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agustingarcia8@gmail.com

This is a joint work with Mart́ın Mombelli. It will appear in Pacific Journal of
Mathematics. A preprint is available at arXiv:1006.1857v1[math.QA].

We will recall the basic results on module categories over finite-dimensional Hopf
algebras [2], [4] and the classification of finite-dimensional Hopf algebras with corad-
ical kS3 or kS4 from [1], [3], respectively.

Using these results, we will show that if n = 3, 4 and M is an exact indecom-
posable module category over Rep(B(X, q)#kSn), then there exist

• a subgroup F < Sn and a 2-cocycle ψ ∈ Z2(F, k×),

• a subset Y ⊆ X invariant under the action of F ,

• a family of scalars {ξC} compatible with (F, ψ, Y ),

such that M ' B(Y,F,ψ,ξ)M, where B(Y, F, ψ, ξ) is a left B(X, q)#kSn-comodule
algebra constructed from data (Y, F, ψ, ξ). We also show a classification of con-
nected homogeneous left coideal subalgebras B(Y, F, ψ, ξ) of grH and together with
a presentation by generators and relations.

Finally we prove that if H is a finite-dimensional Hopf algebra with coradical kS3

or kS4 then H and grH are cocycle deformations of each other, a result analogous
to a theorem of Masuoka for abelian groups. This implies that there is a bijective
correspondence between module categories over Rep(H) and Rep(grH).
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Representations of tensor categories
Tensor categories

Let H be a Hopf algebra. Then, C = RepH, the category of
finite-dimensional modules over H is a tensor category, with

I ⊗ = ⊗k the usual tensor product: if M,N ∈ C, then
M ⊗ N ∈ C via

h ·m ⊗ n = ∆(h) ·m ⊗ n, h ∈ H, m ∈ M, n ∈ N

I 1 = k: k ∈ C via

h · 1 = ε(h)1, h ∈ H.

The associativity follows from the fact that Vectk ⊇ RepH and the
coassociativity of ∆.



Representations of tensor categories
Module categories

Let C = (C,⊗, 1) be a tensor category.

I A module category1 over C is an abelian category M
equipped with an exact bifunctor � : C ×M→M such that,
for each V ,W ∈ C, M ∈M, there are natural isomorphims

(V ⊗W )�M ∼= V � (W � U), 1�M ∼= M,

subject to natural axioms of associativity and unity.

I A module category is said to be exact if for every projective
object P ∈ C then P �M is projective in M for every
M ∈M.

1P. Etingof and V. Ostrik, Mosc. Math. J. (2004).



Representations of tensor categories
Module categories. Examples

I If (C,⊗, 1) is a tensor category, then (C,�) is a module
category over C, with � = ⊗.

I Let H be a Hopf algebra, (A, λ)2 a left H-comodule algebra.
The category of A-modules of finite dimension AM is a
representation of Rep(H).
The action � : RepH × AM→ AM is given by

V �M = V ⊗M, V ∈ Rep(H), M ∈ AM

where V ⊗M ∈ AM via

a · v ⊗m = λ(a) · (v ⊗m), a ∈ A, v ∈ V , m ∈ M.

2λ : A→ H ⊗ A, the coaction, is an algebra morphism.
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Representations of tensor categories
Module categories over RepH

Let H be a Hopf algebra of finite dimension. Let M be a module
category indecomposable and exact over Rep(H).

I There exists a left H-comodule algebra A right H-simple (i.e.
with no non-trivial H-costable right ideals) with trivial
coinvariants (AcoH = k) such that M' AM as modules over
Rep(H).3

3Andruskiewitsch. N. and Mombelli, M., J. Algebra (2007).



Representations of tensor categories
Module categories over RepH. The pointed case

Let H be a pointed Hopf algebra.

I Assume H = B(V )#kG . There exist

1. a subgroup F ⊆ G ,
2. a 2-cocycle ψ ∈ Z 2(F ,k×),

3. an homogeneous left coideal subalgebra K =
m⊕
i=0

Ki ⊆ B(V )

such that K1 ⊆ V is an F -invariant kG -subcomodule,

such that grA ' K#kψF as grH-comodule algebras.4

If A,A′ are two H-comodule algebras then

I AM' A′M as modules over Rep(H) if and only if there exist
g ∈ G such that gA′g−1 ∼= A as comodule algebras.5

4Mombelli, M., J. London Math. Soc., (2010).
5G.I., A. and Mombelli, M. Pacific Journal of Math., (2011).
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Representations of tensor categories
Pointed Hopf algebras over Sn

Let H be a finite-dimensional pointed Hopf algebra over Sn,
n = 3, 4, U = grH.

I U is the bosonization B(X , q)#kSn, where X is either On
2 or

O4
4 (only if n = 4) and q is a 2-cocycle.

Let us denote by KY the subalgebra of U generated by Y , for each
subset Y ⊆ X (for instance, KX = B(X , q)).

I Let K be an homogeneous left coideal subalgebra of U . Then
K is generated in degree one and K ∼= KY for some Y .
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H-comodule algebras
Liftings of KY

We associate an U-comodule algebra B(Y ,F , ψ, ξ) to the data:

I a subgroup F < Sn,

I a cocycle ψ ∈ Z 2(F , k×),

I a subset Y ⊆ X such that F · Y ⊆ Y ,

I a family ξ = {ξC}C∈R′ ∈ k compatible6 with (Y ,F , ψ).

in such a way that

I B(Y ,F , ψ, ξ) is a right U-simple left U-comodule algebra with
trivial coinvariants,

I there is an isomorphism of comodule algebras
grB(Y ,F , ψ, ξ) ' KY #kψF .

6R′ is a given subset of X × X . Compatibility is related to well-definition of
the comodule algebras B.
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H-comodule algebras
Liftings of KY

Moreover,

I B(X ,Sn, ψ, ξ) is a (U ,H)-biGalois extension.

Therefore,

I H = σU is a cocycle deformation of U .

I There is a bijective correspondence between equivalence
classes of exact module categories over RepU and RepH:

AM 7→ AσM.
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Representations of the category of modules over pointed
Hopf algebras over S3 and S4
Classification

Let H be a pointed Hopf algebra over G = S3 or S4, U = grH.

1. Let M be an exact indecomposable module category over
Rep(U), then there exist

(i) a subgroup F < G , and a 2-cocycle ψ ∈ Z 2(F ,k×),
(ii) a subset Y ⊂ X such that F · Y ⊂ Y ,
(iii) a family of scalars {ξC}C∈R′ compatible with (Y ,F , ψ),

such that there is an equivalence of modules

M' B(Y ,F ,ψ,ξ)M.

2. Let (Y ,F , ψ, ξ), (Y ′,F ′, ψ′, ξ′) be two families as above.
Then there exists an equivalence of module categories

A(Y ,F ,ψ,ξ)M' A(Y ′,F ′,ψ′,ξ′)M if and only if there exist an
element h ∈ G such that

F ′ = hFh−1, ψ′ = ψh, Y ′ = h · Y , {ξ′C} = {ξh−1·C}.



Representations of the category of modules over pointed
Hopf algebras over S3
Explicit examples: Modules categories over B(O3

2,−1)#kS3

In this case X = O3
2 = {(12), (13), (23)} and B(O3

2,−1) is the
algebra generated by the set {x(12), x(13), x(23)} with relations

x2(12), x
2
(13), x

2
(23),

x(12)x(13) + x(13)x(23) + x(23)x(12),

x(13)x(12) + x(23)x(13) + x(12)x(23).

The following are all the proper homogeneous left coideal
subalgebras of B(O3

2,−1)#kS3:

1. Ki = 〈xi 〉 ∼= k[x ]/〈x2〉, i ∈ O3
2;

2. Ki ,j = 〈xi , xj〉 ∼= k〈x , y〉/〈x2, y2, xyx − yxy〉, i , j ∈ O3
2.
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Modules categories over B(O3
2,−1)#kS3

Let M be an indecomposable exact module category over
Rep(B(X ,−1)#kS3). Then there is a module equivalence
M' AM where A is one (and only one) of the comodule
algebras in following list.

1. For any subgroup F ⊆ S3, ψ ∈ Z 2(F ,k×), the twisted group
algebra kψF .

2. The algebra A({i}, ξ, 1) =< yi : y2i = ξ1 >, with coaction
determined by λ(yi ) = xi ⊗ 1 + gi ⊗ yi .

3. The algebra
A({i}, ξ,Z2) =< yi , h : y2i = ξ1, h2 = 1, hyi = −yih > with
coaction determined by λ(yi ) = xi ⊗ 1 + gi ⊗ yi , λ(h) = gi ⊗ h.



Modules categories over B(O3
2,−1)#kS3

4. The algebra
A({i , j}, 1) =< yi , yj : y2i = y2j = 0, yiyjyi = yjyiyj > with
coaction determined by λ(yi ) = xi ⊗ 1 + gi ⊗ yi ,
λ(yj) = xj ⊗ 1 + gj ⊗ yj .

5. The algebra A({i , j},Z2) =< yi , yj , h : y2i = y2j = 0, h2 =
1, hyi = −yjh, yiyjyi = yjyiyj > with coaction determined by
λ(yi ) = xi ⊗ 1 + gi ⊗ yi , λ(yj) = xj ⊗ 1 + gj ⊗ yj ,
λ(h) = gk ⊗ h, where k 6= i , j .



Modules categories over B(O3
2,−1)#kS3

6. The algebra A(O3
2, ξ, 1), generated by {y(12), y(13), y(23)}

subject to relations

y2(12) = y2(13) = y2(23) = ξ1,

y(12)y(13) + y(13)y(23) + y(23)y(12) = 0,

y(13)y(12) + y(23)y(13) + y(12)y(23) = 0.

The coaction is determined by λ(ys) = xs ⊗ 1 + gs ⊗ ys for
any s ∈ O3

2.
7. The algebra A(O3

2, ξ,Z2), generated by {y(12), y(13), y(23), h}
subject to relations

y2(12) = y2(13) = y2(23) = ξ1, h2 = 1,

hy(12) = −y(12)h, hy(13) = −y(23)h,
y(12)y(13) + y(13)y(23) + y(23)y(12) = 0.

The coaction is determined by λ(h) = g(12) ⊗ h,
λ(ys) = xs ⊗ 1 + gs ⊗ ys for any s ∈ O3

2.



Modules categories over B(O3
2,−1)#kS3

8. The algebra A(O3
2, ξ, µ, η,Z3), generated by {y(12), y(13),

y(23), h} subject to relations

y2(12) = y2(13) = y2(23) = ξ1, h3 = 1,

hy(12) = y(13)h, hy(13) = y(23)h, hy(23) = y(12)h,

y(12)y(13) + y(13)y(23) + y(23)y(12) = µ h,

y(13)y(12) + y(23)y(13) + y(12)y(23) = η h2.

The coaction is determined by λ(h) = g(132) ⊗ h,
λ(ys) = xs ⊗ 1 + gs ⊗ ys , for any s ∈ O3

2.



Modules categories over B(O3
2,−1)#kS3

9. The algebras A(O3
2, ξ, µ, S3, ψ), for each ψ ∈ Z 2(S3, k×),

generated by {y(12), y(13), y(23), eh : h ∈ S3} subject to
relations

ehet = ψ(h, t) eht , ehys = −yh·seh h, t ∈ S3, s ∈ O3
2,

y2(12) = y2(13) = y2(23) = ξ1,

y(12)y(13) + y(13)y(23) + y(23)y(12) = µ e(123).

The coaction is determined by λ(eh) = h ⊗ eh,
λ(ys) = xs ⊗ 1 + gs ⊗ ys for any s ∈ O3

2.
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