Twisted homogeneous racks of type D

Fernando Fantino (National University of Córdoba, Argentina) fantino@famaf.unc.edu.ar

The problem of classifying finite-dimensional pointed Hopf algebras over nonabelian finite groups reduces in many cases to a question on conjugacy classes or, more generally, on a (twisted homogeneous) racks and a 2-cocycles. The racks of type D are a distinguished family of racks since they give arise to Nichols algebras of dimension infinite for any cocycle.

In this talk, we present some techniques to check when a twisted homogeneous rack (THR) is of type D and present a list of known THR of type D for alternating and sporadic groups.

Bibliography

- N. Andruskiewitsch, G. A. García, F. Fantino and L. Vendramin, On twisted homogeneous racks of type D. Rev. Unión Mat. Argent. 51 No. 2 (2010), 1-16.
- [2] —, On Nichols algebras associated to simple racks. Contemp. Math., to appear. Preprint arXiv:1006.5727.
- [3] F. Fantino and L. Vendramin, On twisted conjugacy classes of type D in sporadic groups. In preparation.

Twisted homogeneous racks of type D

Fernando Fantino

Universidad Nacional de Córdoba & Université Paris Diderot - Paris 7

Hopf algebras and tensor categories Almería, July 4-8, 2011

< ∃ >

- 1. The problem.
- 2. Main results.
- 3. Some comments.

< ≣ >

æ

Classification of finite-dimensional complex pointed Hopf algebras in the context of the *Lifting method*.

Important Step: determination of all finite-dimensional Nichols algebras of braided vector spaces arising from Yetter-Drinfled modules over groups.

Reformulation: to study finite-dimensional Nichols algebras of braided vector spaces arising from pairs (X, q), X a rack and q a 2-cocycle of X.

Racks.

- A rack is (X, \triangleright) , $X \neq \emptyset$ and $\triangleright : X \times X \rightarrow X$ a map such that
 - for every $x \in X$, $x \triangleright : X \to X$ is bijective,
 - $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$, for all $x, y, z \in X$.

Examples

- A subset X of a group G stable by conjugation of elements of G.
- A (twisted) conjugacy class of a group.

A 2-cocyle of degree n, $n \in \mathbb{N}$, is a function $q: X \times X \to GL(n, \mathbb{C})$ such that for all x, y, $z \in X$,

$$q_{x,y\triangleright z} q_{y,z} = q_{x\triangleright y,x\triangleright z} q_{x,z}.$$

Definition

 (X, \triangleright) is said to be of *type D* if there exists a subrack $Y = R \coprod S$ of X such that for some $r \in R$, $s \in S$,

$$r \triangleright (s \triangleright (r \triangleright s)) \neq s.$$

Properties of racks of type D.

- If $Y \subseteq X$ is a subrack of type D, then X is of type D.
- Let Z be a finite rack and Z → X an epimorphism. If X is of type D, then Z is of type D.

Theorem [AFGV1]

If X is of type D, then the Nichols algebra associated with (X, q) is infinite dimensional for all 2-cocycle q. This use a result of Heckenberger-Schneider.

Definition

A rack X is said to be simple if |X| > 1 and it has no proper quotients.

All (indecomposable) rack has a projection onto a simple rack, i. e.

Our problem

Determine all simple racks of type D.

A finite simple rack belongs to one of the following classes:

- simple affine racks;
- o conjugacy classes in non-abelian finite simple groups;
- S twisted conjugacy classes (TCC) in non-abelian finite simple groups;
- simple twisted homogeneous racks (THR) of class (L, t, θ): twisted conjugacy classes corresponding to (G, u), where
 - $G = L^t$, with L a non-abelian finite simple group and t > 1,

•
$$u = u(\theta) \in Aut(L^t)$$
 is given by

$$u(\ell_1,\ldots,\ell_t)=(\theta(\ell_t),\ell_1,\ldots,\ell_{t-1}), \quad \ell_1,\ldots,\ell_t\in L$$

with $\theta \in Aut(L)$.

Andruskiewitsch-Graña, Joyce.

- ∢ ⊒ ▶

G finite group, $x \in G$, $u \in Aut(G)$. The twisted conjugacy class of x is:

$$\mathcal{O}_x^{G,u} := \{ y \rightharpoonup_u x := y \, x \, u(y^{-1}) : y \in G \}.$$

•
$$\mathcal{O}_x^{\mathcal{G},u}$$
 is a rack with $y \triangleright_u z = y u(z y^{-1})$, $y, z \in \mathcal{O}_x^{\mathcal{G},u}$.

- TCC depend on the class of u in Out(G).
- A twisted conjugacy class in G is isomorphic to a conjugacy class in the group G ⋊ ⟨u⟩ contained in G × {u}:

$$\mathcal{O}_{(x,u)}^{G\rtimes\langle u\rangle}=\mathcal{O}_{x}^{G,u}\times\{u\}.$$

프 🖌 🖉 🖿 👘

Simple racks of type (a): they have very few subracks.

Simple racks as in (b) have been considered in many articles: [AFGV1] and [AFGV2] for alternating and sporadic groups, respectively; [FGV] for PSL(2, q).

Let \mathbb{A}_m be the alternating group, $m \ge 5$. TCC in \mathbb{A}_m are conjugacy classes in \mathbb{S}_m not contained in \mathbb{A}_m .

Theorem [AFGV1]

Let \mathcal{O} be a conjugacy class of Aut $(\mathbb{A}_m) \setminus \mathbb{A}_m$ different from the conjugacy class of $(12)(345) \in \mathbb{S}_5$ and $(12) \in \mathbb{S}_m$, then \mathcal{O} is of type D.

TCC of type D in sporadic simple groups.

Let L be one of the following sporadic simple groups

 $\textit{M}_{12}, \textit{ M}_{22}, \textit{ J}_2, \textit{ J}_3, \textit{ Suz}, \textit{ HS}, \textit{ McL}, \textit{ He}, \textit{ Fi}_{22}, \textit{ ON}, \textit{ Fi}_{24}', \textit{ HN}, \textit{ T}.$

It is well-known that $Aut(L) \simeq L \rtimes \mathbb{Z}_2$.

Theorem [FV]

Let \mathcal{O} be a conjugacy class of Aut(L) \ L not listed in the table below. Then \mathcal{O} is of type D.

Group	Classes	Group	Classes
$\operatorname{Aut}(M_{22})$	2B	$\operatorname{Aut}(J_3)$	34A, 34B
Aut(HS)	2C	Aut(ON)	38A, 38B, 38C
$\operatorname{Aut}(Fi_{22})$	2D	Aut(McL)	22A, 22B
		$\operatorname{Aut}(Fi_{24})$	2C, 2D, 46A,46B

Corollary [FV]

If $L = M_{12}$, J_2 , Suz, He, HN or T, then Aut(L) does not have non-trivial finite-dimensional complex pointed Hopf algebras.

Twisted homogeneous racks (THR).

$$L$$
 a finite group, $t\in\mathbb{N}$, $t>1$, $heta\in\mathsf{Aut}(L)$, $G=L^t$,

$$u(\ell_1,\ldots,\ell_t)=(\theta(\ell_t),\ell_1,\ldots,\ell_{t-1}), \qquad \ell_1,\ldots,\ell_t\in L.$$

Denote:

•
$$C_{(x_1,...,x_t)} = \text{TCC of } (x_1,...,x_t) \text{ in } L^t$$
,
• $C_{\ell} := C_{(e,...,e,\ell)}, \ \ell \in L$.

Proposition

• If
$$(x_1, \ldots, x_t) \in L^t$$
 and $\ell = x_t x_{t-1} \cdots x_2 x_1$, then $\mathcal{C}_{(x_1, \ldots, x_t)} = \mathcal{C}_{\ell}$.
• $\mathcal{C}_{\ell} = \mathcal{C}_k$ iff $k \in \mathcal{O}_{\ell}^{L, \theta}$; hence

$$\mathcal{C}_{\ell} = \{(x_1,\ldots,x_t) \in \mathcal{L}^t : x_t x_{t-1} \cdots x_2 x_1 \in \mathcal{O}_{\ell}^{\mathcal{L},\theta}\}.$$

a { TCC of L} ↔ { THR of class(L, t, θ)}, O_ℓ^{L,θ} ↦ C_ℓ. **b** |C_ℓ| = |L|^{t-1}|O_ℓ^{L,θ}|.

★ E ► < E ► E</p>

Proposition [AFGaV1]

Let $\ell \in L^{\theta}$. If any of the following holds:

- ℓ is quasi-real of type j, $t \ge 3$ or t = 2 and $\operatorname{ord}(\ell) \nmid 2(1-j)$;
- ord(ℓ) even and $t \ge 6$ even;
- ℓ involution, t odd and $\mathcal{O}_{\ell}^{L^{\theta}}$ of type D;
- t = 4 and there exists $x \in C_{L^{\theta}}(\ell)$ with $\operatorname{ord}(x) = 2m > 2$, $m \in \mathbb{N}$;
- t = 2 and there exists $x \in C_{L^{\theta}}(\ell)$ with $\operatorname{ord}(x) = 2m > 4$, $m \in \mathbb{N}$;
- ℓ involution, t = 2, and there exists $\psi : \mathbb{D}_n \to L^{\theta}$ a group monomorphism, with $n \ge 3$ and $\ell = \psi(x)$ for some $x \in \mathbb{D}_n$ involution;
- $\ell = e$ and $(t, |L^{\theta}|)$ is divisible by an odd prime p;
- $\ell = e$ and $(t, |L^{\theta}|)$ is divisible by p = 2 and $t \ge 6$;
- $\ell = e$, t = 4 and there exists $x \in L^{\theta}$ with ord(x) = 2m > 2, $m \in \mathbb{N}$;

• $\ell = e, t = 2$ and there exists $x \in L^{\theta}$ with $ord(x) = 2m > 4, m \in \mathbb{N}$; then \mathcal{C}_{ℓ} is of type D.

Theorem [AFGaV1]

Let L be \mathbb{A}_m , $m \ge 5$, $\theta \in Aut(L)$, $t \ge 2$ and $\ell \in L$. If C_{ℓ} is a THR of class (L, t, θ) not listed in two tables below, then C_{ℓ} is of type D.

n	l	Type of ℓ	t
any	е	(1 ⁿ)	odd, $(t, n!) = 1$
5		(1 ⁵)	2 , 4
6		(1 ⁶)	2
5	involution	$(1, 2^2)$	4, odd
6		$(1^2, 2^2)$	odd
8		(2 ⁴)	odd
any	order 4	$(1^{r_1}, 2^{r_2}, 4^{r_4})$, $r_4 > 0$, $r_2 + r_4$ even	2

Table: THR C_{ℓ} of type $(\mathbb{A}_m, t, \theta)$, $\theta = id$, $t \ge 2$, $m \ge 5$, not known of type D.

(문) (문)

Table: THR C_{ℓ} of type $(\mathbb{A}_n, t, \theta)$, $\theta = \iota_{(12)}$, $t \ge 2$, $n \ge 5$, not known of type D.

n	Type of $\ell(12)$	t
any	$(1^{s_1},2^{s_2},\ldots,n^{s_n})$, $s_1\leq 1$ and $s_2=0$	any
	$s_h \geq 1$, for some h , $3 \leq h \leq n$	
	$(1^{s_1},2^{s_2},4^{s_4})$, $s_1\leq 2$ or $s_2\geq 1$,	2
	s_2+s_4 odd, $s_4\geq 1$	
5	$(1^3, 2)$	2, 4
6	$(1^4, 2)$	2
	(2 ³)	2
7	$(1, 2^3)$	2, odd
8	$(1^2, 2^3)$	odd
10	(2 ⁵)	odd

프 🖌 🖉 🖿 👘

3

Difficult task.

Theorem [AFGaV1]

Let L be a sporadic group, $\theta = id$, $t \ge 2$ and $\ell \in L$. If C_{ℓ} is a THR of class (L, t, θ) not listed in the table below, then C_{ℓ} is of type D.

Table: THR C_{ℓ} of type (L, t, θ) , L sporadic group, $\theta = id$, not known of type D.

sporadic group	Type of ℓ or	t
	class name of \mathcal{O}_ℓ^L	
any	1A	(t, L) = 1, t odd
	$\operatorname{ord}(\ell) = 4$	2
T, J ₂ , Fi ₂₂ , Fi ₂₃ , Co ₂	2A	odd
В	2A, 2C	odd
Suz	6B, 6C	any

Thank you.

< 注→ < 注→

æ

A ►

- N. Andruskiewitsch, F. Fantino, G. A. García and L. Vendramin, On twisted homogeneous racks of type D, Rev. Un. Mat. Argentina 51 (2010),no. 2, 1–16.
- On Nichols algebras associated to simple racks, Groups, Algebras and Applications, Contemp. Math. 537, Amer. Math. Soc., Providence, RI, 2011, 31–56.
- F. Fantino and L. Vendramin, *On twisted conjugacy classes of type D in sporadic simple groups*, submitted. Preprint arXiv:1107.0310.

Image: Second second

Other references.

- N. Andruskiewitsch, F. Fantino, M. Graña and L. Vendramin, Finite-dimensional pointed Hopf algebras with alternating groups are trivial, Ann. Mat. Pura Appl. (4) 190 (2011), no. 2, 225–245.
- Pointed Hopf algebras over the sporadic simple groups, J.
 Algebra 325 (2011),no. 2, 305–320.
- N. Andruskiewitsch and M. Graña, *From racks to pointed Hopf algebras*, Adv. Math. **178** (2003),no. 2, 177–243.
- N. Andruskiewitsch, I. Heckenberger and H.-J. Schneider, *The Nichols algebra of a semisimple Yetter-Drinfeld module*, Amer. J. Math. **132** (2010),no. 6, 1493–1547.
- On Nichols algebras over PSL(2, q) and PGL(2, q), J. Algebra Appl. 9 (2010), no. 2, 195–208.
- I. Heckenberger and H.-J. Schneider, *Root systems and Weyl groupoids for Nichols algebras*, Proc. London Math. Soc. 101 (2010),no. 3, 623–654

→ Ξ →

< E >