Computing of the number of right coideal subalgebras of quantum groups

Vladislav K. Kharchenko (National Autonomous University of Mexico, Mexico) vlad@unam.mx

This talk is based on the joint work with A.V. Lara Sagahon and J.L. Garza Rivera. We use a super computer KanBalam of the UNAM in order to find the total number r_n of the homogeneous right coideal subalgebras containing all group-like elements for the multiparameter versions of the quantum groups $U_q(\mathfrak{so}_{2n+1}), q^t \neq 1$ and $u_q(\mathfrak{so}_{2n+1}), q^t = 1, t > 4$ for small n:

$$r_2 = 38; r_3 = 546; r_4 = 10696; r_5 = 233216;$$

 $r_6 = 6257254; r_7 = 178413634.$

The numerical experiments allow us to conjecture that $n!4^n < r_n < n!n4^n$ for big n. The similar numbers for $U_q(\mathfrak{sl}_{n+1})$ was found in [1]:

$$r_2 = 26; r_3 = 252; r_4 = 3368; r_5 = 58810;$$

 $r_6 = 1290930; r_7 = 34604844.$

Additionally, in the present work, we get $r_8 = 1, 107, 490, 596$. Recall that, in the G_2 case we have $r_2 = 60$; see [2]. For the other types, C, D, E, F, it is already known from a theorem of Heckenberger and Schneider [3] that the similar numbers r_n^{Borel} related to the Borel subalgebras coincide with the order of the corresponding Weyl group W. This implies $r_n < |W|^2$, see [4].

Bibliography

- [1] V.K. Kharchenko, A.V. Lara Sagahon, Right coideal subalgebras in $U_q^+(\mathfrak{sl}_{n+1})$ J. Algebra **319** (2008), 2571–2625.
- [2] B. Pogorelsky, Right coideal subalgebras of the quantized universal enveloping algebra of type G₂. Comm. Algebra **39** No. 4 (2011), 1181–1207.
- [3] I. Heckenberger, H.-J. Schneider, *Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid.* Preprint arXiv: 0909.0293, 43 pp.
- [4] V.K. Kharchenko, Triangular decomposition of right coideal subalgebras. J. Algebra 324 (2010), 3048–3089.

Computing of the number of right coideal subalgebras of quantum groups

V.K. Kharchenko (with A.V.Lara Sagahón and J.L.Garza Rivera)

FES-C UNAM MEXICO, SOBOLEV IM RUSSIA

7 of July 2011 Almería, España

V.K. Kharchenko (with A.V.Lara Sagahón and J.L.Garza River Computing of the number of right coideal subalgebras of quant

・ 同 ト ・ ヨ ト ・ ヨ ト

► Kh. (1977). Let G be a finite group of homogeneous automorphisms of a free algebra k⟨X⟩. The Galois correspondence

$$A \longrightarrow \mathbf{k} \langle X \rangle^A = \{ f \in \mathbf{k} \langle X \rangle \, | \, f^a = f, \, a \in A \}$$

is a one-to-one correspondence between all subgroups A of G and all intermediate free subalgebras of $\mathbf{k}\langle X \rangle$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Actions of Hopf algebras

Ferreira, Murakami, Paques (2004). Let H be a finite dimensional Hopf algebra acting homogeneously on a free algebra k⟨X⟩: Δ(h) = ∑ h₁ⁱ ⊗ h₂ⁱ; (xy)^h = ∑ x^{h₁ⁱ}y^{h₂ⁱ}. The correspondence

$$U \longrightarrow \{ f \in \mathbf{k} \langle X \rangle \, | \, f^h = \varepsilon(h) f, \ h \in U \}$$

is a one-to-one correspondence between all **right coideal subalgebras** of *H* and all intermediate free subalgebras.

A. Milinski (1995, 1996), S. Westreich (1999, 2000, 2001), A. Masuoka (2003), D.Fichman, T.Yanai (1997, 2001, 2005).

・ 同 ト ・ ヨ ト ・ ヨ ト

PBW-bases

$\blacktriangleright \Delta(U) \subseteq H \otimes U$

V.K. Kharchenko (with A.V.Lara Sagahón and J.L.Garza River Computing of the number of right coideal subalgebras of quant

æ

PBW-bases

- $\blacktriangleright \Delta(U) \subseteq H \otimes U$
- Kh. (2006). Let H be a Hopf algebra generated by skew primitive semi invariants. Every right coideal subalgebra that contains all group-like elements has a PBW-basis which can be extended up to a PBW-basis of H.

同 と く ヨ と く ヨ と …

PBW-bases

- $\blacktriangleright \Delta(U) \subseteq H \otimes U$
- Kh. (2006). Let H be a Hopf algebra generated by skew primitive semi invariants. Every right coideal subalgebra that contains all group-like elements has a PBW-basis which can be extended up to a PBW-basis of H.
- ► I. Heckenberger, H.-J. Schneider (2009). The Drinfeld–Jimbo quantum universal enveloping algebra U_q(g⁺) of a Borel algebra g⁺ has precisely |W| right coideal subalgebras over the coradical, where W is the Weyl group of the semisimple Lie algebra g.
- Kh., A.V. Lara Sagahon (2007) case A_n;
 Kh. (2008) case B_n; B. Pogorelsky (2008) case G₂.

Triangular decomposition

▶ Kh. (2010). Every right coideal subalgebra U of U_q(g) has a triangular decomposition U = U[−]k[G]U⁺, here g is a Kac-Moody algebra.

向下 イヨト イヨト

Triangular decomposition

- ▶ Kh. (2010). Every right coideal subalgebra U of U_q(g) has a triangular decomposition U = U[−]k[G]U⁺, here g is a Kac-Moody algebra.
- ► In particular, due to the I. Heckenberger, H.-J. Schneider theorem, U_q(g) has at most |W|² r.c.s., provided that g is a semisimple Lie algebra.

伺下 イヨト イヨト

Probabilities

If U⁺, U[−] are right coideal subalgebras of the quantum Borel subalgebras, then U[−]k[G]U⁺, is a right coideal but not always a subalgebra.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Probabilities

- If U⁺, U[−] are right coideal subalgebras of the quantum Borel subalgebras, then U[−]k[G]U⁺, is a right coideal but not always a subalgebra.
- Kh., A.V. Lara Sagahon (2007). The probabilities p_n for a pair U[−], U⁺ to define a right coideal subalgebra of U_q(g), g = sI_{n+1} are:

$$p_2 = 72.3\%; p_3 = 43.8\%; p_4 = 23.4\%;$$

$$p_5 = 11.4\%$$
; $p_6 = 5.1\%$; $p_7 = 2.2\%$; $p_8 = 0.841\%$.

(本語) (本語) (本語) (語)

▶ Kh., A.V. Lara Sagahon, J.L. Garza Rivera (2011). The probabilities p_n for a pair U⁻, U⁺ to define a right coideal subalgebra of U_q(g), g = so_{2n+1} are:

$$p_2 = 59.4\%; p_3 = 23.7\%; p_4 = 7.3\%;$$

 $p_5 = 1.6\%$; $p_6 = 0.295\%$; $p_7 = 0.043\%$.

V.K. Kharchenko (with A.V.Lara Sagahón and J.L.Garza River Computing of the number of right coideal subalgebras of quant

マボン イラン イラン・ラ

▶ Kh., A.V. Lara Sagahon, J.L. Garza Rivera (2011). The probabilities p_n for a pair U⁻, U⁺ to define a right coideal subalgebra of U_q(g), g = so_{2n+1} are:

$$p_2 = 59.4\%; p_3 = 23.7\%; p_4 = 7.3\%;$$

 $p_5 = 1.6\%; \ p_6 = 0.295\%; \ p_7 = 0.043\%.$

▶ B. Pogorelsky (2011). If g is the simple Lie algebra of type G₂, then the probability equals 60/144 = 41.7%.

- 本部 ト イヨ ト - - ヨ

PBW-generators of the Borel component

•
$$U_q^+(\mathfrak{so}_{2n+1}) = G\langle x_1, \ldots, x_n || q$$
-Serre relations \rangle ,

V.K. Kharchenko (with A.V.Lara Sagahón and J.L.Garza River Computing of the number of right coideal subalgebras of quant

回 と く ヨ と く ヨ と

PBW-generators of the Borel component

•
$$U_q^+(\mathfrak{so}_{2n+1}) = G\langle x_1, \ldots, x_n || q$$
-Serre relations \rangle ,

►
$$\Delta(x_i) = x_i \otimes 1 + g_i \otimes x_i$$
; $\Delta(g_i) = g_i \otimes g_i$; $x_i g_j = p_{ij} g_j x_i$,
where p_{ij} are arbitrary parameters satisfying:

$$p_{nn} = q, \ p_{ii} = q^2, \ p_{i\,i+1}p_{i+1\,i} = q^{-2}, \ 1 \le i < n;$$

 $p_{ij}p_{ji} = 1, \ j > i+1.$

回 と く ヨ と く ヨ と

PBW-generators of the Borel component

•
$$U_q^+(\mathfrak{so}_{2n+1}) = G\langle x_1, \ldots, x_n || q$$
-Serre relations \rangle ,

► $\Delta(x_i) = x_i \otimes 1 + g_i \otimes x_i$; $\Delta(g_i) = g_i \otimes g_i$; $x_i g_j = p_{ij} g_j x_i$, where p_{ij} are arbitrary parameters satisfying:

$$p_{nn} = q, \ p_{ii} = q^2, \ p_{i\,i+1}p_{i+1\,i} = q^{-2}, \ 1 \le i < n;$$

$$p_{ij}p_{ji} = 1, \ j > i+1.$$

▶ PBW-genearators are $[u_{km}], k \le m \le 2n - k$: $[\dots [[[[\dots [x_k, x_{k+1}] \cdots x_n,]x_n,]x_{n-1},]x_{n-2},] \cdots x_{2n-m+1}],$ here [u, v] = uv - p(u, v)vu, while the bimultiplicative map p(u, v) is so that $p(x_i, x_j) = p_{ij}.$

(4月) (4日) (4日) 日

PBW-generators of right coideal subalgebras

•
$$S = \{s_1 < s_2 < \ldots < s_r\}, S \subseteq [1, 2n].$$

$$\Phi^{S}(k,m) = u[k,m] - (1-q^{-2}) \sum_{i=1}^{r} \alpha_{km}^{s_{i}} \Phi^{S}(1+s_{i},m) u[k,s_{i}],$$

where $\alpha_{km}^s = \tau_s p(u(1+s,m), u(k,s))^{-1}$, while $\tau_s = 1$ for all s except that $\tau_n = q$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ ∽ Q ()~

PBW-generators of right coideal subalgebras

►
$$S = \{s_1 < s_2 < \ldots < s_r\}, S \subseteq [1, 2n].$$

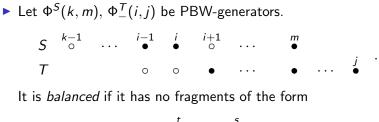
$$\Phi^{S}(k,m) = u[k,m] - (1-q^{-2}) \sum_{i=1}^{r} \alpha_{km}^{s_{i}} \Phi^{S}(1+s_{i},m) u[k,s_{i}],$$

where $\alpha_{km}^s = \tau_s p(u(1+s,m), u(k,s))^{-1}$, while $\tau_s = 1$ for all s except that $\tau_n = q$.

• We display the element $\Phi^{S}(k, m)$ schematically:

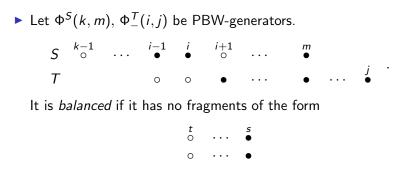
$$\begin{smallmatrix} k-1 & k & k+1 & k+2 & k+3 \\ \circ & \circ & \circ & \bullet & \circ \\ \bullet & \circ & \bullet & \circ \\ \end{smallmatrix} \qquad \begin{smallmatrix} m-2 & m-1 & m \\ \bullet & \circ & \bullet \\ \bullet & \circ & \bullet \\ \end{smallmatrix}$$

The main theoretical result



同 🖌 🖉 🖿 🖌 🖉 🖉 👘 🖉

The main theoretical result



THEOREM. A triangular composition U⁻k[G]U⁺ is a subalgebra if and only if, for each pair Φ^S(k, m), Φ^T₋(i, j) all four schemes are balanced or one of them has the form

$$B_n$$
: $r_2 = 38$; $r_3 = 546$; $r_4 = 10,696$; $r_5 = 233,216$;
 $r_6 = 6,257,254$; $r_7 = 178,413,634$.

- ▶ The C++ -program: A.V. Lara Sagahón r₂, r₃, r₄, r₅;
- A parallelization: J.L.Garza Rivera r₆ (6 min 128 processors), r₇(22 hours 128 processors) and r₈(A_n)(22.3 hours 128 proc.)

$$A_n$$
: $r_2 = 26$; $r_3 = 252$; $r_4 = 3,368$; $r_5 = 58,810$;

 $r_6 = 1,290,930; r_7 = 34,604,844; r_8 = 1,107,490,596.$

▲□→ ▲目→ ▲目→ 三日

▶ Find the number of right coideal subalgebras of U_q(g) when g is a simple Lie algebra of types F₄, E₆, E₇, E₈.

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

▶ Find the number of right coideal subalgebras of U_q(g) when g is a simple Lie algebra of types F₄, E₆, E₇, E₈.

► B_n :

$$\lim_{n\to\infty}n!p_n=\infty,\quad \lim_{n\to\infty}(n-1)!p_n=0.$$

 $n!4^n < r_n < n!n4^n$ for big n.

(本間) (本語) (本語) (語)

Find the number of right coideal subalgebras of U_q(g) when g is a simple Lie algebra of types F₄, E₆, E₇, E₈.
B_n:

lim n!p_n = ∞, lim (n − 1)!p_n = 0.
n!4ⁿ < r_n < n!n4ⁿ for big n.

A_n:

$$\lim_{n\to\infty} n2^n p_n = \infty, \quad \lim_{n\to\infty} 2^n p_n = 0.$$

V.K. Kharchenko (with A.V.Lara Sagahón and J.L.Garza River Computing of the number of right coideal subalgebras of quant

► Due to H-Sch. theorem it is to be expected that there exists a description of right coideal subalgebras of U_q(g) in terms of Weyl group combinatorics for g of arbitrary types A-G.

向下 イヨト イヨト

- ► Due to H-Sch. theorem it is to be expected that there exists a description of right coideal subalgebras of U_q(g) in terms of Weyl group combinatorics for g of arbitrary types A-G.
- The given here computational determination of the probabilities p_n (and the numbers r_n) for the types A, B, G will provide a valuable test as soon as a conjecture for such a description is formulated.

・ 同 ト ・ ヨ ト ・ ヨ ト …