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This talk is based on a joint work with Daniel Bulacu.

Let B be a bialgebra, and A a left B-comodule algebra in a braided monoidal
category C, and assume that A is also a coalgebra, with a not-necessarily associative
or unital left B-action. Then we can define a right A-action on the tensor product
of two relative Hopf modules, and this defines a monoidal structure on the category
of relative Hopf modules if and only if A is a bialgebra in the category of left Yetter-
Drinfeld modules over B.
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» Compute the center of ;M4 (find the local braidinga)



Part I: braidings on s M4
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There is a bijective correspondence between braidings ¢ on aMz
and invertible elements R = R' ® R2® R3 € AB®) (summation
implicitly understood) satisfying the following conditions, for all

acA:
RloRP®aR?® = RlaoR*’9R3
aR'9 RPo R} = R'@R?aR3
RloarR?oR? = R'9@R?@R3a

RRORP®1®R® = rR'@rPerRPeR?
RrRe1oR*®R} = R'@R*'orPe R
We call R the R-matrix corresponding to the braiding ¢, and we

say that (A, R) is a quasitriangular algebra.The braiding ¢
corresponding to R is given by the formula

cmn(m®an) = R'nR? © 4 mR3.



Easy applications

1. If a monomial x ® y ® z is an R-matrix, then it is equal to
1®1®1.



Easy applications

1. If a monomial x ® y ® z is an R-matrix, then it is equal to
1®1®1.

2.1®1®1isan R-matrix if and only if ug: k — Alis an
epimorphism of rings.



Easy applications

1. If a monomial x ® y ® z is an R-matrix, then it is equal to
1®1®1.

2.1®1®1isan R-matrix if and only if ug: k — Alis an
epimorphism of rings.

3. For A commutative, (A, R) is quasitriangular if and only if
R=1®1®1and us: k — Ais an epimorphism in the
category of rings.



Easy applications

1. If a monomial x ® y ® z is an R-matrix, then it is equal to
1®1®1.

2.1®1®1isan R-matrix if and only if ug: k — Alis an
epimorphism of rings.

3. For A commutative, (A, R) is quasitriangular if and only if
R=1®1®1and us: k — Ais an epimorphism in the
category of rings.

For A commutative: game over!
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If S =S!'® S?® S3 is the R-matrix corresponding to the inverse
braiding, then R~! = S?2 ® S' ® S3.
The axioms for R imply that

RRRoR =11
This property, together with the centralizing condition
Rl®aR?@R*=R'®@ R?® R%a

imply all the other axioms.
One first shows that R is invariant under cyclic permutation of the
tensor factors:

R=R’9R}®R' =R}@ R R?
It then also follows that
R_1:R2®R1®R3

That is, R = S, and the braiding is symmetric.
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There is a bijective correspondence between
» braidings ¢ n poMy
» symmetries ¢ on s M4
> elements R = R! ® R2® R3 € AB) satisfying the following

conditions, for all a € A:
Rl aR?@ R® = R'@R?>@ R3a
RIRP9R® = R°0R}R'=1®1.



Azumaya algebras

we have an adjoint pair (F = A® —, G = (—)*) between M and
AMa.

nv: N— (AN  nu(n)=n®1;
em: A MA =M ; ey(a®m)=am.

A is an Azumaya algebra if and only if (F, G) is a pair of inverse
equivalences.



Separable functors (N&stdsescu, Van den Bergh, Van

Oystaeyen)

F: C — D is called separable if the natural transformation
F : Homc(e, 8) — Homp(F(e), F(e)) ; Fc,c(f) = F(f)

splits,



Separable functors (N&stdsescu, Van den Bergh, Van

Oystaeyen)

F: C — D is called separable if the natural transformation
F : Homc(e,®) — Homp(F(e), F(e)) ; Fc.c(f) = F(f)
splits,that is, there is a natural transformation
P . Homp(F(e), F(e)) — Hom¢(e,e)

such that P o F is the identity natural transformation.
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Rafael's Theorem

(F, G) adjoint pair of functors.

F is separable <= 7 splits.
G is separable <= & cosplits.



Let A be a k-algebra A.
The functor G = (—)*: aMa — My is separable

—

there exists R = R1 ® R2 @ R® ¢ A® (A® A)? such that
RRReRP=121®1.



Corollary

Let A be k-algebra such that the functor G = (—)* is separable.
Then (A, R) is a quasitriangular algebra, and the corresponding
braiding is a symmetry.

In this case the functor F : My — AM, preserves the symmetry.



If A'is an Azumaya algebra, then (F, G) is an equivalence of
categories, and, a fortiori, G is separable.

In the case where A = M, (k) is a matrix algebra, we have an
explicit formula for R, namely

n
R = E €jj & ek & €jk.
ij.k=1



Part |l: the center of s M4



Descent data (Grothendieck/Knus & Ojanguren)

Let A be a commutative k-algebra. A descent datum (V,g) is a
right A-module V together with a right A®)-module map
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such that g» = g3 0 g1 and

(mog)(l®v) =v



Descent data (Grothendieck/Knus & Ojanguren)

Let A be a commutative k-algebra. A descent datum (V,g) is a
right A-module V together with a right A®)-module map

g ARV -V®A
such that g» = g3 0 g1 and
(mog)(l®v)=v

which is equivalent to g being invertible.
Desc(A/ k) is the category of descent data.
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Sweedler canonical coring

A® Ais an A-coring.
Aaob)=avlobe AB) =2 AR g, AR

e(a®b) = ab

We describe right A ® A-comodules. These are right A-modules V
with a right A-linear p: V — V@4 A® = V @ A. These have to
satisfy the appropriate coassociativity and counit conditions. If we
write p(v) = vjo] ® vj1] € V ® A, then these come down to

P(Vio) ® via) = Vi) © 1 @ vy

Viorvi) =V

Right A-linearity of p means

p(va) = vig ® vya
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The weak right center of 4 M4

Take (V,c_ v) € aMa. Consider
g=casav: AD@ VARV 5 Ve AP 2 VA

p: V—=V®A pv)=g(lev)=vq® vy
Then p determines ¢ completely:
cmv(m®a v) = vig ®a mvy (1)
Furthermore, (V, p) € MA®4 and
p(av) = vig ® avy
ap(v) = avjg ® v = V[gja @ V[

We call (V, p) a Yetter-Drinfeld A-module. YD* is the category
of Yetter-Drinfeld A-modules.
Conversely, given a Yetter-Drinfeld A-module (V/, p), we obtain a
local braiding c_ y using (1).



W;(aM,) and YDA are isomorphic
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Let (V,p) € YDA Then
avio & vi1] = V)@ & Vi1

hence
av = avio|i1] = V[ojaVy]

so the left A-action on V is determined by the right one.
This is the clue to the following result.
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The forgetful functor YDA — MA®A is an isomorphism of
categories.

Proof: On (V,p) € MA®A define a left A-action using the
formula we just obtained:

av = V[O] av[l]

Then show that (V, p) € YDA,
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Let V € oM, and assume that p: V — V ® A satisfies all the
conditions needed to make V € YD*, except ViojV[1] = V-

Then the condition vjgjvjy) = v, for all v € V

is equivalent tothe invertibility of

g ARV — V®A, g(a®v):av[0]®v[1]

a related result is the following.
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The (right) center of the category of A-bimodules coincides with
its (right) weak center: Z,(aMa) = W,(aM ).

Proof: take (V,c_ v) in the weak center, and take the associated
map p: V — V ® A. The inverse of cy,y is given by

(v @4 m) = viym @4 vig)-
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Descent data

If V and W are A-bimodules, then V @ W is an A(®)-bimodule.
Let A be a k-algebra. A descent datum consists of an A-bimodule
V together with an A®)-bimodule map g: A® V — V @ A such
that g = g3o g1 and (mog)(a®@v) =v, forall v e V.

The last condition can be replaced by invertibility of g.
Desc(A/k) is the category of descent data.

If A is commutative, then these descent data coincide with the
Knus-Ojanguren descent data.
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Conclusion

The categories Desc(A/k), YDA, MA®A W, (4 M) and
Z,(aM ) are isomorphic.

We have a pair of adjoint functors (K = — ® A, R = (—)©°A®4)
between My and MA®A,

(K, R) is a pair of inverse equivalences if A/k is faithfully flat.
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