Nichols algebras with many cubic relations

István Heckenberger (University of Marburg, Germany)

heckenberger@Mathematik.Uni-Marburg.de
The talk is based on a joint work with A. Lochmann and L. Vendramin. We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups under the assumption that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras, a new example is obtained. The proof is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands.

Nichols algebras with many cubic relations

I. Heckenberger

Philipps-Universität Marburg
Almería, July 7, 2011

Contents

(1) Nichols algebra of a braided vector space
(2) Racks and the Hurwitz action of the braid group
(3) Classification

Nichols algebras

k : some field; all appearing tensor products are over k
I. Heckenberger

Nichols algebra of a braided vector space

Racks and the
Hurwitz action of

Nichols algebras

k : some field; all appearing tensor products are over k
V : vector space over k

Nichols algebras with many cubic relations
I. Heckenberger

Nichols algebra of a braided vector space

Racks and the
Hurwitz action of

Nichols algebras

k : some field; all appearing tensor products are over k
V : vector space over k
$c \in \operatorname{Aut}(V \otimes V)$ satisfying the braid relation

```
Nichols algebras with many cubic relations
```

I. Heckenberger

Nichols algebra of a braided vector space

Nichols algebras

k : some field; all appearing tensor products are over k
V : vector space over k
$c \in \operatorname{Aut}(V \otimes V)$ satisfying the braid relation
(V, c) is called a braided vector space
I. Heckenberger

Nichols algebra of a braided vector space

Nichols algebras

k : some field; all appearing tensor products are over k
V : vector space over k
$c \in \operatorname{Aut}(V \otimes V)$ satisfying the braid relation
(V, c) is called a braided vector space
$T V$: tensor algebra, has unique braiding $c \in \operatorname{Aut}(T V \otimes T V)$ extending $c \in \operatorname{Aut}(V \otimes V)$

Nichols algebras

k : some field; all appearing tensor products are over k
V : vector space over k
$c \in \operatorname{Aut}(V \otimes V)$ satisfying the braid relation
(V, c) is called a braided vector space
$T V$: tensor algebra, has unique braiding $c \in \operatorname{Aut}(T V \otimes T V)$ extending $c \in \operatorname{Aut}(V \otimes V)$
$T V \otimes T V$ is an algebra with
$(a \otimes b)(x \otimes y)=\sum a x^{\prime} \otimes b^{\prime} y$ for $a, b, x, y \in T V$, where $\sum x^{\prime} \otimes b^{\prime}=c(b \otimes x)$

Nichols algebras

k : some field; all appearing tensor products are over k
V : vector space over k
$c \in \operatorname{Aut}(V \otimes V)$ satisfying the braid relation
(V, c) is called a braided vector space
$T V$: tensor algebra, has unique braiding $c \in \operatorname{Aut}(T V \otimes T V)$ extending $c \in \operatorname{Aut}(V \otimes V)$
$T V \otimes T V$ is an algebra with
$(a \otimes b)(x \otimes y)=\sum a x^{\prime} \otimes b^{\prime} y$ for $a, b, x, y \in T V$, where $\sum x^{\prime} \otimes b^{\prime}=c(b \otimes x)$
$T V$ has unique comultiplication Δ such that
$\Delta(1)=1 \otimes 1, \Delta(v)=1 \otimes v+v \otimes 1$ for all $v \in V, \Delta$ is an algebra map

Nichols algebras

k : some field; all appearing tensor products are over k
V : vector space over k
$c \in \operatorname{Aut}(V \otimes V)$ satisfying the braid relation
(V, c) is called a braided vector space
$T V$: tensor algebra, has unique braiding $c \in \operatorname{Aut}(T V \otimes T V)$ extending $c \in \operatorname{Aut}(V \otimes V)$
$T V \otimes T V$ is an algebra with
$(a \otimes b)(x \otimes y)=\sum a x^{\prime} \otimes b^{\prime} y$ for $a, b, x, y \in T V$, where $\sum x^{\prime} \otimes b^{\prime}=c(b \otimes x)$
$T V$ has unique comultiplication Δ such that
$\Delta(1)=1 \otimes 1, \Delta(v)=1 \otimes v+v \otimes 1$ for all $v \in V, \Delta$ is an algebra map
$T V$ is a Hopf algebra in the braided sense

Nichols algebras

k : some field; all appearing tensor products are over k
V : vector space over k
$c \in \operatorname{Aut}(V \otimes V)$ satisfying the braid relation
(V, c) is called a braided vector space
$T V$: tensor algebra, has unique braiding $c \in \operatorname{Aut}(T V \otimes T V)$ extending $c \in \operatorname{Aut}(V \otimes V)$
$T V \otimes T V$ is an algebra with
$(a \otimes b)(x \otimes y)=\sum a x^{\prime} \otimes b^{\prime} y$ for $a, b, x, y \in T V$, where $\sum x^{\prime} \otimes b^{\prime}=c(b \otimes x)$
$T V$ has unique comultiplication Δ such that
$\Delta(1)=1 \otimes 1, \Delta(v)=1 \otimes v+v \otimes 1$ for all $v \in V, \Delta$ is an algebra map
$T V$ is a Hopf algebra in the braided sense

Nichols algebras

I. Heckenberger
$I(V) \subseteq \oplus_{n=2}^{\infty} T^{n} V:$ maximal two-sided coideal

Nichols algebra of a braided vector space

Racks and the
Hurwitz action of

Nichols algebras

```
        Nichols algebras with many cubic relations
```

I. Heckenberger
$I(V) \subseteq \oplus_{n=2}^{\infty} T^{n} V:$ maximal two-sided coideal $I(V)$ is an \mathbb{N}_{0}-graded Hopf ideal

Nichols algebra of a braided vector space

Nichols algebras

I. Heckenberger
$I(V) \subseteq \oplus_{n=2}^{\infty} T^{n} V:$ maximal two-sided coideal $I(V)$ is an \mathbb{N}_{0}-graded Hopf ideal
$\mathcal{B}(V)=T V / I(V)$ is a graded braided Hopf algebra, called the Nichols algebra of V.

Nichols algebra of a braided vector space

Nichols algebras

I. Heckenberger
$I(V) \subseteq \oplus_{n=2}^{\infty} T^{n} V$: maximal two-sided coideal $I(V)$ is an \mathbb{N}_{0}-graded Hopf ideal
$\mathcal{B}(V)=T V / I(V)$ is a graded braided Hopf algebra, called the Nichols algebra of V.

There are many equivalent characterizations (e.g. cotensor coalgebra, quantum symmetrizers).

Nichols algebras

$I(V) \subseteq \oplus_{n=2}^{\infty} T^{n} V:$ maximal two-sided coideal $I(V)$ is an \mathbb{N}_{0}-graded Hopf ideal $\mathcal{B}(V)=T V / I(V)$ is a graded braided Hopf algebra, called the Nichols algebra of V.

There are many equivalent characterizations (e.g. cotensor coalgebra, quantum symmetrizers).

The Hilbert series of $\mathcal{B}(V)$ is the formal power series

$$
H_{\mathcal{B}(V)}(t)=\sum_{n=0}^{\infty} \operatorname{dim}_{\mathbb{k}} \mathcal{B}(V)(n) t^{n}
$$

Nichols algebras

$I(V) \subseteq \oplus_{n=2}^{\infty} T^{n} V:$ maximal two-sided coideal $I(V)$ is an \mathbb{N}_{0}-graded Hopf ideal $\mathcal{B}(V)=T V / I(V)$ is a graded braided Hopf algebra, called the Nichols algebra of V.

There are many equivalent characterizations (e.g. cotensor coalgebra, quantum symmetrizers).

The Hilbert series of $\mathcal{B}(V)$ is the formal power series

$$
H_{\mathcal{B}(V)}(t)=\sum_{n=0}^{\infty} \operatorname{dim}_{\mathbb{k}} \mathcal{B}(V)(n) t^{n}
$$

Examples

Examples: symmetric algebra of V, exterior algebra of V, positive part of a quantized enveloping algebra of a Kac-Moody Lie algebra (q not a root of 1), positive part of a small quantum group
I. Heckenberger

Nichols algebra of a braided vector space

Examples

Examples: symmetric algebra of V, exterior algebra of V, positive part of a quantized enveloping algebra of a Kac-Moody Lie algebra (q not a root of 1), positive part of a small quantum group

In these cases c is of diagonal type: there is a basis $\left(x_{j}\right)_{j \in J}$ of V and scalars $q_{i j}, i, j \in J$ with $c\left(x_{i} \otimes x_{j}\right)=q_{i j} x_{j} \otimes x_{i}$ for all i, j.
I. Heckenberger

Nichols algebra of a braided vector space

Examples

Examples: symmetric algebra of V, exterior algebra of V, positive part of a quantized enveloping algebra of a Kac-Moody Lie algebra (q not a root of 1), positive part of a small quantum group

In these cases c is of diagonal type: there is a basis $\left(x_{j}\right)_{j \in J}$ of V and scalars $q_{i j}, i, j \in J$ with $c\left(x_{i} \otimes x_{j}\right)=q_{i j} x_{j} \otimes x_{i}$ for all i, j.

Example 1.

$V=\operatorname{span}_{k}\left\{x_{1}, x_{2}\right\}, c\left(x_{i} \otimes x_{j}\right)=q_{i j} x_{j} \otimes x_{i}, p, r, \zeta \in \mathbb{k}^{\times}$,
$\left(q_{i j}\right)=\left(\begin{array}{cc}p & r \\ p^{-1} r^{-1} & \zeta\end{array}\right), \zeta^{2}+\zeta+1=0$, assume $N:=$ $\min \left\{m \in \mathbb{N} \mid(m)_{p}:=1+p+p^{2}+\cdots+p^{m-1}=0\right\}<\infty$. $\mathcal{B}(V)=T V /\left(x_{1} x_{12}-p r x_{12} x_{1}, x_{1}^{N}, x_{2}^{3}\right)$,
$x_{12}=x_{1} x_{2}-r x_{2} x_{1}$.
I. Heckenberger

Questions

known (for diagonal type):
(1) PBW type theorem due to Kharchenko
(2) criterion for $\operatorname{dim}_{k} \mathcal{B}(V)<\infty$
(3) criterion for finiteness of the set of PBW generators
(4) defining relations (recent, see talk of Angiono)
I. Heckenberger

Nichols algebra of a braided vector space

Questions

known (for diagonal type):
(1) PBW type theorem due to Kharchenko
(2) criterion for $\operatorname{dim}_{k} \mathcal{B}(V)<\infty$
(3) criterion for finiteness of the set of PBW generators
(4) defining relations (recent, see talk of Angiono)
these facts are used in the celebrated classification of pointed Hopf algebras by Andruskiewitsch \& Schneider
I. Heckenberger

Nichols algebra of a braided vector space

Questions

known (for diagonal type):
(1) PBW type theorem due to Kharchenko
(2) criterion for $\operatorname{dim}_{k} \mathcal{B}(V)<\infty$
(3) criterion for finiteness of the set of PBW generators
(4) defining relations (recent, see talk of Angiono)
these facts are used in the celebrated classification of pointed Hopf algebras by Andruskiewitsch \& Schneider not known:
(1) liftings, especially if $q_{i i}$ is a root of 1 of small order
(2) structure and dimension of $\mathcal{B}(V)$ if c is not of diagonal type, especially if it comes from a Yetter-Drinfeld structure of V over a finite group (except a few special cases)

Questions

known (for diagonal type):
(1) PBW type theorem due to Kharchenko
(2) criterion for $\operatorname{dim}_{k} \mathcal{B}(V)<\infty$
(3) criterion for finiteness of the set of PBW generators
(4) defining relations (recent, see talk of Angiono)
these facts are used in the celebrated classification of pointed Hopf algebras by Andruskiewitsch \& Schneider not known:
(1) liftings, especially if $q_{i i}$ is a root of 1 of small order
(2) structure and dimension of $\mathcal{B}(V)$ if c is not of diagonal type, especially if it comes from a Yetter-Drinfeld structure of V over a finite group (except a few special cases)

Examples

I. Heckenberger

Example 2.

(Milinski-Schneider, Fomin-Kirillov) $3 \leq n \leq 5, G=\mathfrak{S}_{n}$, $g=(12), G^{g}=\mathfrak{S}_{2} \times \mathfrak{S}_{n-2} \subseteq \mathfrak{S}_{n}, V_{g}=\mathbb{k} v$, $(i j) v=-v$ for all $(i j) \in \mathfrak{S}_{2} \times \mathfrak{S}_{n-2}, V=M\left(g, V_{g}\right)$.

Nichols algebra of a braided vector space

Racks and the Hurwitz action of the braid group

Examples

Nichols algebras with many cubic relations
I. Heckenberger

Example 2.

(Milinski-Schneider, Fomin-Kirillov) $3 \leq n \leq 5, G=\mathfrak{S}_{n}$, $g=(12), G^{g}=\mathfrak{S}_{2} \times \mathfrak{S}_{n-2} \subseteq \mathfrak{S}_{n}, V_{g}=\mathbb{k} v$, $(i j) v=-v$ for all $(i j) \in \mathfrak{S}_{2} \times \mathfrak{S}_{n-2}, V=M\left(g, V_{g}\right)$.
$V=\operatorname{span}_{\mathrm{k}}\left\{v_{s} \mid s=(i j)\right.$ with $\left.1 \leq i<j \leq n\right\}, v_{s} \in V_{s}$, $h v_{s}=\operatorname{sgn}(h) v_{h s h^{-1}}$ for all $h \in G, s$ a transposition.

Examples

Example 2.

(Milinski-Schneider, Fomin-Kirillov) $3 \leq n \leq 5, G=\mathfrak{S}_{n}$, $g=(12), G^{g}=\mathfrak{S}_{2} \times \mathfrak{S}_{n-2} \subseteq \mathfrak{S}_{n}, V_{g}=\mathbb{k} v$, $(i j) v=-v$ for all $(i j) \in \mathfrak{S}_{2} \times \mathfrak{S}_{n-2}, V=M\left(g, V_{g}\right)$. $V=\operatorname{span}_{\mathrm{k}}\left\{v_{s} \mid s=(i j)\right.$ with $\left.1 \leq i<j \leq n\right\}, v_{s} \in V_{s}$, $h v_{s}=\operatorname{sgn}(h) v_{h s h^{-1}}$ for all $h \in G, s$ a transposition.
$\mathcal{B}(V)=T V / I(V), I(V)$ is the ideal generated by

$$
\begin{aligned}
v_{(i j)}^{2}, & |\{i, j\}| & =2, \\
v_{(i j)} v_{(k l)}+v_{(k i)} v_{(i j)}, & |\{i, j, k, l\}| & =4, \\
v_{(i j)} v_{(j k)}+v_{(j k)} v_{(k i)}+v_{(k i)} v_{(i j)}, & |\{i, j, k\}| & =3 .
\end{aligned}
$$

Nichols algebra of a braided vector space

Examples

Nichols algebras with many cubic relations
I. Heckenberger

Example 3.

(H., Lochmann, Vendramin) $X=\left(\operatorname{Ad} A_{4}\right)(234) \subseteq A_{4}$ $=\left\{g_{1}=(234), g_{2}=(143), g_{3}=(124), g_{4}=\right.$
$(132)\} \subseteq A_{4}, G=G_{X}, G^{g_{1}}=\left\langle g_{1}, g_{2} g_{4}\right\rangle$,
$V=\operatorname{span}_{\mathrm{k}}\{a, b, c, d\}$,
$V_{g_{1}}=\mathbb{k} a, V_{g_{2}}=\mathbb{k} b, V_{g_{3}}=\mathbb{k} c, V_{g_{4}}=\mathbb{k} d$,
$g_{1} a=\zeta a, g_{2} g_{4} a=-\zeta^{2} a, \zeta^{2}+\zeta+1=0$.

Examples

Example 3.

(H., Lochmann, Vendramin) $X=\left(\operatorname{Ad} A_{4}\right)(234) \subseteq A_{4}$
$=\left\{g_{1}=(234), g_{2}=(143), g_{3}=(124), g_{4}=\right.$
$(132)\} \subseteq A_{4}, G=G_{X}, G^{g_{1}}=\left\langle g_{1}, g_{2} g_{4}\right\rangle$,
$V=\operatorname{span}_{k}\{a, b, c, d\}$,
$V_{g_{1}}=\mathbb{k} a, V_{g_{2}}=\mathbb{k} b, V_{g_{3}}=\mathbb{k} c, V_{g_{4}}=\mathbb{k} d$, $g_{1} a=\zeta a, g_{2} g_{4} a=-\zeta^{2} a, \zeta^{2}+\zeta+1=0$.
$\mathcal{B}(V)=T V / I(V), I(V)$ is the ideal generated by $a^{3}, b^{3}, c^{3}, d^{3}$,
$a b-\zeta c a+\zeta^{2} b c, a c-\zeta d a+\zeta^{2} c d, a d-\zeta b a+\zeta^{2} d b$, $b d+\zeta c b+\zeta^{2} d c,+$ a homogeneous relation of degree 6 .

Nichols algebra of a braided vector space

Examples

Example 3.

(H., Lochmann, Vendramin) $X=\left(\operatorname{Ad} A_{4}\right)(234) \subseteq A_{4}$
$=\left\{g_{1}=(234), g_{2}=(143), g_{3}=(124), g_{4}=\right.$
$(132)\} \subseteq A_{4}, G=G_{X}, G^{g_{1}}=\left\langle g_{1}, g_{2} g_{4}\right\rangle$,
$V=\operatorname{span}_{k}\{a, b, c, d\}$,
$V_{g_{1}}=\mathbb{k} a, V_{g_{2}}=\mathbb{k} b, V_{g_{3}}=\mathbb{k} c, V_{g_{4}}=\mathbb{k} d$, $g_{1} a=\zeta a, g_{2} g_{4} a=-\zeta^{2} a, \zeta^{2}+\zeta+1=0$.
$\mathcal{B}(V)=T V / I(V), I(V)$ is the ideal generated by $a^{3}, b^{3}, c^{3}, d^{3}$,
$a b-\zeta c a+\zeta^{2} b c, a c-\zeta d a+\zeta^{2} c d, a d-\zeta b a+\zeta^{2} d b$, $b d+\zeta c b+\zeta^{2} d c,+$ a homogeneous relation of degree 6 .
$\operatorname{dim} \mathcal{B}(V)=5184$.

Nichols algebra of a braided vector space

Nichols algebra criterion

Nichols algebras with many cubic relations
I. Heckenberger

Nichols algebra of a braided vector space

Racks and the
Hurwitz action of the braid group

Nichols algebra criterion

I. Heckenberger

Nichols algebra of a braided vector space
$I=I(V)$?
Theorem. (Andruskiewitsch, Graña, '03) Let $V \in{ }_{G}^{G} \mathcal{Y D}$ and let $I \subseteq T V$ be an \mathbb{N}_{0}-graded Hopf ideal of $T V$ in ${ }_{G}^{G} \mathcal{Y D}$ such that $I \cap \mathbb{k}=I \cap V=0$. Let $m \in \mathbb{N}_{0}$. Assume that

$$
\operatorname{dim} T^{m} V /\left(I \cap T^{m} V\right)=1,
$$

$\operatorname{dim} T^{n} V /\left(I \cap T^{n} V\right)=0 \quad$ for all $n>m$.
If $\mathcal{B}(V)(m) \neq 0$ then $I=I(V)$.

Racks

Suppose that V is a f.d. Yetter-Drinfeld module over a group $G: V \in k G-\bmod , V=\oplus_{g \in G} V_{g}, h V_{g}=V_{h g h^{-1}}$ for all $g, h \in G$.

Nichols algebras with many cubic relations
I. Heckenberger

Nichols algebra of a braided vector space

Racks and the
Hurwitz action of the braid group

Racks

Suppose that V is a f.d. Yetter-Drinfeld module over a group $G: V \in k G-\bmod , V=\oplus_{g \in G} V_{g}, h V_{g}=V_{h g h^{-1}}$ for all $g, h \in G$.

$$
\begin{gathered}
X=\operatorname{supp} V:=\left\{g \in G \mid V_{g} \neq 0\right\} . \text { For all } x, y \in X \text { let } \\
x \triangleright y=x y x^{-1} .
\end{gathered}
$$

Nichols algebras with many cubic relations
I. Heckenberger

Nichols algebra of a braided vector

Racks and the Hurwitz action of the braid group

Racks

Suppose that V is a f.d. Yetter-Drinfeld module over a group $G: V \in k G-\bmod , V=\oplus_{g \in G} V_{g}, h V_{g}=V_{h g h^{-1}}$ for all $g, h \in G$.
$X=\operatorname{supp} V:=\left\{g \in G \mid V_{g} \neq 0\right\}$. For all $x, y \in X$ let

$$
x \triangleright y=x y x^{-1}
$$

Nichols algebras with many cubic relations
I. Heckenberger

Then $\triangleright: X \times X \rightarrow X$ and for all $x, y, z \in X$ we have
(1) $x \triangleright(y \triangleright z)=(x \triangleright y) \triangleright(x \triangleright z)$, and
(2) $\varphi_{x}: X \rightarrow X, u \mapsto x \triangleright u$ is bijective.

Racks

Suppose that V is a f.d. Yetter-Drinfeld module over a group $G: V \in k G-\bmod , V=\oplus_{g \in G} V_{g}, h V_{g}=V_{h g h^{-1}}$ for all $g, h \in G$.
$X=\operatorname{supp} V:=\left\{g \in G \mid V_{g} \neq 0\right\}$. For all $x, y \in X$ let

$$
x \triangleright y=x y x^{-1}
$$

Then $\triangleright: X \times X \rightarrow X$ and for all $x, y, z \in X$ we have (1) $x \triangleright(y \triangleright z)=(x \triangleright y) \triangleright(x \triangleright z)$, and
(2) $\varphi_{x}: X \rightarrow X, u \mapsto x \triangleright u$ is bijective.

Such sets are called racks or automorphic sets (due to Brieskorn).
I. Heckenberger

Racks

Suppose that V is a f.d. Yetter-Drinfeld module over a group $G: V \in k G-\bmod , V=\oplus_{g \in G} V_{g}, h V_{g}=V_{h g h^{-1}}$ for all $g, h \in G$.
$X=\operatorname{supp} V:=\left\{g \in G \mid V_{g} \neq 0\right\}$. For all $x, y \in X$ let

$$
x \triangleright y=x y x^{-1}
$$

Then $\triangleright: X \times X \rightarrow X$ and for all $x, y, z \in X$ we have (1) $x \triangleright(y \triangleright z)=(x \triangleright y) \triangleright(x \triangleright z)$, and
(2) $\varphi_{x}: X \rightarrow X, u \mapsto x \triangleright u$ is bijective.

Such sets are called racks or automorphic sets (due to Brieskorn).

The group $G_{X}=\langle X\rangle /(x y=(x \triangleright y) x \mid x, y \in X)$ is called the enveloping group of X.
I. Heckenberger

Racks

Suppose that V is a f.d. Yetter-Drinfeld module over a group $G: V \in k G-\bmod , V=\oplus_{g \in G} V_{g}, h V_{g}=V_{h g h^{-1}}$ for all $g, h \in G$.
$X=\operatorname{supp} V:=\left\{g \in G \mid V_{g} \neq 0\right\}$. For all $x, y \in X$ let

$$
x \triangleright y=x y x^{-1}
$$

Then $\triangleright: X \times X \rightarrow X$ and for all $x, y, z \in X$ we have (1) $x \triangleright(y \triangleright z)=(x \triangleright y) \triangleright(x \triangleright z)$, and
(2) $\varphi_{x}: X \rightarrow X, u \mapsto x \triangleright u$ is bijective.

Such sets are called racks or automorphic sets (due to Brieskorn).

The group $G_{X}=\langle X\rangle /(x y=(x \triangleright y) x \mid x, y \in X)$ is called the enveloping group of X.
I. Heckenberger

Hurwitz action

Let X be a rack and $n \in \mathbb{N}$.

Nichols algebras with many cubic relations
I. Heckenberger

Nichols algebra of a braided vector space

Racks and the
Hurwitz action of the braid group

Hurwitz action

Let X be a rack and $n \in \mathbb{N}$.
The Artin braid group \mathcal{B}_{n} of type A acts on X^{n} via

$$
\sigma_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i} \triangleright x_{i+1}, x_{i}, x_{i+2}, \ldots, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$. It is called the Hurwitz action of \mathcal{B}_{n}, the orbits are called the Hurwitz orbits.

Hurwitz action

Let X be a rack and $n \in \mathbb{N}$.
The Artin braid group \mathcal{B}_{n} of type A acts on X^{n} via

$$
\sigma_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i} \triangleright x_{i+1}, x_{i}, x_{i+2}, \ldots, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$. It is called the Hurwitz action of \mathcal{B}_{n}, the orbits are called the Hurwitz orbits.

There is only very little known on the structure of Hurwitz orbits (subgroups of the braid group), even for \mathcal{B}_{3}.

Hurwitz action

Let X be a rack and $n \in \mathbb{N}$.
The Artin braid group \mathcal{B}_{n} of type A acts on X^{n} via

$$
\sigma_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i} \triangleright x_{i+1}, x_{i}, x_{i+2}, \ldots, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$. It is called the Hurwitz action of \mathcal{B}_{n}, the orbits are called the Hurwitz orbits.

There is only very little known on the structure of Hurwitz orbits (subgroups of the braid group), even for \mathcal{B}_{3}.

Given a 2-cocycle on X, one can define a braided vector space V graded by X.

Hurwitz action

Let X be a rack and $n \in \mathbb{N}$.
The Artin braid group \mathcal{B}_{n} of type A acts on X^{n} via

$$
\sigma_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i} \triangleright x_{i+1}, x_{i}, x_{i+2}, \ldots, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$. It is called the Hurwitz action of \mathcal{B}_{n}, the orbits are called the Hurwitz orbits.

There is only very little known on the structure of Hurwitz orbits (subgroups of the braid group), even for \mathcal{B}_{3}.

Given a 2-cocycle on X, one can define a braided vector space V graded by X.
Then $c\left(V_{g} \otimes V_{h}\right)=V_{g \triangleright h} \otimes V_{g}$ for all $g, h \in X$.

Hurwitz action

Let X be a rack and $n \in \mathbb{N}$.
The Artin braid group \mathcal{B}_{n} of type A acts on X^{n} via

$$
\sigma_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i} \triangleright x_{i+1}, x_{i}, x_{i+2}, \ldots, x_{n}\right)
$$

for all $x_{1}, \ldots, x_{n} \in X$. It is called the Hurwitz action of \mathcal{B}_{n}, the orbits are called the Hurwitz orbits.

There is only very little known on the structure of Hurwitz orbits (subgroups of the braid group), even for \mathcal{B}_{3}.

Given a 2-cocycle on X, one can define a braided vector space V graded by X.
Then $c\left(V_{g} \otimes V_{h}\right)=V_{g \triangleright h} \otimes V_{g}$ for all $g, h \in X$.

Nichols algebras

V : Yetter-Drinfeld module over a group G
I. Heckenberger

Nichols algebra of a braided vector space

Racks and the
Hurwitz action of the braid group

Nichols algebras

V : Yetter-Drinfeld module over a group G
Fact (Andruskiewitsch, Schneider): $\mathcal{B}(V)$ depends as an algebra and coalgebra on the braiding of V, but not on the G-grading and the $\mathbb{k} G$-module structure.

Nichols algebras

V : Yetter-Drinfeld module over a group G
Fact (Andruskiewitsch, Schneider): $\mathcal{B}(V)$ depends as an algebra and coalgebra on the braiding of V, but not on the G-grading and the $\mathbb{k} G$-module structure.

We may assume: G is generated by $X:=\operatorname{supp} V$.

Nichols algebras

V : Yetter-Drinfeld module over a group G
Fact (Andruskiewitsch, Schneider): $\mathcal{B}(V)$ depends as an algebra and coalgebra on the braiding of V, but not on the G-grading and the $\mathbb{k} G$-module structure.

We may assume: G is generated by $X:=\operatorname{supp} V$.
Fact: (Andruskiewitsch, Fantino, Graña, Vendramin) $\mathcal{B}(V)$ is infinite dimensional for almost all sporadic simple groups G and almost all simple V

Nichols algebras

V : Yetter-Drinfeld module over a group G
Fact (Andruskiewitsch, Schneider): $\mathcal{B}(V)$ depends as an algebra and coalgebra on the braiding of V, but not on the G-grading and the $\mathbb{k} G$-module structure.

We may assume: G is generated by $X:=\operatorname{supp} V$.
Fact: (Andruskiewitsch, Fantino, Graña, Vendramin) $\mathcal{B}(V)$ is infinite dimensional for almost all sporadic simple groups G and almost all simple V
Fact: (Schauenburg) $\mathcal{B}(V)(n)=T^{n} V / \operatorname{ker} \mathcal{S}_{n}$,
$\mathcal{S}_{n} \in \operatorname{End}\left(T^{n} V\right)$ (quantum symmetrizer) depends on the braiding.

Nichols algebras

V : Yetter-Drinfeld module over a group G
Fact (Andruskiewitsch, Schneider): $\mathcal{B}(V)$ depends as an algebra and coalgebra on the braiding of V, but not on the G-grading and the $\mathbb{k} G$-module structure.

We may assume: G is generated by $X:=\operatorname{supp} V$.
Fact: (Andruskiewitsch, Fantino, Graña, Vendramin) $\mathcal{B}(V)$ is infinite dimensional for almost all sporadic simple groups G and almost all simple V
Fact: (Schauenburg) $\mathcal{B}(V)(n)=T^{n} V / \operatorname{ker} \mathcal{S}_{n}$,
$\mathcal{S}_{n} \in \operatorname{End}\left(T^{n} V\right)$ (quantum symmetrizer) depends on the braiding.
$T^{n} V$ with $n \geq 2$ decomposes into subspaces graded by Hurwitz orbits. Estimates of the rank of \mathcal{S}_{n} on such subspaces give estimates of the Hilbert series of $\mathcal{B}(V)$.

Known examples

Table: Known examples of f.d. Nichols algebras (V simple)

$\operatorname{dim} V$	$\operatorname{dim} \mathcal{B}(V)$	Hilbert series	origin
1	N	$(N)_{t}$	
3	12	$(2)_{t}^{2}(3)_{t}$	MS, FK
3	432	$(3)_{t}(4)_{t}(6)_{t}(6)_{t^{2}}$	$\mathrm{HS}($ char $\mathbb{K}=2)$
4	36	$(2)_{t}^{2}(3)_{t}^{2}$	GHV (char $\mathbb{k}=2)$
4	72	$(2)_{t}^{2}(3)_{t}(6)_{t}$	AG (char $\mathbb{k} \neq 2)$
4	5184	$(6)_{t}^{4}(2)_{t^{2}}^{2}$	HLV
5	1280	$(4)_{t}^{4}(5)_{t}$	AG (twice)
6	576	$(2)_{t}^{2}(3)_{t}^{2}(4)_{t}^{2}$	MS, FK (twice)
6	576	$(2)_{t}^{2}(3)_{t}^{2}(4)_{t}^{2}$	AG
7	326592	$(6)_{t}^{6}(7)_{t}$	$\mathrm{G}($ twice $)$
10	8294400	$\left(44 t_{t}^{4}(5)_{t}^{2}(6)_{t}^{4}\right.$	FK, GG
10	8294400	$(4)_{t}^{4}(5)_{t}^{2}(6)_{t}^{4}$	G

Observation: All Hilbert series factorize into products of polynomials of the form

$$
(m)_{t^{r}}=1+t^{r}+t^{2 r}+\cdots+t^{(m-1) r}, m, r \in \mathbb{N} .
$$

Observation: All Hilbert series factorize into products of polynomials of the form
$(m)_{t^{r}}=1+t^{r}+t^{2 r}+\cdots+t^{(m-1) r}, m, r \in \mathbb{N}$.
Open problems:

- Does the Hilbert series of $\mathcal{B}(V)$ always factorize in this way? (True for all known examples.)
- If so, is it possible to use this information to calculate the Hilbert series without determining an explicit basis of $\mathcal{B}(V)$?

First classification

Theorem. (Graña, H., Vendramin) G group,
$V \in{ }_{G}^{G} \mathcal{Y} \mathcal{D}$ f.d. absolutely irreducible, $G=\langle\operatorname{supp} V\rangle$, $d=\operatorname{dim} V$. The following assertions are equivalent.
(1) $\operatorname{dim} \mathcal{B}(V)(2) \leq d(d+1) / 2$.
(2) dim $\operatorname{ker}\left(1_{V \otimes V}+c\right) \geq d(d-1) / 2$, where
I. Heckenberger

$$
c \in \operatorname{Aut}(V \otimes V) .
$$

(3) There are $n_{1}, n_{2}, \ldots, n_{d} \in \mathbb{Z}_{\geq 2}$ such that

$$
H_{\mathcal{B}(V)}(t)=\left(n_{1}\right)_{t}\left(n_{2}\right)_{t} \cdots\left(n_{d}\right)_{t} .
$$

(4) V is contained in a given list.

For all these examples we have $\operatorname{dim} V_{g}=1$ for $g \in \operatorname{supp} V$.

First classification

Theorem. (Graña, H., Vendramin) G group,
$V \in{ }_{G}^{G} \mathcal{Y} \mathcal{D}$ f.d. absolutely irreducible, $G=\langle\operatorname{supp} V\rangle$, $d=\operatorname{dim} V$. The following assertions are equivalent.
(1) $\operatorname{dim} \mathcal{B}(V)(2) \leq d(d+1) / 2$.
(2) dim $\operatorname{ker}\left(1_{V \otimes V}+c\right) \geq d(d-1) / 2$, where
I. Heckenberger $c \in \operatorname{Aut}(V \otimes V)$.
(3) There are $n_{1}, n_{2}, \ldots, n_{d} \in \mathbb{Z}_{\geq 2}$ such that

$$
H_{\mathcal{B}(V)}(t)=\left(n_{1}\right)_{t}\left(n_{2}\right)_{t} \cdots\left(n_{d}\right)_{t}
$$

(4) V is contained in a given list.

For all these examples we have $\operatorname{dim} V_{g}=1$ for $g \in \operatorname{supp} V$.
$(4) \Rightarrow(3)$: computer algebra. $(3) \Rightarrow(2) \Rightarrow(1)$ trivial.
Difficult part: $(1) \Rightarrow(4)$.

Sketch of proof

1. Work with the enveloping group $G_{X}, X=\operatorname{supp} V$, instead of G. Let $g \in X$.

Nichols algebras with many cubic relations
I. Heckenberger

Sketch of proof

1. Work with the enveloping group $G_{X}, X=\operatorname{supp} V$, instead of G. Let $g \in X$.
2. For any Hurwitz orbit of X^{2}, $\operatorname{dim}_{k} I(V) \cap T^{2} V \leq\left(\operatorname{dim} V_{g}\right)^{2}$.

Nichols algebras with many cubic relations
I. Heckenberger braided vector

space

Racks and the

Sketch of proof

1. Work with the enveloping group $G_{X}, X=\operatorname{supp} V$, instead of G. Let $g \in X$.
2. For any Hurwitz orbit of X^{2}, $\operatorname{dim}_{k} I(V) \cap T^{2} V \leq\left(\operatorname{dim} V_{g}\right)^{2}$.

For $v \in V_{s}, w \in V_{t}$, we have $v \otimes w-c(v \otimes w)+c^{2}(v \otimes w)-\cdots+(-1)^{k} c^{k}(v \otimes w) \in I(V)$ if and only if $(-1)^{k+1} c^{k+1}(v \otimes w)=v \otimes w$.

Sketch of proof

1. Work with the enveloping group $G_{X}, X=\operatorname{supp} V$, instead of G. Let $g \in X$.
2. For any Hurwitz orbit of X^{2}, $\operatorname{dim}_{k} I(V) \cap T^{2} V \leq\left(\operatorname{dim} V_{g}\right)^{2}$.
For $v \in V_{s}, w \in V_{t}$, we have $v \otimes w-c(v \otimes w)+c^{2}(v \otimes w)-\cdots+(-1)^{k} c^{k}(v \otimes w) \in I(V)$ if and only if $(-1)^{k+1} c^{k+1}(v \otimes w)=v \otimes w$.
3. $\operatorname{dim} \mathcal{B}(V)(2) \leq \frac{d(d+1)}{2}$ implies that there are at most 6 Hurwitz orbits of X^{2} of length >2 containing (g, h) for some $h \in G$. Such racks can be classified.

Sketch of proof

1. Work with the enveloping group $G_{X}, X=\operatorname{supp} V$, instead of G. Let $g \in X$.
2. For any Hurwitz orbit of X^{2}, $\operatorname{dim}_{k} I(V) \cap T^{2} V \leq\left(\operatorname{dim} V_{g}\right)^{2}$.
For $v \in V_{s}, w \in V_{t}$, we have $v \otimes w-c(v \otimes w)+c^{2}(v \otimes w)-\cdots+(-1)^{k} c^{k}(v \otimes w) \in I(V)$ if and only if $(-1)^{k+1} c^{k+1}(v \otimes w)=v \otimes w$.
3. $\operatorname{dim} \mathcal{B}(V)(2) \leq \frac{d(d+1)}{2}$ implies that there are at most 6 Hurwitz orbits of X^{2} of length >2 containing (g, h) for some $h \in G$. Such racks can be classified.
$\operatorname{dim} \mathcal{B}(V)(2) \leq \frac{d(d+1)}{2}$ and $\operatorname{dim} V_{g}>1$ imply that G^{g} is abelian. Since V is absolutely irreducible, this is a contradiction. It follows that $\operatorname{dim} V_{g}=1$.

Sketch of proof

1. Work with the enveloping group $G_{X}, X=\operatorname{supp} V$, instead of G. Let $g \in X$.
2. For any Hurwitz orbit of X^{2}, $\operatorname{dim}_{k} I(V) \cap T^{2} V \leq\left(\operatorname{dim} V_{g}\right)^{2}$.
For $v \in V_{s}, w \in V_{t}$, we have $v \otimes w-c(v \otimes w)+c^{2}(v \otimes w)-\cdots+(-1)^{k} c^{k}(v \otimes w) \in I(V)$ if and only if $(-1)^{k+1} c^{k+1}(v \otimes w)=v \otimes w$.
3. $\operatorname{dim} \mathcal{B}(V)(2) \leq \frac{d(d+1)}{2}$ implies that there are at most 6 Hurwitz orbits of X^{2} of length >2 containing (g, h) for some $h \in G$. Such racks can be classified.
$\operatorname{dim} \mathcal{B}(V)(2) \leq \frac{d(d+1)}{2}$ and $\operatorname{dim} V_{g}>1$ imply that G^{g} is abelian. Since V is absolutely irreducible, this is a contradiction. It follows that $\operatorname{dim} V_{g}=1$.

Second classification

Theorem. (H., Lochmann, Vendramin) G group, $V \in{ }_{G}^{G} \mathcal{Y} \mathcal{D}$ f.d. absolutely irreducible, $G=\langle\operatorname{supp} V\rangle$, $d=\operatorname{dim} V$. Suppose that for all $x, y \in X$ we have $x \triangleright y=y$ or $x \triangleright(y \triangleright x)=y$. The following assertions are equivalent.
(1) dim $\operatorname{ker}\left(1+c_{12}+c_{12} c_{23}\right) \geq d\left(d^{2}-1\right) / 3$.
(2) There exist $r \in \mathbb{N}_{0}, n_{1}, \ldots, n_{d}, m_{1}, \ldots, m_{r} \in \mathbb{Z}_{\geq 2}$ with

$$
H_{\mathcal{B}(V)}(t)=\prod_{i=1}^{d}\left(n_{i}\right)_{t} \prod_{j=1}^{r}\left(m_{j}\right)_{t^{2}} .
$$

(3) V is contained in a given list.

Then $\operatorname{dim} V_{g}=1$ for all $g \in X$.

Second classification

Theorem. (H., Lochmann, Vendramin) G group, $V \in{ }_{G}^{G} \mathcal{Y} \mathcal{D}$ f.d. absolutely irreducible, $G=\langle\operatorname{supp} V\rangle$, $d=\operatorname{dim} V$. Suppose that for all $x, y \in X$ we have $x \triangleright y=y$ or $x \triangleright(y \triangleright x)=y$. The following assertions are equivalent.
(1) dim $\operatorname{ker}\left(1+c_{12}+c_{12} c_{23}\right) \geq d\left(d^{2}-1\right) / 3$.
(2) There exist $r \in \mathbb{N}_{0}, n_{1}, \ldots, n_{d}, m_{1}, \ldots, m_{r} \in \mathbb{Z}_{\geq 2}$ with

$$
H_{\mathcal{B}(V)}(t)=\prod_{i=1}^{d}\left(n_{i}\right)_{t} \prod_{j=1}^{r}\left(m_{j}\right)_{t^{2}} .
$$

(3) V is contained in a given list.

Then $\operatorname{dim} V_{g}=1$ for all $g \in X$. $(3) \Rightarrow(2)$: Computer algebra. $(2) \Rightarrow(1)$ trivial. Difficult part: $(1) \Rightarrow(3)$.

Sketch of proof.

Nichols algebras with many cubic relations
I. Heckenberger

Nichols algebra of a braided vector

Racks and the
Hurwitz action of

Sketch of proof.

1. Work with the enveloping group $G_{X}, X=\operatorname{supp} V$, instead of G.
2. There exist 7 isoclasses of Hurwitz orbits of X^{3} (follows from the assumption on X). The multiplicity of an isoclass in X^{3} depends of X. and can be calculated from elementary data of X.

Sketch of proof.

1. Work with the enveloping group $G_{X}, X=\operatorname{supp} V$, instead of G.
2. There exist 7 isoclasses of Hurwitz orbits of X^{3} (follows from the assumption on X). The multiplicity of an isoclass in X^{3} depends of X. and can be calculated from elementary data of X.
3. Decompose $T^{3} V$ into direct summands graded by Hurwitz orbits. By using plagues of directed colored graphs one can get good upper bounds for $\operatorname{dim}_{k} \operatorname{ker}\left(1+c_{12}+c_{12} c_{23}\right)$.

Sketch of proof.

1. Work with the enveloping group $G_{X}, X=\operatorname{supp} V$, instead of G.
2. There exist 7 isoclasses of Hurwitz orbits of X^{3} (follows from the assumption on X). The multiplicity of an isoclass in X^{3} depends of X. and can be calculated from elementary data of X.
3. Decompose $T^{3} V$ into direct summands graded by Hurwitz orbits. By using plagues of directed colored graphs one can get good upper bounds for $\operatorname{dim}_{k} \operatorname{ker}\left(1+c_{12}+c_{12} c_{23}\right)$.
4. (1) and the estimates in 3. give restrictions on X. Such X can be classified. The rest is similar to the proof of the previous theorem.

attention!

