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Let B be a bialgebra, and A a left B-comodule algebra in a braided monoidal
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I Classify - if any - braidings on the category AMA

I Compute the center of AMA (find the local braidinga)
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Part I: braidings on AMA



Theorem 1

There is a bijective correspondence between braidings c on AMA

and invertible elements R = R1 ⊗ R2 ⊗ R3 ∈ A(3) (summation
implicitly understood) satisfying the following conditions, for all
a ∈ A:

R1 ⊗ R2 ⊗ aR3 = R1a⊗ R2 ⊗ R3

aR1 ⊗ R2 ⊗ R3 = R1 ⊗ R2a⊗ R3

R1 ⊗ aR2 ⊗ R3 = R1 ⊗ R2 ⊗ R3a

R1 ⊗ R2 ⊗ 1⊗ R3 = r1R1 ⊗ r2 ⊗ r3R2 ⊗ R3

R1 ⊗ 1⊗ R2 ⊗ R3 = R1 ⊗ R2r1 ⊗ r2 ⊗ R3r3

We call R the R-matrix corresponding to the braiding c, and we
say that (A,R) is a quasitriangular algebra.The braiding c
corresponding to R is given by the formula

cM,N(m ⊗A n) = R1nR2 ⊗A mR3.
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Easy applications

1. If a monomial x ⊗ y ⊗ z is an R-matrix, then it is equal to
1⊗ 1⊗ 1.

2. 1⊗ 1⊗ 1 is an R-matrix if and only if uA : k → A is an
epimorphism of rings.

3. For A commutative, (A,R) is quasitriangular if and only if
R = 1⊗ 1⊗ 1 and uA : k → A is an epimorphism in the
category of rings.

For A commutative: game over!
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If S = S1 ⊗ S2 ⊗ S3 is the R-matrix corresponding to the inverse
braiding, then R−1 = S2 ⊗ S1 ⊗ S3.

The axioms for R imply that

R1R2 ⊗ R3 = 1⊗ 1

This property, together with the centralizing condition

R1 ⊗ aR2 ⊗ R3 = R1 ⊗ R2 ⊗ R3a

imply all the other axioms.
One first shows that R is invariant under cyclic permutation of the
tensor factors:

R = R2 ⊗ R3 ⊗ R1 = R3 ⊗ R1 ⊗ R2

It then also follows that

R−1 = R2 ⊗ R1 ⊗ R3

That is, R = S , and the braiding is symmetric.



If S = S1 ⊗ S2 ⊗ S3 is the R-matrix corresponding to the inverse
braiding, then R−1 = S2 ⊗ S1 ⊗ S3.
The axioms for R imply that

R1R2 ⊗ R3 = 1⊗ 1

This property, together with the centralizing condition

R1 ⊗ aR2 ⊗ R3 = R1 ⊗ R2 ⊗ R3a

imply all the other axioms.
One first shows that R is invariant under cyclic permutation of the
tensor factors:

R = R2 ⊗ R3 ⊗ R1 = R3 ⊗ R1 ⊗ R2

It then also follows that

R−1 = R2 ⊗ R1 ⊗ R3

That is, R = S , and the braiding is symmetric.



If S = S1 ⊗ S2 ⊗ S3 is the R-matrix corresponding to the inverse
braiding, then R−1 = S2 ⊗ S1 ⊗ S3.
The axioms for R imply that

R1R2 ⊗ R3 = 1⊗ 1

This property, together with the centralizing condition

R1 ⊗ aR2 ⊗ R3 = R1 ⊗ R2 ⊗ R3a

imply all the other axioms.
One first shows that R is invariant under cyclic permutation of the
tensor factors:

R = R2 ⊗ R3 ⊗ R1 = R3 ⊗ R1 ⊗ R2

It then also follows that

R−1 = R2 ⊗ R1 ⊗ R3

That is, R = S , and the braiding is symmetric.



If S = S1 ⊗ S2 ⊗ S3 is the R-matrix corresponding to the inverse
braiding, then R−1 = S2 ⊗ S1 ⊗ S3.
The axioms for R imply that

R1R2 ⊗ R3 = 1⊗ 1

This property, together with the centralizing condition

R1 ⊗ aR2 ⊗ R3 = R1 ⊗ R2 ⊗ R3a

imply all the other axioms.
One first shows that R is invariant under cyclic permutation of the
tensor factors:

R = R2 ⊗ R3 ⊗ R1 = R3 ⊗ R1 ⊗ R2

It then also follows that

R−1 = R2 ⊗ R1 ⊗ R3

That is, R = S , and the braiding is symmetric.



If S = S1 ⊗ S2 ⊗ S3 is the R-matrix corresponding to the inverse
braiding, then R−1 = S2 ⊗ S1 ⊗ S3.
The axioms for R imply that

R1R2 ⊗ R3 = 1⊗ 1

This property, together with the centralizing condition

R1 ⊗ aR2 ⊗ R3 = R1 ⊗ R2 ⊗ R3a

imply all the other axioms.
One first shows that R is invariant under cyclic permutation of the
tensor factors:

R = R2 ⊗ R3 ⊗ R1 = R3 ⊗ R1 ⊗ R2

It then also follows that

R−1 = R2 ⊗ R1 ⊗ R3

That is, R = S , and the braiding is symmetric.



Theorem 2

There is a bijective correspondence between

I braidings c n AMA

I symmetries c on AMA

I elements R = R1 ⊗ R2 ⊗ R3 ∈ A(3) satisfying the following
conditions, for all a ∈ A:

R1 ⊗ aR2 ⊗ R3 = R1 ⊗ R2 ⊗ R3a

R1R2 ⊗ R3 = R2 ⊗ R3R1 = 1⊗ 1.
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Azumaya algebras

we have an adjoint pair (F = A⊗−,G = (−)A) between Mk and

AMA.

ηN : N → (A⊗ N)A ; ηN(n) = n ⊗ 1;
εM : A⊗MA → M ; εM(a⊗m) = am.

A is an Azumaya algebra if and only if (F ,G ) is a pair of inverse
equivalences.



Separable functors (Nǎstǎsescu, Van den Bergh, Van
Oystaeyen)

F : C → D is called separable if the natural transformation

F : HomC(•, •)→ HomD(F (•),F (•)) ; FC ,C ′(f ) = F (f )

splits,

that is, there is a natural transformation

P : HomD(F (•),F (•))→ HomC(•, •)

such that P ◦ F is the identity natural transformation.
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Theorem 3

Let A be a k-algebra A.
The functor G = (−)A : AMA →Mk is separable

⇐⇒

there exists R = R1 ⊗ R2 ⊗ R3 ∈ A⊗ (A⊗ A)A such that
R1R2 ⊗ R3 = 1⊗ 1⊗ 1.



Corollary

Let A be k-algebra such that the functor G = (−)A is separable.
Then (A,R) is a quasitriangular algebra, and the corresponding
braiding is a symmetry.
In this case the functor F : Mk → AMA preserves the symmetry.



Example

If A is an Azumaya algebra, then (F ,G ) is an equivalence of
categories, and, a fortiori, G is separable.
In the case where A = Mn(k) is a matrix algebra, we have an
explicit formula for R, namely

R =
n∑

i ,j ,k=1

eij ⊗ eki ⊗ ejk .



Part II: the center of AMA



Descent data (Grothendieck/Knus & Ojanguren)

Let A be a commutative k-algebra. A descent datum (V , g) is a
right A-module V together with a right A(2)-module map

g : A⊗ V → V ⊗ A

such that g2 = g3 ◦ g1 and

(m ◦ g)(1⊗ v) = v

which is equivalent to g being invertible.
Desc(A/k) is the category of descent data.
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Sweedler canonical coring

A⊗ A is an A-coring.

∆(a⊗ b) = a⊗ 1⊗ b ∈ A(3) ∼= A(2) ⊗A A(2)

ε(a⊗ b) = ab

We describe right A⊗A-comodules. These are right A-modules V
with a right A-linear ρ : V → V ⊗A A(2) ∼= V ⊗ A. These have to
satisfy the appropriate coassociativity and counit conditions. If we
write ρ(v) = v[0] ⊗ v[1] ∈ V ⊗ A, then these come down to

ρ(v[0])⊗ v[1] = v[0] ⊗ 1⊗ v[1]

v[0]v[1] = v

Right A-linearity of ρ means

ρ(va) = v[0] ⊗ v[1]a
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The weak right center of AMA

Take (V , c−,V ) ∈ AMA. Consider

g = cA⊗A,V : A(2) ⊗A V ∼= A⊗ V → V ⊗A A(2) ∼= V ⊗ A

ρ : V → V ⊗ A, ρ(v) = g(1⊗ v) = v[0] ⊗ v[1]

Then ρ determines c completely:

cM,V (m ⊗A v) = v[0] ⊗A mv[1] (1)

Furthermore, (V , ρ) ∈MA⊗A, and

ρ(av) = v[0] ⊗ av[1]

aρ(v) = av[0] ⊗ v[1] = v[0]a⊗ v[1]

We call (V , ρ) a Yetter-Drinfeld A-module. YDA is the category
of Yetter-Drinfeld A-modules.
Conversely, given a Yetter-Drinfeld A-module (V , ρ), we obtain a
local braiding c−,V using (1).
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Wr (AMA) and YDA are isomorphic



Let (V , ρ) ∈ YDA. Then

av[0] ⊗ v[1] = v[0]a⊗ v[1]

hence
av = av[0]v[1] = v[0]av[1]

so the left A-action on V is determined by the right one.
This is the clue to the following result.
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Theorem

The forgetful functor YDA →MA⊗A is an isomorphism of
categories.

Proof: On (V , ρ) ∈MA⊗A, define a left A-action using the
formula we just obtained:

av = v[0]av[1]

Then show that (V , ρ) ∈ YDA.
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Theorem

Let V ∈ AMA and assume that ρ : V → V ⊗ A satisfies all the
conditions needed to make V ∈ YDA, except v[0]v[1] = v .

Then the condition v[0]v[1] = v , for all v ∈ V
is equivalent tothe invertibility of

g : A⊗ V → V ⊗ A, g(a⊗ v) = av[0] ⊗ v[1]

a related result is the following.
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Theorem

The (right) center of the category of A-bimodules coincides with
its (right) weak center: Zr (AMA) =Wr (AMA).

Proof: take (V , c−,V ) in the weak center, and take the associated
map ρ : V → V ⊗ A. The inverse of cM,V is given by

c−1
M,V (v ⊗A m) = v[1]m ⊗A v[0].
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Descent data

If V and W are A-bimodules, then V ⊗W is an A(2)-bimodule.
Let A be a k-algebra. A descent datum consists of an A-bimodule
V together with an A(2)-bimodule map g : A⊗ V → V ⊗ A such
that g2 = g3 ◦ g1 and (m ◦ g)(a⊗ v) = v , for all v ∈ V .

The last condition can be replaced by invertibility of g .
Desc(A/k) is the category of descent data.
If A is commutative, then these descent data coincide with the
Knus-Ojanguren descent data.
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Theorem

The categories Desc(A/k) and YDA are isomorphic.



Conclusion

The categories Desc(A/k), YDA, MA⊗A, Wr (AMA) and
Zr (AMA) are isomorphic.

We have a pair of adjoint functors (K = −⊗ A,R = (−)coA⊗A)
between Mk and MA⊗A.
(K ,R) is a pair of inverse equivalences if A/k is faithfully flat.
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