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The problem of classifying finite-dimensional pointed Hopf algebras over non-
abelian finite groups reduces in many cases to a question on conjugacy classes or,
more generally, on a (twisted homogeneous) racks and a 2-cocycles. The racks of
type D are a distinguished family of racks since they give arise to Nichols algebras
of dimension infinite for any cocycle.

In this talk, we present some techniques to check when a twisted homogeneous
rack (THR) is of type D and present a list of known THR of type D for alternating
and sporadic groups.
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Plan of the talk.

1. The problem.

2. Main results.

3. Some comments.
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The problem.

Classification of finite-dimensional complex pointed Hopf algebras in the
context of the Lifting method.

Important Step: determination of all finite-dimensional Nichols algebras of
braided vector spaces arising from Yetter-Drinfled modules over groups.

Reformulation: to study finite-dimensional Nichols algebras of braided
vector spaces arising from pairs (X , q), X a rack and q a 2-cocycle of X .
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Racks.

A rack is (X , .), X 6= ∅ and . : X × X → X a map such that

for every x ∈ X , x .− : X → X is bijective,

x . (y . z) = (x . y) . (x . z), for all x , y , z ∈ X .

Examples

• A subset X of a group G stable by conjugation of elements of G .
• A (twisted) conjugacy class of a group.

A 2-cocyle of degree n, n ∈ N, is a function q : X × X → GL(n,C) such
that for all x , y , z ∈ X ,

qx,y.z qy ,z = qx.y ,x.z qx,z .

Definition

(X , .) is said to be of type D if there exists a subrack Y = R
∐

S of X
such that for some r ∈ R, s ∈ S ,

r . (s . (r . s)) 6= s.
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Properties of racks of type D.

i If Y ⊆ X is a subrack of type D, then X is of type D.

ii Let Z be a finite rack and Z → X an epimorphism. If X is of type
D, then Z is of type D.

Theorem [AFGV1]
If X is of type D, then the Nichols algebra associated with (X , q) is
infinite dimensional for all 2-cocycle q.
This use a result of Heckenberger-Schneider.

Definition

A rack X is said to be simple if |X | > 1 and it has no proper quotients.

All (indecomposable) rack has a projection onto a simple rack, i. e.

Our problem

Determine all simple racks of type D.

Fernando Fantino Twisted homogeneous racks of type D



Finite simple racks.

A finite simple rack belongs to one of the following classes:

a simple affine racks;

b conjugacy classes in non-abelian finite simple groups;

c twisted conjugacy classes (TCC) in non-abelian finite simple groups;
d simple twisted homogeneous racks (THR) of class (L, t, θ): twisted

conjugacy classes corresponding to (G , u), where

G = Lt , with L a non-abelian finite simple group and t > 1,
u = u(θ) ∈ Aut(Lt) is given by

u(`1, . . . , `t) = (θ(`t), `1, . . . , `t−1), `1, . . . , `t ∈ L

with θ ∈ Aut(L).

Andruskiewitsch-Graña, Joyce.
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Twisted conjugacy classes (TCC).

G finite group, x ∈ G , u ∈ Aut(G ). The twisted conjugacy class of x is:

OG ,u
x := {y ⇀u x := y x u(y−1) : y ∈ G}.

OG ,u
x is a rack with y .u z = y u(z y−1), y , z ∈ OG ,u

x .

TCC depend on the class of u in Out(G ).

A twisted conjugacy class in G is isomorphic to a conjugacy class in
the group G o 〈u〉 contained in G × {u}:

OGo〈u〉
(x,u) = OG ,u

x × {u}.
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Results.

Simple racks of type (a): they have very few subracks.

Simple racks as in (b) have been considered in many articles: [AFGV1]
and [AFGV2] for alternating and sporadic groups, respectively; [FGV] for
PSL(2, q).

Let Am be the alternating group, m ≥ 5.
TCC in Am are conjugacy classes in Sm not contained in Am.

Theorem [AFGV1]

Let O be a conjugacy class of Aut(Am) \ Am different from the
conjugacy class of (1 2)(3 4 5) ∈ S5 and (1 2) ∈ Sm, then O is of type D.
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TCC of type D in sporadic simple groups.

Let L be one of the following sporadic simple groups

M12, M22, J2, J3, Suz , HS , McL, He, Fi22, ON, Fi
′
24, HN, T .

It is well-known that Aut(L) ' Lo Z2.

Theorem [FV]

Let O be a conjugacy class of Aut(L) \ L not listed in the table below.
Then O is of type D.

Group Classes Group Classes
Aut(M22) 2B Aut(J3) 34A, 34B
Aut(HS) 2C Aut(ON) 38A, 38B, 38C
Aut(Fi22) 2D Aut(McL) 22A, 22B

Aut(Fi ′24) 2C, 2D, 46A,46B

Corollary [FV]

If L = M12, J2, Suz , He, HN or T , then Aut(L) does not have non-trivial
finite-dimensional complex pointed Hopf algebras.
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Twisted homogeneous racks (THR).

L a finite group, t ∈ N, t > 1, θ ∈ Aut(L), G = Lt ,

u(`1, . . . , `t) = (θ(`t), `1, . . . , `t−1), `1, . . . , `t ∈ L.

Denote:

C(x1,...,xt) = TCC of (x1, . . . , xt) in Lt ,

C` := C(e,...,e,`), ` ∈ L.

Proposition

i If (x1, . . . , xt) ∈ Lt and ` = xtxt−1 · · · x2x1, then C(x1,...,xt) = C`.
ii C` = Ck iff k ∈ OL,θ

` ; hence

C` = {(x1, . . . , xt) ∈ Lt : xtxt−1 · · · x2x1 ∈ OL,θ
` }.

iii { TCC of L} ←→ { THR of class(L, t, θ)}, OL,θ
` 7→ C`.

iv |C`| = |L|t−1|OL,θ
` |.
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Proposition [AFGaV1]

Let ` ∈ Lθ. If any of the following holds:

` is quasi-real of type j , t ≥ 3 or t = 2 and ord(`) - 2(1− j);

ord(`) even and t ≥ 6 even;

` involution, t odd and OLθ

` of type D;

t = 4 and there exists x ∈ CLθ (`) with ord(x) = 2m > 2, m ∈ N;

t = 2 and there exists x ∈ CLθ (`) with ord(x) = 2m > 4, m ∈ N;

` involution, t = 2, and there exists ψ : Dn → Lθ a group
monomorphism, with n ≥ 3 and ` = ψ(x) for some x ∈ Dn

involution;

` = e and (t, |Lθ|) is divisible by an odd prime p;

` = e and (t, |Lθ|) is divisible by p = 2 and t ≥ 6;

` = e, t = 4 and there exists x ∈ Lθ with ord(x) = 2m > 2, m ∈ N;

` = e, t = 2 and there exists x ∈ Lθ with ord(x) = 2m > 4, m ∈ N;

then C` is of type D.
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THR of type D in alternating groups.

Theorem [AFGaV1]

Let L be Am, m ≥ 5, θ ∈ Aut(L), t ≥ 2 and ` ∈ L. If C` is a THR of class
(L, t, θ) not listed in two tables below, then C` is of type D.

Table: THR C` of type (Am, t, θ), θ = id, t ≥ 2, m ≥ 5, not known of type D.

n ` Type of ` t
any e (1n) odd, (t, n!) = 1

5 (15) 2, 4
6 (16) 2
5 involution (1, 22) 4, odd
6 (12, 22) odd
8 (24) odd

any order 4 (1r1 , 2r2 , 4r4 ), r4 > 0, r2 + r4 even 2
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THR of type D in alternating groups.

Table: THR C` of type (An, t, θ), θ = ι(1 2), t ≥ 2, n ≥ 5, not known of type D.

n Type of `(1 2) t
any (1s1 , 2s2 , . . . , nsn), s1 ≤ 1 and s2 = 0 any

sh ≥ 1, for some h, 3 ≤ h ≤ n

(1s1 , 2s2 , 4s4 ), s1 ≤ 2 or s2 ≥ 1, 2
s2 + s4 odd, s4 ≥ 1

5 (13, 2) 2, 4
6 (14, 2) 2

(23) 2
7 (1, 23) 2, odd
8 (12, 23) odd

10 (25) odd
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THR of type D in sporadic simple groups.

Difficult task.

Theorem [AFGaV1]

Let L be a sporadic group, θ = id, t ≥ 2 and ` ∈ L. If C` is a THR of
class (L, t, θ) not listed in the table below, then C` is of type D.

Table: THR C` of type (L, t, θ), L sporadic group, θ = id, not known of type D.

sporadic group Type of ` or t
class name of OL

`

any 1A (t, |L|) = 1, t odd
ord(`) = 4 2

T , J2, Fi22, Fi23, Co2 2A odd
B 2A, 2C odd
Suz 6B, 6C any
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Thank you.
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