Computing of the combinatorial rank of quantum groups

Mayra Lorena Diaz Sosa (Autonomous National University of Mexico, Mexico) malodi1982@yahoo.com.mx

In general an intersection of two biideals is not a biideal. By this reason one may not define a biideal generated by a set of elements, and the bialgebras do not admit a usual combinatorial representation by generators and relations. Heyneman-Radford theorem implies that each nonzero biideal of a pointed bialgebra has nonzero skew primitive element. Each ideal generated by skew primitive elements is a biideal, but certainly a biideal in general is not generared as an ideal by its skew primitive elemens. The Heyneman-Radford theorem allows one to define a combinatorial representation over the coradical in the following form

$$\mathfrak{A} = C\langle X || F_1 = 0 | F_2 = 0 | \dots | F_{\kappa} = 0 | \rangle,$$

where X is a set of generators, F_1 is a set of skew primitive relations, F_i , $1 < i \le \kappa$ is a set of relations that are skew primitive in $C\langle X | | F_1 = 0 | F_2 = 0 | \dots | F_{i-1} = 0 | \rangle$. The minimal number κ is called a *combinatorial rank* of \mathfrak{A} . We prove that the combinatorial rank of the multiparameter version of the Lusztig small quantum group $u_q(\mathfrak{so}_{2n+1})$, or equivalently of the Frobenius-Lusztig kernel of type B_n , equals $\lfloor \log_2(n-1) \rfloor + 2$ provided that q has a finite multiplicative order t > 4. In the case A_n the combinatorial rank equals $\lfloor \log_2 n \rfloor + 1$, see [1].

Bibliography

[1] V.K. Kharchenko, A. Andrade Alvarez, On the combinatorial rank of Hopf algebras. Contemporary Mathematics 376 (2005), 299-308.

COMPUTING OF THE COMBINATORIAL RANK OF QUANTUM GROUPS

M.L. Díaz Sosa (with V.K. Kharchenko)

FES-C UNAM MEXICO

7 of July, 2011 Almería, Spain

M.L. Díaz Sosa (with V.K. Kharchenko) COMBINATORIAL RANK OF QUANTUM GROUPS

The extension theorem of MacWilliams

▶ The Extension Problem (MacWilliams, 62). For $n \in \mathbb{Z}^+$, for a right linear code over a field R where $C \subseteq R^n$, and for a linear isometry $f : C \to R^n$, can f be extended to a linear isometry $T : R^n \to R^n$?

.

The extension theorem of MacWilliams

- ▶ The Extension Problem (MacWilliams, 62). For $n \in \mathbb{Z}^+$, for a right linear code over a field R where $C \subseteq R^n$, and for a linear isometry $f : C \to R^n$, can f be extended to a linear isometry $T : R^n \to R^n$?
- Extension Theorem (Wood, 99). Let R be a finite Frobenius ring. Suppose $C \subset R^n$ is a right linear code, and suppose $f : C \to R^n$ is a right linear homomorphism which preserves Hamming weight. Then f extends to a right isometry of R^n .

通 とう ほう うちょう

The extension theorem of MacWilliams

- ▶ The Extension Problem (MacWilliams, 62). For $n \in \mathbb{Z}^+$, for a right linear code over a field R where $C \subseteq R^n$, and for a linear isometry $f : C \to R^n$, can f be extended to a linear isometry $T : R^n \to R^n$?
- ▶ Extension Theorem (Wood, 99). Let R be a finite Frobenius ring. Suppose $C \subset R^n$ is a right linear code, and suppose $f : C \to R^n$ is a right linear homomorphism which preserves Hamming weight. Then f extends to a right isometry of R^n .
- ▶ The converse of the extension theorem holds! (Wood, 06).

 Theorem (Larson-Sweedler, 69). Every finite dimensional Hopf algebra is Frobenius.

In this way, finite quantum groups provide a material to work within the coding theory.

•
$$A = \langle x_1, x_2, \dots, x_n || f_1 = 0, f_2 = 0, \dots, f_m = 0 \rangle.$$

M.L. Díaz Sosa (with V.K. Kharchenko) COMBINATORIAL RANK OF QUANTUM GROUPS

< 注 → < 注→

•
$$A = \langle x_1, x_2, \dots, x_n || f_1 = 0, f_2 = 0, \dots, f_m = 0 \rangle.$$

▶ $\Delta(A) \rightarrow A \otimes A$; $\Delta(a) = \sum_{(a)} a^{(1)} \otimes a^{(2)}$. Biideal: $\Delta(I) \subseteq A \otimes I + I \otimes A$. If $f \in I$, then either $f^{(1)} \in I$ or $f^{(2)} \in I$, but not both!

¬<</p>

3

•
$$A = \langle x_1, x_2, \ldots, x_n || f_1 = 0, f_2 = 0, \ldots, f_m = 0 \rangle.$$

- ▶ $\Delta(A) \rightarrow A \otimes A$; $\Delta(a) = \sum_{(a)} a^{(1)} \otimes a^{(2)}$. Biideal: $\Delta(I) \subseteq A \otimes I + I \otimes A$. If $f \in I$, then either $f^{(1)} \in I$ or $f^{(2)} \in I$, but not both!
- ► Example: $f = x_1 x_2$; $\Delta(f) = f \otimes 1 + x_1 \otimes x_2 + x_2 \otimes x_1 + 1 \otimes f$; Biid $\langle x_1 x_2 \rangle$ is either $Id\langle x_1 \rangle$ or $Id\langle x_2 \rangle$.

直 とう きょう うちょう

Primitive elements and coradical filtration

If ∆(f) = a ⊗ f + f ⊗ b, then Id⟨f⟩ is a biideal!
The combinatorial representation exists if the defining relations are skew-primitive.

It is not true that every biideal is generated by skew-primitives.

Primitive elements and coradical filtration

If ∆(f) = a ⊗ f + f ⊗ b, then Id⟨f⟩ is a biideal!
The combinatorial representation exists if the defining relations are skew-primitive.

It is not true that every biideal is generated by skew-primitives.

- ▶ **Theorem** (Heyneman–Radford, 74). Let C and D be coalgebras $y \phi : C \rightarrow D$ be a morphism of coalgebras such that the restriction $\phi|_{C_1}$ is injective. Then ϕ is injective.
- Here $C_0 \subset C_1 \subset C_2 \subset \ldots = C$ is the coradical filtration:

$$\Delta(C_n) \subseteq \sum_{i=1}^n C_i \otimes C_{n-i}.$$

Combinatorial rank

• Every biideal has nontrivial intersection with C_1 , while

$\Delta(\mathit{C}_1)\subseteq \mathit{C}_0\otimes \mathit{C}_1+\mathit{C}_1\otimes \mathit{C}_0.$

伺 とう ヨン うちょう

3

Combinatorial rank

• Every biideal has nontrivial intersection with C_1 , while

$\Delta(C_1) \subseteq C_0 \otimes C_1 + C_1 \otimes C_0.$

▶ **Theorem** (Taft-Wilson, 74). If C is pointed, then C₁ is spanned by 1 and by skew-primitive elements.

Corollary. Every nonzero biideal I of a pointed bialgebra A has a nonzero skew-primitive element.

$$A = \langle X || f_1^{(1)}, \dots, f_m^{(1)} | f_1^{(2)}, \dots, f_m^{(2)} | \dots | f_1^{(\kappa)}, \dots, f_m^{(\kappa)} \rangle.$$

Combinatorial rank

• Every biideal has nontrivial intersection with C_1 , while

$\Delta(C_1) \subseteq C_0 \otimes C_1 + C_1 \otimes C_0.$

▶ **Theorem** (Taft-Wilson, 74). If C is pointed, then C₁ is spanned by 1 and by skew-primitive elements.

Corollary. Every nonzero biideal I of a pointed bialgebra A has a nonzero skew-primitive element.

 $A = \langle X || f_1^{(1)}, \dots, f_m^{(1)} | f_1^{(2)}, \dots, f_m^{(2)} | \dots | f_1^{(\kappa)}, \dots, f_m^{(\kappa)} \rangle.$

• The number κ is the *combinatorial rank* of *A*.

$$I_1 \subset I_2 \subset I_3 \subset \ldots \subset I_{\kappa} = I, \quad I_t/I_{t-1} = I/I_{t-1} \cap C_1(F/I_{t-1}).$$

直 とう きょう うちょう

Theorem (V.K. Kharchenko, A. Álvarez, 05). The combinatorial rank of the quantum group u_q(sl_{n+1}) equals [log₂ n] + 1 provided that q has a finite multiplicative order t > 2.

ヨット イヨット イヨッ

- Theorem (V.K. Kharchenko, A. Álvarez, 05). The combinatorial rank of the quantum group u_q(\$1_{n+1}) equals [log₂ n] + 1 provided that q has a finite multiplicative order t > 2.
- ► Theorem (V.K. Kharchenko, M.L. Díaz Sosa, 10). The combinatorial rank of the quantum group u_q(so_{2n+1}) equals [log₂(n − 1)] + 2 provided that q has a finite multiplicative order t > 4.

伺 とう ヨン うちょう

Main steps of the proof

Triangular decomposition:

$$u_q(\mathfrak{so}_{2n+1}) = u_q^-(\mathfrak{so}_{2n+1}) \otimes H \otimes u_q^+(\mathfrak{so}_{2n+1}).$$

We show that $\kappa^+ = \kappa^- = \kappa$.

(4) (5) (4) (5) (4)

Main steps of the proof

Triangular decomposition:

$$u_q(\mathfrak{so}_{2n+1}) = u_q^-(\mathfrak{so}_{2n+1}) \otimes H \otimes u_q^+(\mathfrak{so}_{2n+1}).$$

We show that $\kappa^+=\kappa^-=\kappa.$

▶ By definition u_q⁺(so_{2n+1}) = G⟨x₁,...,x_n⟩/Λ, where Λ is the biggest bideal with trivial intersection with the space spanned by x₁,...,x_n.

直 とう きょう うちょう

Triangular decomposition:

$$u_q(\mathfrak{so}_{2n+1}) = u_q^-(\mathfrak{so}_{2n+1}) \otimes H \otimes u_q^+(\mathfrak{so}_{2n+1}).$$

We show that $\kappa^+ = \kappa^- = \kappa$.

- ▶ By definition u⁺_q(so_{2n+1}) = G⟨x₁,...,x_n⟩/Λ, where Λ is the biggest biideal with trivial intersection with the space spanned by x₁,...,x_n.
- $\Delta(x_i) = x_i \otimes 1 + g_i \otimes x_i$; $\Delta(g_i) = g_i \otimes g_i$; $x_i g_j = p_{ij} g_j x_i$, where p_{ij} are arbitrary parameters satisfying:

$$p_{nn} = q, \ p_{ii} = q^2, \ p_{i\,i+1}p_{i+1\,i} = q^{-2}, \ 1 \le i < n;$$

 $p_{ii}p_{ii} = 1, \ j > i+1.$

通 と く ヨ と く ヨ と

Main steps of the proof

$$\bullet \ u_q^+(\mathfrak{so}_{2n+1}) = G\langle x_1, \ldots, x_n || [u_{km}]^{t_u}, \ k \leq m \leq 2n-k \rangle,$$

$$[u_{km}] = [\dots [[[[\dots [x_k, x_{k+1}] \cdots x_n,]x_n,]x_{n-1},]x_{n-2},] \cdots x_{2n-m+1}],$$

here [u, v] = uv - p(u, v)vu, while the bimultiplicative map p(u, v) is so that $p(x_i, x_j) = p_{ij}$; and $t_u = t$ if m = n or t is odd and $t_u = t/2$ otherwise.

• • = • • = •

$$\blacktriangleright \ u_q^+(\mathfrak{so}_{2n+1}) = G\langle x_1, \ldots, x_n || [u_{km}]^{t_u}, \ k \leq m \leq 2n-k \rangle,$$

$$[u_{km}] = [\dots [[[[\dots [x_k, x_{k+1}] \cdots x_n,]x_n,]x_{n-1},]x_{n-2},] \cdots x_{2n-m+1}],$$

here [u, v] = uv - p(u, v)vu, while the bimultiplicative map p(u, v) is so that $p(x_i, x_j) = p_{ij}$; and $t_u = t$ if m = n or t is odd and $t_u = t/2$ otherwise.

▶ The quantum Serre relations $S_{ij}(x_i, x_j)$ are skew-primitive, hence instead of the homomorphism $G\langle X \rangle \rightarrow u_q^+(\mathfrak{so}_{2n+1})$ we may consider $U_q^+(\mathfrak{so}_{2n+1}) \rightarrow u_q^+(\mathfrak{so}_{2n+1})$ and work with elements of $U_q^+(\mathfrak{so}_{2n+1})$.

向下 イヨト イヨト

Proposition.

- ► The elements T_u = [u]^{t_u}, u = u_{km} generate an algebra C of quantum polynomials, T_uT_v = q_{uv}T_vT_u, q_{uv}q_{vu} = 1.
- GC is a Hopf subalgebra.
- ► U⁺_q(so_{2n+1}) is a free finitely generated module over GC of rank t^{n²} if t is odd, and tⁿ(t/2)^{n²-n} if t is even.

(4) (3) (4) (3) (4)

Lemma.

- ▶ If t is odd or $m \neq n$, then $[u_{km}]^t \in \Lambda_i$ if and only if, $m - k < 2^i - 1 + \varepsilon_m^n$. Here $\varepsilon_m^n = 0$ if $m \leq n$, and $\varepsilon_m^n = 1$ otherwise.
- ▶ If t is even and m = n, then $m k < 2^{i-1}$ implies $[u_{km}]^{t/2} \in \mathbf{\Lambda}_i$, while $m k \ge 2^i 1$ implies $[u_{km}]^{t/2} \notin \mathbf{\Lambda}_i$.

¬<</p>

▶ Find the combinatorial rank of u_q(g), where g is a simple Lie algebra of type C, D, E, F or G.

▶ < 문 ▶ < 문 ▶</p>

- ► Find the combinatorial rank of uq(g), where g is a simple Lie algebra of type C, D, E, F or G.
- It is likely that the proposition is still valid.

• • = • • = •

- ▶ Find the combinatorial rank of u_q(g), where g is a simple Lie algebra of type C, D, E, F or G.
- It is likely that the proposition is still valid.
- In order to prove the lemma we have used an explicit formula for the coproduct:

$$\Delta([u_{km}]) = [u_{km}] \otimes 1 + g_{km} \otimes [u_{km}] + \sum_{i=k}^{m-1} \alpha_i g_{ki}[u_{1+im}] \otimes [u_{ki}],$$

which is not proven for the other classes yet.

- A_n : $\lfloor \log_2 n \rfloor + 1$
- B_n : $\lfloor \log_2(n-1) \rfloor + 2$

Contact: mlds@inteligencianet.com

Thank you!

★ E > < E >

3