Deformations of a class of graded Hopf algebras with quadratic relations

Jiwei He (Shaoxing University, China) jwhe@usx.edu.cn

We consider a special class of graded Hopf algebras, which are finitely generated quadratic algebras with anti-symmetric generating relations. We discuss the automorphism group and Calabi-Yau property of a PBW-deformation of such a Hopf algebra. We show that the Calabi-Yau property of a PBW-deformation of such a Hopf algebra is equivalent to that of the corresponding augmented PBWdeformation under some mild conditions.

Deformations of graded Hopf algebras with quadratic relations

Jiwei He Shaoxing University

Hopf algebras and tensor categories July 4–8, 2011, Almeria

- (I) Hopf algebras with quadratic relations
- (II) Poincaré-Birkhoff-Witt (PBW) deformation
- (III) Calabi-Yau algebras
- (IV) Main results

(I) Hopf algebras with quadratic relations

Notions

 $\bullet\,$ We work over an algebraically closed field ${\rm l}\!{\rm k}$ of characteristic zero.

문 🛌 문

Notions

- \bullet We work over an algebraically closed field ${\rm l}\!{\rm k}$ of characteristic zero.
- Let V be an *n*-dimensional vector space $(n \ge 2)$,

 x_1, \ldots, x_n be a basis of V.

• We work over an algebraically closed field ${\rm I}\!\!k$ of characteristic zero.

Let V be an n-dimensional vector space (n ≥ 2),
 x₁,..., x_n be a basis of V.

• A quadratic algebra is a positively graded algebra U defined as

$$U=T(V)/(R),$$

where $R \subseteq V \otimes V$.

• We work over an algebraically closed field ${\rm I}\!\!k$ of characteristic zero.

Let V be an n-dimensional vector space (n ≥ 2),
 x₁,..., x_n be a basis of V.

• A quadratic algebra is a positively graded algebra U defined as

$$U=T(V)/(R),$$

where $R \subseteq V \otimes V$.

The quadratic dual of U is defined to be the algebra $U^! = T(V^*)/(R^{\perp})$, where R^{\perp} is the orthogonal complement of R in $V^* \otimes V^*$.

 \bullet We work over an algebraically closed field ${\rm I}\!\!k$ of characteristic zero.

Let V be an n-dimensional vector space (n ≥ 2),
 x₁,..., x_n be a basis of V.

• A quadratic algebra is a positively graded algebra U defined as

$$U=T(V)/(R),$$

where $R \subseteq V \otimes V$.

The quadratic dual of U is defined to be the algebra $U^! = T(V^*)/(R^{\perp})$, where R^{\perp} is the orthogonal complement of R in $V^* \otimes V^*$.

• **Example.** The polynomial algebra $U = \mathbb{I}_k[x_1, \dots, x_n]$ is a quadratic algebra, its quadratic dual is the exterior algebra $U^! = \bigwedge \{y_1, \dots, y_n\}.$

• An element $r \in V \otimes V$ is called an antisymmetric element if $\tau(r) = -r$.

伺 ト く ヨ ト く ヨ ト

э

Notions

- An element $r \in V \otimes V$ is called an antisymmetric element if $\tau(r) = -r$.
- An antisymmetric element may be written as $r = \mathbf{x}^t M \mathbf{x}$, where $\mathbf{x}^t = (x_1, \dots, x_n)$ and M is an antisymmetric $n \times n$ -matrix.

Notions

- An element $r \in V \otimes V$ is called an antisymmetric element if $\tau(r) = -r$.
- An antisymmetric element may be written as $r = \mathbf{x}^t M \mathbf{x}$, where $\mathbf{x}^t = (x_1, \dots, x_n)$ and M is an antisymmetric $n \times n$ -matrix.
- Let U = T(V)/(r₁,...,r_m) be a quadratic algebra with antisymmetric generating relations r_i ∈ V ⊗ V for 1 ≤ i ≤ m. We call such a quadratic algebra U as a weakly symmetric algebra.

• An weakly symmetric algebra U is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

• An weakly symmetric algebra *U* is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

• **Example.** Let M be an $n \times n$ antisymmetric invertible matrix, and let $r = \mathbf{x}^{t} M \mathbf{x}$ where $\mathbf{x}^{t} = (x_{1}, \dots, x_{n})$.

Let $U = \mathbb{I}_k \langle x_1, \ldots, x_n \rangle / (r)$.

• An weakly symmetric algebra *U* is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

• **Example.** Let *M* be an $n \times n$ antisymmetric invertible matrix, and let $r = \mathbf{x}^{t} M \mathbf{x}$ where $\mathbf{x}^{t} = (x_{1}, \dots, x_{n})$.

Let $U = \mathbb{I}_k \langle x_1, \ldots, x_n \rangle / (r)$.

Then

• An weakly symmetric algebra *U* is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

• **Example.** Let M be an $n \times n$ antisymmetric invertible matrix, and let $r = \mathbf{x}^{t} M \mathbf{x}$ where $\mathbf{x}^{t} = (x_{1}, \dots, x_{n})$.

Let $U = \mathbb{I}_k \langle x_1, \ldots, x_n \rangle / (r)$.

Then

(i) [Dubois-Violette, 2007] U is a Koszul algebra.

• An weakly symmetric algebra *U* is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

• **Example.** Let M be an $n \times n$ antisymmetric invertible matrix, and let $r = \mathbf{x}^{t} M \mathbf{x}$ where $\mathbf{x}^{t} = (x_{1}, \dots, x_{n})$.

Let
$$U = \mathbb{k}\langle x_1, \ldots, x_n \rangle / (r)$$
.

Then

(i) [Dubois-Violette, 2007] U is a Koszul algebra.

(ii) [Berger, 2009] U is a Calabi-Yau algebra of dimension 2.

• An weakly symmetric algebra *U* is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

• **Example.** Let M be an $n \times n$ antisymmetric invertible matrix, and let $r = \mathbf{x}^t M \mathbf{x}$ where $\mathbf{x}^t = (x_1, \dots, x_n)$.

Let $U = \mathbb{k}\langle x_1, \ldots, x_n \rangle / (r)$.

Then

(i) [Dubois-Violette, 2007] U is a Koszul algebra.

(ii) [Berger, 2009] U is a Calabi-Yau algebra of dimension 2.

(iii) [Berger, Bocklandt] Any (connected graded) Calabi-Yau algebra of dimension 2 is obtained in this way.

• • = • • = •

(II) PBW-deformations

- ∢ ≣ ▶

 • Let $U = \bigoplus_{n \ge 0} U_n$ be a positively graded algebra. A PBW-deformation of U is a filtered algebra A with filtration $0 \subseteq F_0A \subseteq F_1A \subseteq \cdots \subseteq F_nA \subseteq \cdots$, together with a graded algebra isomorphism $p: U \longrightarrow gr(A)$.

PBW-deformations

A PBW-deformation A of a quadratic algebra U = T(V)/(R) is determined by two linear maps:

$$\varphi: R \to V \text{ and } \theta: R \to \mathbb{k},$$

so that

$$A = T(V)/(I_2)$$
, where $I_2 = \{r - \varphi(r) - \theta(r) | r \in R\}$.

If $\theta = 0$, the PBW-deformation is called an augmented deformation of U.

PBW-deformations

• A PBW-deformation A of a quadratic algebra U = T(V)/(R) is determined by two linear maps:

$$\varphi: R \to V \text{ and } \theta: R \to \mathbb{k},$$

so that

$$A = T(V)/(I_2)$$
, where $I_2 = \{r - \varphi(r) - \theta(r) | r \in R\}$.

If $\theta = 0$, the PBW-deformation is called an augmented deformation of U.

• It is more convenient to consider the augmented PBW-deformations than the nonaugmented cases.

Especially, when we consider the PBW-deformations of a graded Hopf algebra, we have the tool homological integrals to do with the homological properties of augmented PBW-deformations.

PBW-deformations

• **Examples.** (i) A universal enveloping algebra a finite dimensional algebra is an augmented PBW-deformation of a polynomial algebra.

(ii) Weyl algebra A_1 is a PBW-deformation of the polynomial algebra $k[x_1, x_2]$.

(iii) Sridharan enveloping algebras: \mathfrak{g} is a finite dimensional algebra, $f : \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathbb{k}$ is a 2-cocycle of \mathfrak{g} , then

 $U_f(\mathfrak{g}) = T(\mathfrak{g})/I,$

where the ideal I is generated by

$$x \otimes y - y \otimes x - [x, y] - f(x, y)$$
, for all $x, y \in \mathfrak{g}$.

• • • • • • • • •

Augmented PBW-deformations

• Let U = T(V)/(R) be a quadratic algebra, and let $\phi : R \to V$ be a linear map that provides an augment PBW-deformation of U.

A B > A B >

• Let U = T(V)/(R) be a quadratic algebra, and let $\phi : R \to V$ be a linear map that provides an augment PBW-deformation of U.

Theorem (Polishchuk-Positselski)

The dual map $\phi^* : V^* \to R^*$ induces a differential d on the quadratic dual $U^!$ of U so that $(U^!, d)$ is a differential graded algebra.

Moreover, the set of possible augmented PBW-deformations of U is in one-to-one correspondence with the set of all the possible differential structures on $U^!$.

(III) Calabi-Yau algebras

• For the background of Calabi-Yau algebra, see Xiaolan Yu's talk yesterday.

- For the background of Calabi-Yau algebra, see Xiaolan Yu's talk yesterday.
- **Definition.** [Ginzburg] An algebra *A* is said to be a Calabi-Yau algebra of dimension *d* (CY-*d*, for short) if
 - (i) A is homologically smooth, that is; A has a bounded resolution of finitely generated projective A-A-bimodules,
 - (ii) $\operatorname{Ext}_{A^e}^i(A, A^e) = 0$ if $i \neq d$ and $\operatorname{Ext}_{A^e}^d(A, A^e) \cong A$ as *A*-*A*-bimodules, where $A^e = A \otimes A^{op}$ is the enveloping algebra of *A*.

We call d the Calabi-Yau dimension of A.

• The polynomial algebra $\mathbb{k}[x_1, \dots, x_n]$ is CY-*n*

< ∃ →

- The polynomial algebra $\mathbb{k}[x_1, \dots, x_n]$ is CY-*n*
- [Berger, 2009] The Weyl algebra A_n is CY-2n.

- The polynomial algebra $\mathbb{k}[x_1, \dots, x_n]$ is CY-*n*
- [Berger, 2009] The Weyl algebra A_n is CY-2n.
- An interesting question is to find out the relation between the global dimension and the CY dimension of a CY algebra.

(IV) Main results

母▶ ∢ ≣▶

글▶ 글

Theorem. [Yekutieli] If A is a (positively) filtered algebra such that gr(A) is a Calabi-Yau algebra, then A differs from being Calabi-Yau by a filtration-preserving automorphism σ: that is, RHom_{A^e}(A, A^e) ≅ ¹A^σ[d].

- Theorem. [Yekutieli] If A is a (positively) filtered algebra such that gr(A) is a Calabi-Yau algebra, then A differs from being Calabi-Yau by a filtration-preserving automorphism σ: that is, RHom_{A^e}(A, A^e) ≅ ¹A^σ[d].
- Denote by $Aut_{filt}(A)$ the group of automorphisms of A which preserve the filtration of A.

Theorem (H-Zhang)

Let U = T(V)/(R) be a weakly symmetric algebra, and let $A = T(V)/(r - \varphi(r) : r \in R)$ be an augmented PBW-deformation of U. Then $Aut_{filt}(A) \cong Z^1(U^!, d)$, where $Z^1(U^!, d)$ is the group of 1-cocycles of the differential graded algebra $(U^!, d)$.

Moreover, if the quadratic algebra U is Koszul then $Aut_{filt}(A) \cong Ext^{1}_{A}({}_{A}\mathbb{k}, {}_{A}\mathbb{k}).$

Theorem (H-Zhang)

Let U = T(V)/(R) be a weakly symmetric algebra, and let $A = T(V)/(r - \varphi(r) : r \in R)$ be an augmented PBW-deformation of U. Then $Aut_{filt}(A) \cong Z^1(U^!, d)$, where $Z^1(U^!, d)$ is the group of 1-cocycles of the differential graded algebra $(U^!, d)$.

Moreover, if the quadratic algebra U is Koszul then $Aut_{filt}(A) \cong Ext^{1}_{A}({}_{A}\mathbb{k}, {}_{A}\mathbb{k}).$

• **Corollary.** [Well known] *Any universal enveloping algebra of a finite dimensional semisimple Lie algebra is Calabi-Yau.*

A lemma

• Let U = T(V)/(R) be a weakly symmetric algebra, and $\varphi : R \to V$ and $\theta : R \to \mathbb{k}$ be linear maps.

Set

$$I_2 = \{r - \varphi(r) | r \in R\},$$
$$I'_2 = \{r - \varphi(r) - \theta(r) | r \in R\}.$$

• • = • • = •

A lemma

• Let U = T(V)/(R) be a weakly symmetric algebra, and $\varphi : R \to V$ and $\theta : R \to \mathbb{k}$ be linear maps.

Set

$$I_2 = \{r - \varphi(r) | r \in R\},$$
$$I'_2 = \{r - \varphi(r) - \theta(r) | r \in R\}.$$

• Assume that both $A = T(V)/(I_2)$ and $A' = T(V)/(I'_2)$ are PBW-deformations of U.

Define

$$D: T(V) \to A' \otimes A'^{op},$$

 $D(x) = x \otimes 1 - 1 \otimes x, \quad \text{ for all } x \in V.$

伺 ト く ヨ ト く ヨ ト

A lemma

• Let U = T(V)/(R) be a weakly symmetric algebra, and $\varphi : R \to V$ and $\theta : R \to \mathbb{k}$ be linear maps.

Set

$$I_2 = \{r - \varphi(r) | r \in R\},$$
$$I'_2 = \{r - \varphi(r) - \theta(r) | r \in R\}.$$

• Assume that both $A = T(V)/(I_2)$ and $A' = T(V)/(I'_2)$ are PBW-deformations of U.

Define

$$D: T(V) \to A' \otimes A'^{op},$$

 $D(x) = x \otimes 1 - 1 \otimes x, \quad \text{ for all } x \in V.$

• D induces an algebra morphism (also denoted by D)

$$D: A \to A' \otimes A'^{op}.$$

伺 ト く ヨ ト く ヨ ト

• Lemma. A' ⊗ A'^{op} is projective either as a left A-module or as a right A-module.

∃ ►

- Lemma. A' ⊗ A'^{op} is projective either as a left A-module or as a right A-module.
- The key point to prove the lemma is that U is a graded Hopf algebra. Then U ⊗ U^{op} is a free module either as a left U-module or as a right U-module.

Theorem (H-Zhang)

Let U = T(V)/(R) be a weakly symmetric algebra. Assume that both $A = T(V)/(r - \varphi(r) : r \in R)$ and $A' = T(V)/(r - \varphi(r) - \theta(r) : r \in R)$ are PBW-deformations of U. If A is CY-d, then so is A'.

Theorem (H-Zhang)

Let U = T(V)/(R) be a weakly symmetric algebra. Assume that both $A = T(V)/(r - \varphi(r) : r \in R)$ and $A' = T(V)/(r - \varphi(r) - \theta(r) : r \in R)$ are PBW-deformations of U. If A is CY-d, then so is A'.

Conversely, assume further that U is a noetherian domain and Artin-Schelter regular. If A' is CY-d, then so is A.

Theorem (H-Van Oystaeyen-Zhang)

Let g be a finite dimensional Lie algebra. Then for any 2-cocycle f ∈ Z²(g, lk), the following statements are equivalent.
(i) The Sridharan enveloping algebra U_f(g) is CY-d.
(ii) The universal enveloping algebra U(g) is CY-d.
(iii) dim g = d and g is unimodular, that is, for any x ∈ g, tr(ad_g(x)) = 0.

Theorem (H-Van Oystaeyen-Zhang)

Let A be a noetherian CY filtered algebra of dimension 3 such that gr(A) is commutative and generated in degree 1, then A is isomorphic to $\mathbb{k}\langle x, y, z \rangle/(R)$ with the commuting relations R listed in the following table:

Case	$\{x, y\}$	$\{x, z\}$	$\{y, z\}$
1	Z	-2x	2 <i>y</i>
2	у	-z	0
3	z	0	0
4	0	0	0
5	у	- <i>z</i>	1
6	z	1	0
7	1	0	0
where $\{x, y\} = xy - yx$.			

A 3 b

34.16

Remarks

Remarks.

• This is a small step towards our aim to find all the possible noetherian connected filtered Calabi-Yau algebras of dimension 3.

A B + A B +

э

Remarks

Remarks.

- This is a small step towards our aim to find all the possible noetherian connected filtered Calabi-Yau algebras of dimension 3.
- The results can be generalized without too much difficulty to the nonquadratic algebras. That is, if the graded Hopf algebra *U* is *N*-homogeneous with some "anti-symmetric" relations, then the same results still hold.

For example, U = T(V)/(r), where

$$r = \sum_{\sigma \in S_n} sgn(\sigma) x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)}.$$

Thank you!

æ

2

Э