Computing of the combinatorial rank of quantum groups

Mayra Lorena Diaz Sosa (Autonomous National University of Mexico, Mexico) malodi1982@yahoo.com.mx

In general an intersection of two biideals is not a biideal. By this reason one may not define a biideal generated by a set of elements, and the bialgebras do not admit a usual combinatorial representation by generators and relations. Heyneman-Radford theorem implies that each nonzero biideal of a pointed bialgebra has nonzero skew primitive element. Each ideal generated by skew primitive elements is a biideal, but certainly a biideal in general is not generared as an ideal by its skew primitive elemens. The Heyneman-Radford theorem allows one to define a combinatorial representation over the coradical in the following form

$$
\mathfrak{A}=C\left\langle X \| F_{1}=0\right| F_{2}=0|\ldots| F_{\kappa}=0| \rangle,
$$

where X is a set of generators, F_{1} is a set of skew primitive relations, $F_{i}, 1<i \leq \kappa$ is a set of relations that are skew primitive in $C\langle X|\left|F_{1}=0\right| F_{2}=0|\ldots| F_{i-1}=0| \rangle$. The minimal number κ is called a combinatorial rank of \mathfrak{A}. We prove that the combinatorial rank of the multiparameter version of the Lusztig small quantum group $u_{q}\left(\mathfrak{s o}_{2 n+1}\right)$, or equivalently of the Frobenius-Lusztig kernel of type B_{n}, equals $\left\lfloor\log _{2}(n-1)\right\rfloor+2$ provided that q has a finite multiplicative order $t>4$. In the case A_{n} the combinatorial rank equals $\left\lfloor\log _{2} n\right\rfloor+1$, see [1].

Bibliography

[1] V.K. Kharchenko, A. Andrade Alvarez, On the combinatorial rank of Hopf algebras. Contemporary Mathematics 376 (2005), 299-308.

COMPUTING OF THE COMBINATORIAL RANK OF QUANTUM GROUPS

M.L. Díaz Sosa (with V.K. Kharchenko)

FES-C UNAM MEXICO

7 of July, 2011
Almería, Spain

The extension theorem of MacWilliams

- The Extension Problem (MacWilliams, 62). For $n \in \mathbf{Z}^{+}$, for a right linear code over a field R where $C \subseteq R^{n}$, and for a linear isometry $f: C \rightarrow R^{n}$, can f be extended to a linear isometry $T: R^{n} \rightarrow R^{n}$?

The extension theorem of MacWilliams

- The Extension Problem (MacWilliams, 62). For $n \in \mathbf{Z}^{+}$, for a right linear code over a field R where $C \subseteq R^{n}$, and for a linear isometry $f: C \rightarrow R^{n}$, can f be extended to a linear isometry $T: R^{n} \rightarrow R^{n}$?
- Extension Theorem (Wood, 99). Let R be a finite Frobenius ring. Suppose $C \subset R^{n}$ is a right linear code, and suppose $f: C \rightarrow R^{n}$ is a right linear homomorphism which preserves Hamming weight. Then f extends to a right isometry of R^{n}.

The extension theorem of MacWilliams

- The Extension Problem (MacWilliams, 62). For $n \in \mathbf{Z}^{+}$, for a right linear code over a field R where $C \subseteq R^{n}$, and for a linear isometry $f: C \rightarrow R^{n}$, can f be extended to a linear isometry $T: R^{n} \rightarrow R^{n}$?
- Extension Theorem (Wood, 99). Let R be a finite Frobenius ring. Suppose $C \subset R^{n}$ is a right linear code, and suppose $f: C \rightarrow R^{n}$ is a right linear homomorphism which preserves Hamming weight. Then f extends to a right isometry of R^{n}.
- The converse of the extension theorem holds! (Wood, 06).

The Larson-Sweedler Theorem

- Theorem (Larson-Sweedler, 69). Every finite dimensional Hopf algebra is Frobenius.

In this way, finite quantum groups provide a material to work within the coding theory.

Algebras and bialgebras

- $A=\left\langle x_{1}, x_{2}, \ldots, x_{n} \| f_{1}=0, f_{2}=0, \ldots, f_{m}=0\right\rangle$.

Algebras and bialgebras

- $A=\left\langle x_{1}, x_{2}, \ldots, x_{n} \| f_{1}=0, f_{2}=0, \ldots, f_{m}=0\right\rangle$.
$-\Delta(A) \rightarrow A \otimes A ; \quad \Delta(a)=\sum_{(a)} a^{(1)} \otimes a^{(2)}$. Biideal: $\Delta(I) \subseteq A \otimes I+I \otimes A$. If $f \in I$, then either $f^{(1)} \in I$ or $f^{(2)} \in I$, but not both!

Algebras and bialgebras

- $A=\left\langle x_{1}, x_{2}, \ldots, x_{n} \| f_{1}=0, f_{2}=0, \ldots, f_{m}=0\right\rangle$.
$-\Delta(A) \rightarrow A \otimes A ; \quad \Delta(a)=\sum_{(a)} a^{(1)} \otimes a^{(2)}$. Biideal: $\Delta(I) \subseteq A \otimes I+I \otimes A$. If $f \in I$, then either $f^{(1)} \in I$ or $f^{(2)} \in I$, but not both!
- Example: $f=x_{1} x_{2} ; \Delta(f)=f \otimes 1+x_{1} \otimes x_{2}+x_{2} \otimes x_{1}+1 \otimes f$; $\operatorname{Biid}\left\langle x_{1} x_{2}\right\rangle$ is either $\operatorname{Id}\left\langle x_{1}\right\rangle$ or $\operatorname{Id}\left\langle x_{2}\right\rangle$.

Primitive elements and coradical filtration

- If $\Delta(f)=a \otimes f+f \otimes b$, then $\operatorname{Id}\langle f\rangle$ is a biideal! The combinatorial representation exists if the defining relations are skew-primitive.

It is not true that every biideal is generated by skew-primitives.

Primitive elements and coradical filtration

- If $\Delta(f)=a \otimes f+f \otimes b$, then $\operatorname{Id}\langle f\rangle$ is a biideal! The combinatorial representation exists if the defining relations are skew-primitive.

It is not true that every biideal is generated by skew-primitives.

- Theorem (Heyneman-Radford, 74). Let C and D be coalgebras $y \phi: C \rightarrow D$ be a morphism of coalgebras such that the restriction $\left.\phi\right|_{C_{1}}$ is injective. Then ϕ is injective.
- Here $C_{0} \subset C_{1} \subset C_{2} \subset \ldots=C$ is the coradical filtration:

$$
\Delta\left(C_{n}\right) \subseteq \sum_{i=1}^{n} C_{i} \otimes C_{n-i}
$$

Combinatorial rank

- Every biideal has nontrivial intersection with C_{1}, while

$$
\Delta\left(C_{1}\right) \subseteq C_{0} \otimes C_{1}+C_{1} \otimes C_{0}
$$

Combinatorial rank

- Every biideal has nontrivial intersection with C_{1}, while

$$
\Delta\left(C_{1}\right) \subseteq C_{0} \otimes C_{1}+C_{1} \otimes C_{0}
$$

- Theorem (Taft-Wilson, 74). If C is pointed, then C_{1} is spanned by 1 and by skew-primitive elements.

Corollary. Every nonzero biideal I of a pointed bialgebra A has a nonzero skew-primitive element.

$$
\left.A=\langle X|\left|f_{1}^{(1)}, \ldots, f_{m}^{(1)}\right| f_{1}^{(2)}, \ldots, f_{m}^{(2)}|\ldots| f_{1}^{(\kappa)}, \ldots, f_{m}^{(\kappa)}\right\rangle
$$

Combinatorial rank

- Every biideal has nontrivial intersection with C_{1}, while

$$
\Delta\left(C_{1}\right) \subseteq C_{0} \otimes C_{1}+C_{1} \otimes C_{0}
$$

- Theorem (Taft-Wilson, 74). If C is pointed, then C_{1} is spanned by 1 and by skew-primitive elements.

Corollary. Every nonzero biideal I of a pointed bialgebra A has a nonzero skew-primitive element.

$$
\left.A=\langle X|\left|f_{1}^{(1)}, \ldots, f_{m}^{(1)}\right| f_{1}^{(2)}, \ldots, f_{m}^{(2)}|\ldots| f_{1}^{(\kappa)}, \ldots, f_{m}^{(\kappa)}\right\rangle
$$

- The number κ is the combinatorial rank of A.

$$
I_{1} \subset I_{2} \subset I_{3} \subset \ldots \subset I_{\kappa}=I, \quad I_{t} / I_{t-1}=I / I_{t-1} \cap C_{1}\left(F / I_{t-1}\right)
$$

$u_{q}\left(\mathfrak{s l}_{n+1}\right)$ and $u_{q}\left(\mathfrak{S O}_{2 n+1}\right)$

- Theorem (V.K. Kharchenko, A. Álvarez, 05). The combinatorial rank of the quantum group $u_{q}\left(\mathfrak{s} l_{n+1}\right)$ equals $\left\lfloor\log _{2} n\right\rfloor+1$ provided that q has a finite multiplicative order $t>2$.

$u_{q}\left(\mathfrak{s}_{n+1}\right)$ and $u_{q}\left(\mathfrak{S O}_{2 n+1}\right)$

- Theorem (V.K. Kharchenko, A. Álvarez, 05). The combinatorial rank of the quantum group $u_{q}\left(\mathfrak{s} l_{n+1}\right)$ equals $\left\lfloor\log _{2} n\right\rfloor+1$ provided that q has a finite multiplicative order $t>2$.
- Theorem (V.K. Kharchenko, M.L. Díaz Sosa, 10). The combinatorial rank of the quantum group $u_{q}\left(\mathfrak{s O}_{2 n+1}\right)$ equals $\left\lfloor\log _{2}(n-1)\right\rfloor+2$ provided that q has a finite multiplicative order $t>4$.

Main steps of the proof

- Triangular decomposition:

$$
u_{q}\left(\mathfrak{s o}_{2 n+1}\right)=u_{q}^{-}\left(\mathfrak{s o}_{2 n+1}\right) \otimes H \otimes u_{q}^{+}\left(\mathfrak{s o}_{2 n+1}\right)
$$

We show that $\kappa^{+}=\kappa^{-}=\kappa$.

Main steps of the proof

- Triangular decomposition:

$$
u_{q}\left(\mathfrak{s o}_{2 n+1}\right)=u_{q}^{-}\left(\mathfrak{s o}_{2 n+1}\right) \otimes H \otimes u_{q}^{+}\left(\mathfrak{s o}_{2 n+1}\right)
$$

We show that $\kappa^{+}=\kappa^{-}=\kappa$.

- By definition $u_{q}^{+}\left(\mathfrak{s o}{ }_{2 n+1}\right)=G\left\langle x_{1}, \ldots, x_{n}\right\rangle / \boldsymbol{\Lambda}$, where $\boldsymbol{\Lambda}$ is the biggest biideal with trivial intersection with the space spanned by x_{1}, \ldots, x_{n}.

Main steps of the proof

- Triangular decomposition:

$$
u_{q}\left(\mathfrak{s o}_{2 n+1}\right)=u_{q}^{-}\left(\mathfrak{s o}_{2 n+1}\right) \otimes H \otimes u_{q}^{+}\left(\mathfrak{s o}_{2 n+1}\right)
$$

We show that $\kappa^{+}=\kappa^{-}=\kappa$.

- By definition $u_{q}^{+}\left(\mathfrak{s o}_{2 n+1}\right)=G\left\langle x_{1}, \ldots, x_{n}\right\rangle / \boldsymbol{\Lambda}$, where $\boldsymbol{\Lambda}$ is the biggest biideal with trivial intersection with the space spanned by x_{1}, \ldots, x_{n}.
- $\Delta\left(x_{i}\right)=x_{i} \otimes 1+g_{i} \otimes x_{i} ; \Delta\left(g_{i}\right)=g_{i} \otimes g_{i} ; x_{i} g_{j}=p_{i j} g_{j} x_{i}$, where $p_{i j}$ are arbitrary parameters satisfying:

$$
\begin{gathered}
p_{n n}=q, p_{i i}=q^{2}, p_{i+1} p_{i+1 i}=q^{-2}, 1 \leq i<n ; \\
p_{i j} p_{j i}=1, j>i+1
\end{gathered}
$$

Main steps of the proof

- $u_{q}^{+}\left(\mathfrak{s o}_{2 n+1}\right)=G\left\langle x_{1}, \ldots, x_{n} \|\left[u_{k m}\right]^{t_{u}}, k \leq m \leq 2 n-k\right\rangle$,
$\left[u_{k m}\right]=\left[\ldots\left[\left[\left[\left[\cdots\left[x_{k}, x_{k+1}\right] \cdots x_{n},\right] x_{n},\right] x_{n-1},\right] x_{n-2},\right] \cdots x_{2 n-m+1}\right]$,
here $[u, v]=u v-p(u, v) v u$, while the bimultiplicative map $p(u, v)$ is so that $p\left(x_{i}, x_{j}\right)=p_{i j}$; and $t_{u}=t$ if $m=n$ or t is odd and $t_{u}=t / 2$ otherwise.

Main steps of the proof

- $u_{q}^{+}(\mathfrak{s o} 2 n+1)=G\left\langle x_{1}, \ldots, x_{n} \|\left[u_{k m}\right]^{t_{u}}, k \leq m \leq 2 n-k\right\rangle$,
$\left[u_{k m}\right]=\left[\ldots\left[\left[\left[\left[\cdots\left[x_{k}, x_{k+1}\right] \cdots x_{n},\right] x_{n},\right] x_{n-1},\right] x_{n-2},\right] \cdots x_{2 n-m+1}\right]$,
here $[u, v]=u v-p(u, v) v u$, while the bimultiplicative map $p(u, v)$ is so that $p\left(x_{i}, x_{j}\right)=p_{i j}$; and $t_{u}=t$ if $m=n$ or t is odd and $t_{u}=t / 2$ otherwise.
- The quantum Serre relations $S_{i j}\left(x_{i}, x_{j}\right)$ are skew-primitive, hence instead of the homomorphism $G\langle X\rangle \rightarrow u_{q}^{+}\left(\mathfrak{s o}_{2 n+1}\right)$ we may consider $U_{q}^{+}\left(\mathfrak{s O}_{2 n+1}\right) \rightarrow u_{q}^{+}\left(\mathfrak{s O}_{2 n+1}\right)$ and work with elements of $U_{q}^{+}\left(5_{2 n+1}\right)$.

Main steps of the proof

Proposition.

- The elements $T_{u}=[u]^{t_{u}}, u=u_{k m}$ generate an algebra C of quantum polynomials, $T_{u} T_{v}=q_{u v} T_{v} T_{u}, q_{u v} q_{v u}=1$.
- GC is a Hopf subalgebra.
- $U_{q}^{+}\left(\mathfrak{s O}_{2 n+1}\right)$ is a free finitely generated module over GC of rank $t^{n^{2}}$ if t is odd, and $t^{n}(t / 2)^{n^{2}-n}$ if t is even.

Main steps of the proof

Lemma.

- If t is odd or $m \neq n$, then $\left[u_{k m}\right]^{t} \in \boldsymbol{\Lambda}_{i}$ if and only if, $m-k<2^{i}-1+\varepsilon_{m}^{n}$. Here $\varepsilon_{m}^{n}=0$ if $m \leq n$, and $\varepsilon_{m}^{n}=1$ otherwise.
- If t is even and $m=n$, then $m-k<2^{i-1}$ implies $\left[u_{k m}\right]^{t / 2} \in \boldsymbol{\Lambda}_{i}$, while $m-k \geq 2^{i}-1$ implies $\left[u_{k m}\right]^{t / 2} \notin \boldsymbol{\Lambda}_{i}$.

Problems

- Find the combinatorial rank of $u_{q}(\mathfrak{g})$, where \mathfrak{g} is a simple Lie algebra of type C, D, E, F or G.

Problems

- Find the combinatorial rank of $u_{q}(\mathfrak{g})$, where \mathfrak{g} is a simple Lie algebra of type C, D, E, F or G.
- It is likely that the proposition is still valid.

Problems

- Find the combinatorial rank of $u_{q}(\mathfrak{g})$, where \mathfrak{g} is a simple Lie algebra of type C, D, E, F or G.
- It is likely that the proposition is still valid.
- In order to prove the lemma we have used an explicit formula for the coproduct:

$$
\Delta\left(\left[u_{k m}\right]\right)=\left[u_{k m}\right] \otimes 1+g_{k m} \otimes\left[u_{k m}\right]+\sum_{i=k}^{m-1} \alpha_{i} g_{k i}\left[u_{1+i m}\right] \otimes\left[u_{k i}\right]
$$

which is not proven for the other classes yet.

Main results

$A_{n}: \quad\left\lfloor\log _{2} n\right\rfloor+1$
$B_{n}:\left\lfloor\log _{2}(n-1)\right\rfloor+2$
Contact: mlds@inteligencianet.com

Thank you!

