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We consider a special class of graded Hopf algebras, which are finitely gener-
ated quadratic algebras with anti-symmetric generating relations. We discuss the
automorphism group and Calabi-Yau property of a PBW-deformation of such a
Hopf algebra. We show that the Calabi-Yau property of a PBW-deformation of
such a Hopf algebra is equivalent to that of the corresponding augmented PBW-
deformation under some mild conditions.
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(II) Poincaré-Birkhoff-Witt (PBW) deformation

(III) Calabi-Yau algebras

(IV) Main results

Jiwei He Shaoxing University Deformations of quadratic Hopf algebras



(I) Hopf algebras with quadratic relations
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Notions

We work over an algebraically closed field Ik of characteristic
zero.

Let V be an n-dimensional vector space (n ≥ 2),

x1, . . . , xn be a basis of V .

A quadratic algebra is a positively graded algebra U defined as

U = T (V )/(R),

where R ⊆ V ⊗ V .

The quadratic dual of U is defined to be the algebra
U ! = T (V ∗)/(R⊥), where R⊥ is the orthogonal complement
of R in V ∗ ⊗ V ∗.

Example. The polynomial algebra U = Ik[x1, . . . , xn] is a
quadratic algebra, its quadratic dual is the exterior algebra
U ! =

∧
{y1, . . . , yn}.
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Notions

An element r ∈ V ⊗ V is called an antisymmetric element if
τ(r) = −r .

An antisymmetric element may be written as r = xtMx, where
xt = (x1, . . . , xn) and M is an antisymmetric n × n-matrix.

Let U = T (V )/(r1, . . . , rm) be a quadratic algebra with
antisymmetric generating relations ri ∈ V ⊗ V for 1 ≤ i ≤ m.

We call such a quadratic algebra U as a weakly symmetric
algebra.
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Weakly symmetric algebras

An weakly symmetric algebra U is a graded Hopf algebra with
coproducts and antipode

∆(x) = x ⊗ 1 + 1⊗ x ,

for x ∈ V .

Example. Let M be an n× n antisymmetric invertible matrix,
and let r = xtMx where xt = (x1, . . . , xn).

Let U = Ik〈x1, . . . , xn〉/(r).

Then

(i) [Dubois-Violette, 2007] U is a Koszul algebra.

(ii) [Berger, 2009] U is a Calabi-Yau algebra of dimension 2.

(iii) [Berger, Bocklandt] Any (connected graded) Calabi-Yau
algebra of dimension 2 is obtained in this way.
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(II) PBW-deformations
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PBW-deformations

Let U =
⊕

n≥0 Un be a positively graded algebra. A
PBW-deformation of U is a filtered algebra A with filtration
0 ⊆ F0A ⊆ F1A ⊆ · · · ⊆ FnA ⊆ · · · , together with a graded
algebra isomorphism p : U −→ gr(A).
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PBW-deformations

A PBW-deformation A of a quadratic algebra U = T (V )/(R)
is determined by two linear maps:

ϕ : R → V and θ : R → Ik,

so that

A = T (V )/(I2), where I2 = {r − ϕ(r)− θ(r)|r ∈ R}.

If θ = 0, the PBW-deformation is called an augmented
deformation of U.

It is more convenient to consider the augmented
PBW-deformations than the nonaugmented cases.

Especially, when we consider the PBW-deformations of a
graded Hopf algebra, we have the tool homological integrals
to do with the homological properties of augmented
PBW-deformations.
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PBW-deformations

Examples. (i) A universal enveloping algebra a finite
dimensional algebra is an augmented PBW-deformation of a
polynomial algebra.

(ii) Weyl algebra A1 is a PBW-deformation of the polynomial
algebra Ik[x1, x2].

(iii) Sridharan enveloping algebras: g is a finite dimensional
algebra, f : g× g −→ Ik is a 2-cocycle of g, then

Uf (g) = T (g)/I ,

where the ideal I is generated by

x ⊗ y − y ⊗ x − [x , y ]− f (x , y), for all x , y ∈ g.
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Augmented PBW-deformations

Let U = T (V )/(R) be a quadratic algebra, and let
φ : R → V be a linear map that provides an augment
PBW-deformation of U.

Theorem (Polishchuk-Positselski)

The dual map φ∗ : V ∗ → R∗ induces a differential d on the
quadratic dual U ! of U so that (U !, d) is a differential graded
algebra.

Moreover, the set of possible augmented PBW-deformations of U
is in one-to-one correspondence with the set of all the possible
differential structures on U !.
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(III) Calabi-Yau algebras
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Calabi-Yau algebras

For the background of Calabi-Yau algebra, see Xiaolan Yu’s
talk yesterday.

Definition. [Ginzburg] An algebra A is said to be a
Calabi-Yau algebra of dimension d (CY-d , for short) if

(i) A is homologically smooth, that is; A has a bounded resolution
of finitely generated projective A-A-bimodules,

(ii) Exti
Ae (A,Ae) = 0 if i 6= d and Extd

Ae (A,Ae) ∼= A as
A-A-bimodules, where Ae = A⊗ Aop is the enveloping algebra
of A.

We call d the Calabi-Yau dimension of A.
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Examples of Calabi-Yau algebras

The polynomial algebra Ik[x1, . . . , xn] is CY-n

[Berger, 2009] The Weyl algebra An is CY-2n.

An interesting question is to find out the relation between the
global dimension and the CY dimension of a CY algebra.

Jiwei He Shaoxing University Deformations of quadratic Hopf algebras



Examples of Calabi-Yau algebras

The polynomial algebra Ik[x1, . . . , xn] is CY-n

[Berger, 2009] The Weyl algebra An is CY-2n.

An interesting question is to find out the relation between the
global dimension and the CY dimension of a CY algebra.

Jiwei He Shaoxing University Deformations of quadratic Hopf algebras



Examples of Calabi-Yau algebras

The polynomial algebra Ik[x1, . . . , xn] is CY-n

[Berger, 2009] The Weyl algebra An is CY-2n.

An interesting question is to find out the relation between the
global dimension and the CY dimension of a CY algebra.

Jiwei He Shaoxing University Deformations of quadratic Hopf algebras



(IV) Main results
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Theorem. [Yekutieli] If A is a (positively) filtered algebra
such that gr(A) is a Calabi-Yau algebra, then A differs from
being Calabi-Yau by a filtration-preserving automorphism σ:
that is, RHomAe (A,Ae) ∼= 1Aσ[d ].

Denote by Autfilt(A) the group of automorphisms of A which
preserve the filtration of A.
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Main results

Theorem (H-Zhang)

Let U = T (V )/(R) be a weakly symmetric algebra, and let
A = T (V )/(r − ϕ(r) : r ∈ R) be an augmented PBW-deformation
of U. Then Autfilt(A) ∼= Z 1(U !, d), where Z 1(U !, d) is the group
of 1-cocycles of the differential graded algebra (U !, d).

Moreover, if the quadratic algebra U is Koszul then
Autfilt(A) ∼= Ext1A(AIk, AIk).

Corollary. [Well known] Any universal enveloping algebra of a
finite dimensional semisimple Lie algebra is Calabi-Yau.
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A lemma

Let U = T (V )/(R) be a weakly symmetric algebra, and
ϕ : R → V and θ : R → Ik be linear maps.

Set
I2 = {r − ϕ(r)|r ∈ R},

I ′2 = {r − ϕ(r)− θ(r)|r ∈ R}.

Assume that both A = T (V )/(I2) and A′ = T (V )/(I ′2) are
PBW-deformations of U.

Define
D : T (V )→ A′ ⊗ A′

op
,

D(x) = x ⊗ 1− 1⊗ x , for all x ∈ V .

D induces an algebra morphism (also denoted by D)

D : A→ A′ ⊗ A′
op
.
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A lemma

Lemma. A′ ⊗ A′op is projective either as a left A-module or
as a right A-module.

The key point to prove the lemma is that U is a graded Hopf
algebra. Then U ⊗ Uop is a free module either as a left
U-module or as a right U-module.
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Main results
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Let U = T (V )/(R) be a weakly symmetric algebra. Assume
that both A = T (V )/(r − ϕ(r) : r ∈ R) and
A′ = T (V )/(r − ϕ(r)− θ(r) : r ∈ R) are PBW-deformations
of U. If A is CY-d, then so is A′.

Conversely, assume further that U is a noetherian domain and
Artin-Schelter regular. If A′ is CY-d, then so is A.
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Main results

Theorem (H-Van Oystaeyen-Zhang)

Let g be a finite dimensional Lie algebra. Then for any 2-cocycle
f ∈ Z 2(g, Ik), the following statements are equivalent.

(i) The Sridharan enveloping algebra Uf (g) is CY-d.

(ii) The universal enveloping algebra U(g) is CY-d.

(iii) dim g = d and g is unimodular, that is, for any x ∈ g,
tr(adg(x)) = 0.
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Main results

Theorem (H-Van Oystaeyen-Zhang)

Let A be a noetherian CY filtered algebra of dimension 3 such that
gr(A) is commutative and generated in degree 1, then A is
isomorphic to Ik〈x , y , z〉/(R) with the commuting relations R listed
in the following table:

Case {x , y} {x , z} {y , z}
1 z −2x 2y
2 y −z 0
3 z 0 0
4 0 0 0
5 y −z 1
6 z 1 0
7 1 0 0

where {x , y} = xy − yx.
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Remarks

Remarks.

This is a small step towards our aim to find all the possible
noetherian connected filtered Calabi-Yau algebras of
dimension 3.

The results can be generalized without too much difficulty to
the nonquadratic algebras. That is, if the graded Hopf algebra
U is N-homogeneous with some “anti-symmetric” relations,
then the same results still hold.

For example, U = T (V )/(r), where

r =
∑
σ∈Sn

sgn(σ)xσ(1)xσ(2) · · · xσ(n).
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Thank you!
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