by [Ar1, Corollary 5.5], that $U_{0,1} \eta_{1} V_{1}$ is an isomorphism.

- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.Thus the canonical map iu: $V_{0} \rightarrow U\left(V_{0}, c, b\right)$ corestricts to $U_{0,1} \eta_{1} V_{1}: U_{0,1} V_{1}=V_{0} \rightarrow R_{0} U\left(V_{0}, c, b\right)=U_{0,1} R_{1} L_{1} V_{1}$. Now

$$
U_{0,1} \mu_{1} \circ U_{0,1} \eta_{1} V_{1}=U_{0,1}\left(\mu_{1} \circ \eta_{1} V_{1}\right)=\operatorname{Id}_{V_{0}}
$$

so that $U_{0,1} \eta_{1} V_{1}$ is injective. Therefore i_{U} is injective. This means that $\left(V_{0}, c, b\right)$ is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if $\operatorname{char}(\mathbb{k})=0$, and [Ar3, Example 3.13], if $\operatorname{char}(\mathbb{k}) \neq 0,\left(V_{0}, c\right)$ is a braided vector spaces of combinatorial rank at most one. This implies, by [Ar1, Corollary 5.5], that $U_{0,1} \eta_{1} V_{1}$ is an isomorphism. Since $U_{0,1}$ reflects isomorphism, we get that $\eta_{1} V_{1}$ is an isomorphism.

- Let now $V_{2}:=\left(V_{1}, \mu_{1}\right) \in \mathscr{B}_{2}$. Then V_{1} is of the form $\left(V_{0}, \mu_{0}\right)$.Thus the canonical map iu: $V_{0} \rightarrow U\left(V_{0}, c, b\right)$ corestricts to $U_{0,1} \eta_{1} V_{1}: U_{0,1} V_{1}=V_{0} \rightarrow R_{0} U\left(V_{0}, c, b\right)=U_{0,1} R_{1} L_{1} V_{1}$. Now

$$
U_{0,1} \mu_{1} \circ U_{0,1} \eta_{1} V_{1}=U_{0,1}\left(\mu_{1} \circ \eta_{1} V_{1}\right)=\operatorname{Id}_{V_{0}}
$$

so that $U_{0,1} \eta_{1} V_{1}$ is injective. Therefore i_{U} is injective. This means that $\left(V_{0}, c, b\right)$ is a braided Lie algebra in the sense of [Ar1, Definition 4.1].

Now, by [Ar2, Example 6.10], if $\operatorname{char}(\mathbb{k})=0$, and [Ar3, Example 3.13], if $\operatorname{char}(\mathbb{k}) \neq 0,\left(V_{0}, c\right)$ is a braided vector spaces of combinatorial rank at most one. This implies, by [Ar1, Corollary 5.5], that $U_{0,1} \eta_{1} V_{1}$ is an isomorphism. Since $U_{0,1}$ reflects isomorphism, we get that $\eta_{1} V_{1}$ is an isomorphism.As we saw before this implies that L_{2} is full and faithful.
[Ar1] A. Ardizzoni, On Primitively Generated Braided Bialgebras, Algebr. Represent. Theory, to appear.

围 [Ar3] A. Ardizzoni, Universal Enveloping Algebras of PBW Type, Glasg. Math. J., to appear. (arXiv:1008.4523)

