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In general an intersection of two biideals is not a biideal. By this reason one may
not define a biideal generated by a set of elements, and the bialgebras do not admit a
usual combinatorial representation by generators and relations. Heyneman-Radford
theorem implies that each nonzero biideal of a pointed bialgebra has nonzero skew
primitive element. Each ideal generated by skew primitive elements is a biideal,
but certainly a biideal in general is not generared as an ideal by its skew primitive
elemens. The Heyneman-Radford theorem allows one to define a combinatorial
representation over the coradical in the following form

A = C〈X ||F1 = 0|F2 = 0| . . . |Fκ = 0|〉,

where X is a set of generators, F1 is a set of skew primitive relations, Fi, 1 < i ≤ κ
is a set of relations that are skew primitive in C〈X ||F1 = 0|F2 = 0| . . . |Fi−1 = 0|〉.
The minimal number κ is called a combinatorial rank of A. We prove that the
combinatorial rank of the multiparameter version of the Lusztig small quantum
group uq(so2n+1), or equivalently of the Frobenius-Lusztig kernel of type Bn, equals
blog2(n− 1)c+ 2 provided that q has a finite multiplicative order t > 4. In the case
An the combinatorial rank equals blog2 nc+ 1, see [1].
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The extension theorem of MacWilliams

I The Extension Problem (MacWilliams, 62). For n ∈ Z+, for
a right linear code over a field R where C ⊆ Rn, and for a
linear isometry f : C → Rn, can f be extended to a linear
isometry T : Rn → Rn?

I Extension Theorem (Wood, 99). Let R be a finite Frobenius
ring. Suppose C ⊂ Rn is a right linear code, and suppose
f : C → Rn is a right linear homomorphism which preserves
Hamming weight. Then f extends to a right isometry of Rn.

I The converse of the extension theorem holds! (Wood, 06).
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The Larson-Sweedler Theorem

I Theorem (Larson-Sweedler, 69). Every finite dimensional
Hopf algebra is Frobenius.

In this way, finite quantum groups provide a material to work
within the coding theory.
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Algebras and bialgebras

I A = 〈x1, x2, . . . , xn || f1 = 0, f2 = 0, . . . , fm = 0〉.

I ∆(A)→ A⊗ A; ∆(a) =
∑

(a) a(1) ⊗ a(2). Biideal:

∆(I ) ⊆ A⊗ I + I ⊗ A. If f ∈ I , then either f (1) ∈ I or
f (2) ∈ I , but not both!

I Example: f = x1x2; ∆(f ) = f ⊗ 1 + x1 ⊗ x2 + x2 ⊗ x1 + 1⊗ f ;
Biid〈x1x2〉 is either Id〈x1〉 or Id〈x2〉.
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Primitive elements and coradical filtration

I If ∆(f ) = a⊗ f + f ⊗ b, then Id〈f 〉 is a biideal!
The combinatorial representation exists if the defining
relations are skew-primitive.

It is not true that every biideal is generated by skew-primitives.

I Theorem (Heyneman–Radford, 74). Let C and D be
coalgebras y φ : C → D be a morphism of coalgebras such
that the restriction φ|C1 is injective. Then φ is injective.

I Here C0 ⊂ C1 ⊂ C2 ⊂ . . . = C is the coradical filtration:

∆(Cn) ⊆
n∑

i=1

Ci ⊗ Cn−i .
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Combinatorial rank

I Every biideal has nontrivial intersection with C1, while

∆(C1) ⊆ C0 ⊗ C1 + C1 ⊗ C0.

I Theorem (Taft-Wilson, 74). If C is pointed, then C1 is
spanned by 1 and by skew-primitive elements.

Corollary. Every nonzero biideal I of a pointed bialgebra A
has a nonzero skew-primitive element.

A = 〈X || f (1)
1 , . . . , f

(1)
m | f (2)

1 , . . . , f
(2)
m | . . . |f (κ)

1 , . . . , f
(κ)
m 〉.

I The number κ is the combinatorial rank of A.

I1 ⊂ I2 ⊂ I3 ⊂ . . . ⊂ Iκ = I , It/It−1 = I/It−1 ∩ C1(F/It−1).
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uq(sln+1) and uq(so2n+1)

I Theorem (V.K. Kharchenko, A. Álvarez, 05). The
combinatorial rank of the quantum group uq(sln+1) equals
blog2 nc+ 1 provided that q has a finite multiplicative order
t > 2.

I Theorem (V.K. Kharchenko, M.L. D́ıaz Sosa, 10). The
combinatorial rank of the quantum group uq(so2n+1) equals
blog2(n − 1)c+ 2 provided that q has a finite multiplicative
order t > 4.
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Main steps of the proof

I Triangular decomposition:

uq(so2n+1) = u−q (so2n+1)⊗ H ⊗ u+
q (so2n+1).

We show that κ+ = κ− = κ.

I By definition u+
q (so2n+1) = G 〈x1, . . . , xn〉/Λ, where Λ is the

biggest biideal with trivial intersection with the space spanned
by x1, . . . , xn.

I ∆(xi ) = xi ⊗ 1 + gi ⊗ xi ; ∆(gi ) = gi ⊗ gi ; xigj = pijgjxi ,
where pij are arbitrary parameters satisfying:

pnn = q, pii = q2, pi i+1pi+1 i = q−2, 1 ≤ i < n;

pijpji = 1, j > i + 1.
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Main steps of the proof

I u+
q (so2n+1) = G 〈x1, . . . , xn || [ukm]tu , k ≤ m ≤ 2n − k〉,

[ukm] = [. . . [[[[. . . [xk , xk+1] · · · xn, ]xn, ]xn−1, ]xn−2, ] · · · x2n−m+1],

here [u, v ] = uv − p(u, v)vu, while the bimultiplicative map
p(u, v) is so that p(xi , xj) = pij ; and tu = t if m = n or t is
odd and tu = t/2 otherwise.

I The quantum Serre relations Sij(xi , xj) are skew-primitive,
hence instead of the homomorphism G 〈X 〉 → u+

q (so2n+1) we
may consider U+

q (so2n+1)→ u+
q (so2n+1) and work with

elements of U+
q (so2n+1).

M.L. D́ıaz Sosa (with V.K. Kharchenko) COMBINATORIAL RANK OF QUANTUM GROUPS



Main steps of the proof

I u+
q (so2n+1) = G 〈x1, . . . , xn || [ukm]tu , k ≤ m ≤ 2n − k〉,

[ukm] = [. . . [[[[. . . [xk , xk+1] · · · xn, ]xn, ]xn−1, ]xn−2, ] · · · x2n−m+1],

here [u, v ] = uv − p(u, v)vu, while the bimultiplicative map
p(u, v) is so that p(xi , xj) = pij ; and tu = t if m = n or t is
odd and tu = t/2 otherwise.

I The quantum Serre relations Sij(xi , xj) are skew-primitive,
hence instead of the homomorphism G 〈X 〉 → u+

q (so2n+1) we
may consider U+

q (so2n+1)→ u+
q (so2n+1) and work with

elements of U+
q (so2n+1).

M.L. D́ıaz Sosa (with V.K. Kharchenko) COMBINATORIAL RANK OF QUANTUM GROUPS



Main steps of the proof

Proposition.

I The elements Tu = [u]tu , u = ukm generate an algebra C of
quantum polynomials, TuTv = quv Tv Tu, quv qvu = 1.

I GC is a Hopf subalgebra.

I U+
q (so2n+1) is a free finitely generated module over GC of

rank tn2
if t is odd, and tn(t/2)n2−n if t is even.
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Main steps of the proof

Lemma.

I If t is odd or m 6= n, then [ukm]t ∈ Λi if and only if,
m − k < 2i − 1 + εnm. Here εnm = 0 if m ≤ n, and εnm = 1
otherwise.

I If t is even and m = n, then m − k < 2i−1 implies
[ukm]t/2 ∈ Λi , while m − k ≥ 2i − 1 implies [ukm]t/2 /∈ Λi .
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Problems

I Find the combinatorial rank of uq(g), where g is a simple Lie
algebra of type C , D, E , F or G .

I It is likely that the proposition is still valid.

I In order to prove the lemma we have used an explicit formula
for the coproduct:

∆([ukm]) = [ukm]⊗ 1 + gkm⊗ [ukm] +
m−1∑
i=k

αigki [u1+i m]⊗ [uki ],

which is not proven for the other classes yet.
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Main results

An : blog2 nc+ 1

Bn : blog2(n − 1)c+ 2

Contact: mlds@inteligencianet.com

Thank you!
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