Monoidal structures on the category of relative Hopf modules

Stefaan Caenepeel (Free University of Brussels, Belgium)

scaenepe@vub.ac.be
This talk is based on a joint work with Daniel Bulacu.
Let B be a bialgebra, and A a left B-comodule algebra in a braided monoidal category \mathcal{C}, and assume that A is also a coalgebra, with a not-necessarily associative or unital left B-action. Then we can define a right A-action on the tensor product of two relative Hopf modules, and this defines a monoidal structure on the category of relative Hopf modules if and only if A is a bialgebra in the category of left YetterDrinfeld modules over B.

Braidings on the category of bimodules, separable functors, Azumaya algebras and descent data

Ana Agore, Stefaan Caenepeel, Gigel Militaru

Almería, July 4, 2011

Problem

Let A be an algebra over a commutative ring k.

- Classify - if any - braidings on the category A_{A}

Problem

Let A be an algebra over a commutative ring k.

- Classify - if any - braidings on the category A_{A}
- Compute the center of ${ }_{A} \mathcal{M}_{A}$ (find the local braidinga)

Part I: braidings on ${ }_{A} \mathcal{M}_{A}$

Theorem 1

There is a bijective correspondence between braidings c on ${ }_{A} \mathcal{M}_{A}$ and invertible elements $R=R^{1} \otimes R^{2} \otimes R^{3} \in A^{(3)}$ (summation implicitly understood) satisfying the following conditions, for all $a \in A$:

$$
\begin{aligned}
& R^{1} \otimes R^{2} \otimes a R^{3}=R^{1} a \otimes R^{2} \otimes R^{3} \\
& a R^{1} \otimes R^{2} \otimes R^{3}=R^{1} \otimes R^{2} a \otimes R^{3} \\
& R^{1} \otimes a R^{2} \otimes R^{3}=R^{1} \otimes R^{2} \otimes R^{3} a
\end{aligned}
$$

Theorem 1

There is a bijective correspondence between braidings c on ${ }_{A} \mathcal{M}_{A}$ and invertible elements $R=R^{1} \otimes R^{2} \otimes R^{3} \in A^{(3)}$ (summation implicitly understood) satisfying the following conditions, for all $a \in A$:

$$
\begin{aligned}
R^{1} \otimes R^{2} \otimes a R^{3} & =R^{1} a \otimes R^{2} \otimes R^{3} \\
a R^{1} \otimes R^{2} \otimes R^{3} & =R^{1} \otimes R^{2} a \otimes R^{3} \\
R^{1} \otimes a R^{2} \otimes R^{3} & =R^{1} \otimes R^{2} \otimes R^{3} a \\
R^{1} \otimes R^{2} \otimes 1 \otimes R^{3} & =r^{1} R^{1} \otimes r^{2} \otimes r^{3} R^{2} \otimes R^{3} \\
R^{1} \otimes 1 \otimes R^{2} \otimes R^{3} & =R^{1} \otimes R^{2} r^{1} \otimes r^{2} \otimes R^{3} r^{3}
\end{aligned}
$$

Theorem 1

There is a bijective correspondence between braidings c on ${ }_{A} \mathcal{M}_{A}$ and invertible elements $R=R^{1} \otimes R^{2} \otimes R^{3} \in A^{(3)}$ (summation implicitly understood) satisfying the following conditions, for all $a \in A$:

$$
\begin{aligned}
R^{1} \otimes R^{2} \otimes a R^{3} & =R^{1} a \otimes R^{2} \otimes R^{3} \\
a R^{1} \otimes R^{2} \otimes R^{3} & =R^{1} \otimes R^{2} a \otimes R^{3} \\
R^{1} \otimes a R^{2} \otimes R^{3} & =R^{1} \otimes R^{2} \otimes R^{3} a \\
R^{1} \otimes R^{2} \otimes 1 \otimes R^{3} & =r^{1} R^{1} \otimes r^{2} \otimes r^{3} R^{2} \otimes R^{3} \\
R^{1} \otimes 1 \otimes R^{2} \otimes R^{3} & =R^{1} \otimes R^{2} r^{1} \otimes r^{2} \otimes R^{3} r^{3}
\end{aligned}
$$

We call R the R-matrix corresponding to the braiding c, and we say that (A, R) is a quasitriangular algebra.

Theorem 1

There is a bijective correspondence between braidings c on ${ }_{A} \mathcal{M}_{A}$ and invertible elements $R=R^{1} \otimes R^{2} \otimes R^{3} \in A^{(3)}$ (summation implicitly understood) satisfying the following conditions, for all $a \in A$:

$$
\begin{aligned}
R^{1} \otimes R^{2} \otimes a R^{3} & =R^{1} a \otimes R^{2} \otimes R^{3} \\
a R^{1} \otimes R^{2} \otimes R^{3} & =R^{1} \otimes R^{2} a \otimes R^{3} \\
R^{1} \otimes a R^{2} \otimes R^{3} & =R^{1} \otimes R^{2} \otimes R^{3} a \\
R^{1} \otimes R^{2} \otimes 1 \otimes R^{3} & =r^{1} R^{1} \otimes r^{2} \otimes r^{3} R^{2} \otimes R^{3} \\
R^{1} \otimes 1 \otimes R^{2} \otimes R^{3} & =R^{1} \otimes R^{2} r^{1} \otimes r^{2} \otimes R^{3} r^{3}
\end{aligned}
$$

We call R the R-matrix corresponding to the braiding c, and we say that (A, R) is a quasitriangular algebra. The braiding c corresponding to R is given by the formula

$$
c_{M, N}\left(m \otimes_{A} n\right)=R^{1} n R^{2} \otimes_{A} m R^{3}
$$

Easy applications

1. If a monomial $x \otimes y \otimes z$ is an R-matrix, then it is equal to $1 \otimes 1 \otimes 1$.

Easy applications

1. If a monomial $x \otimes y \otimes z$ is an R-matrix, then it is equal to $1 \otimes 1 \otimes 1$.
2. $1 \otimes 1 \otimes 1$ is an R-matrix if and only if $u_{A}: k \rightarrow A$ is an epimorphism of rings.

Easy applications

1. If a monomial $x \otimes y \otimes z$ is an R-matrix, then it is equal to $1 \otimes 1 \otimes 1$.
2. $1 \otimes 1 \otimes 1$ is an R-matrix if and only if $u_{A}: k \rightarrow A$ is an epimorphism of rings.
3. For A commutative, (A, R) is quasitriangular if and only if $R=1 \otimes 1 \otimes 1$ and $u_{A}: k \rightarrow A$ is an epimorphism in the category of rings.

Easy applications

1. If a monomial $x \otimes y \otimes z$ is an R-matrix, then it is equal to $1 \otimes 1 \otimes 1$.
2. $1 \otimes 1 \otimes 1$ is an R-matrix if and only if $u_{A}: k \rightarrow A$ is an epimorphism of rings.
3. For A commutative, (A, R) is quasitriangular if and only if $R=1 \otimes 1 \otimes 1$ and $u_{A}: k \rightarrow A$ is an epimorphism in the category of rings.

For A commutative: game over!

If $S=S^{1} \otimes S^{2} \otimes S^{3}$ is the R-matrix corresponding to the inverse braiding, then $R^{-1}=S^{2} \otimes S^{1} \otimes S^{3}$.

If $S=S^{1} \otimes S^{2} \otimes S^{3}$ is the R-matrix corresponding to the inverse braiding, then $R^{-1}=S^{2} \otimes S^{1} \otimes S^{3}$.
The axioms for R imply that

$$
R^{1} R^{2} \otimes R^{3}=1 \otimes 1
$$

If $S=S^{1} \otimes S^{2} \otimes S^{3}$ is the R-matrix corresponding to the inverse braiding, then $R^{-1}=S^{2} \otimes S^{1} \otimes S^{3}$.
The axioms for R imply that

$$
R^{1} R^{2} \otimes R^{3}=1 \otimes 1
$$

This property, together with the centralizing condition

$$
R^{1} \otimes a R^{2} \otimes R^{3}=R^{1} \otimes R^{2} \otimes R^{3} a
$$

If $S=S^{1} \otimes S^{2} \otimes S^{3}$ is the R-matrix corresponding to the inverse braiding, then $R^{-1}=S^{2} \otimes S^{1} \otimes S^{3}$.
The axioms for R imply that

$$
R^{1} R^{2} \otimes R^{3}=1 \otimes 1
$$

This property, together with the centralizing condition

$$
R^{1} \otimes a R^{2} \otimes R^{3}=R^{1} \otimes R^{2} \otimes R^{3} a
$$

imply all the other axioms.
One first shows that R is invariant under cyclic permutation of the tensor factors:

$$
R=R^{2} \otimes R^{3} \otimes R^{1}=R^{3} \otimes R^{1} \otimes R^{2}
$$

If $S=S^{1} \otimes S^{2} \otimes S^{3}$ is the R-matrix corresponding to the inverse braiding, then $R^{-1}=S^{2} \otimes S^{1} \otimes S^{3}$.
The axioms for R imply that

$$
R^{1} R^{2} \otimes R^{3}=1 \otimes 1
$$

This property, together with the centralizing condition

$$
R^{1} \otimes a R^{2} \otimes R^{3}=R^{1} \otimes R^{2} \otimes R^{3} a
$$

imply all the other axioms.
One first shows that R is invariant under cyclic permutation of the tensor factors:

$$
R=R^{2} \otimes R^{3} \otimes R^{1}=R^{3} \otimes R^{1} \otimes R^{2}
$$

It then also follows that

$$
R^{-1}=R^{2} \otimes R^{1} \otimes R^{3}
$$

That is, $R=S$, and the braiding is symmetric.

There is a bijective correspondence between

- braidings $c \mathrm{n}_{A} \mathcal{M}_{A}$

There is a bijective correspondence between

- braidings $c \mathrm{n}_{A} \mathcal{M}_{A}$
- symmetries c on ${ }_{A} \mathcal{M}_{A}$

There is a bijective correspondence between

- braidings $c \mathrm{n}_{A} \mathcal{M}_{A}$
- symmetries c on ${ }_{A} \mathcal{M}_{A}$
- elements $R=R^{1} \otimes R^{2} \otimes R^{3} \in A^{(3)}$ satisfying the following conditions, for all $a \in A$:

$$
\begin{aligned}
R^{1} \otimes a R^{2} \otimes R^{3} & =R^{1} \otimes R^{2} \otimes R^{3} a \\
R^{1} R^{2} \otimes R^{3} & =R^{2} \otimes R^{3} R^{1}=1 \otimes 1
\end{aligned}
$$

Azumaya algebras

we have an adjoint pair $\left(F=A \otimes-, G=(-)^{A}\right)$ between \mathcal{M}_{k} and ${ }_{A} \mathcal{M}_{A}$.

$$
\begin{array}{cc}
\eta_{N}: N \rightarrow(A \otimes N)^{A} & ; \quad \eta_{N}(n)=n \otimes 1 \\
\varepsilon_{M}: A \otimes M^{A} \rightarrow M & ; \quad \varepsilon_{M}(a \otimes m)=a m .
\end{array}
$$

A is an Azumaya algebra if and only if (F, G) is a pair of inverse equivalences.

Separable functors (Năstǎsescu, Van den Bergh, Van Oystaeyen)

$F: \mathcal{C} \rightarrow \mathcal{D}$ is called separable if the natural transformation

$$
\mathcal{F}: \operatorname{Hom}_{\mathcal{C}}(\bullet, \bullet) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(\bullet), F(\bullet)) ; \mathcal{F}_{C, C^{\prime}}(f)=F(f)
$$

splits,

Separable functors (Năstǎsescu, Van den Bergh, Van Oystaeyen)

$F: \mathcal{C} \rightarrow \mathcal{D}$ is called separable if the natural transformation

$$
\mathcal{F}: \operatorname{Hom}_{\mathcal{C}}(\bullet, \bullet) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(\bullet), F(\bullet)) ; \mathcal{F}_{C, C^{\prime}}(f)=F(f)
$$

splits,that is, there is a natural transformation

$$
\mathcal{P}: \operatorname{Hom}_{\mathcal{D}}(F(\bullet), F(\bullet)) \rightarrow \operatorname{Hom}_{\mathcal{C}}(\bullet, \bullet)
$$

such that $\mathcal{P} \circ \mathcal{F}$ is the identity natural transformation.

Rafael's Theorem

(F, G) adjoint pair of functors.

Rafael's Theorem

(F, G) adjoint pair of functors.
F is separable $\Longleftrightarrow \eta$ splits.

Rafael's Theorem

(F, G) adjoint pair of functors.
F is separable $\Longleftrightarrow \eta$ splits. G is separable $\Longleftrightarrow \varepsilon$ cosplits.

Let A be a k-algebra A.
The functor $G=(-)^{A}:{ }_{A} \mathcal{M}_{A} \rightarrow \mathcal{M}_{k}$ is separable there exists $R=R^{1} \otimes R^{2} \otimes R^{3} \in A \otimes(A \otimes A)^{A}$ such that $R^{1} R^{2} \otimes R^{3}=1 \otimes 1 \otimes 1$.

Corollary

Let A be k-algebra such that the functor $G=(-)^{A}$ is separable. Then (A, R) is a quasitriangular algebra, and the corresponding braiding is a symmetry. In this case the functor $F: \mathcal{M}_{k} \rightarrow{ }_{A} \mathcal{M}_{A}$ preserves the symmetry.

Example

If A is an Azumaya algebra, then (F, G) is an equivalence of categories, and, a fortiori, G is separable.
In the case where $A=M_{n}(k)$ is a matrix algebra, we have an explicit formula for R, namely

$$
R=\sum_{i, j, k=1}^{n} e_{i j} \otimes e_{k i} \otimes e_{j k}
$$

Part II: the center of ${ }_{A} \mathcal{M}_{A}$

Descent data (Grothendieck/Knus \& Ojanguren)

Let A be a commutative k-algebra. A descent datum (V, g) is a right A-module V together with a right $A^{(2)}$-module map

$$
g: A \otimes V \rightarrow V \otimes A
$$

such that $g_{2}=g_{3} \circ g_{1}$ and

$$
(m \circ g)(1 \otimes v)=v
$$

Descent data (Grothendieck/Knus \& Ojanguren)

Let A be a commutative k-algebra. A descent datum (V, g) is a right A-module V together with a right $A^{(2)}$-module map

$$
g: A \otimes V \rightarrow V \otimes A
$$

such that $g_{2}=g_{3} \circ g_{1}$ and

$$
(m \circ g)(1 \otimes v)=v
$$

which is equivalent to g being invertible.
$\underline{\operatorname{Desc}}(A / k)$ is the category of descent data.

Sweedler canonical coring

$A \otimes A$ is an A-coring.

$$
\begin{gathered}
\Delta(a \otimes b)=a \otimes 1 \otimes b \in A^{(3)} \cong A^{(2)} \otimes_{A} A^{(2)} \\
\varepsilon(a \otimes b)=a b
\end{gathered}
$$

Sweedler canonical coring

$A \otimes A$ is an A-coring.

$$
\begin{gathered}
\Delta(a \otimes b)=a \otimes 1 \otimes b \in A^{(3)} \cong A^{(2)} \otimes_{A} A^{(2)} \\
\varepsilon(a \otimes b)=a b
\end{gathered}
$$

We describe right $A \otimes A$-comodules. These are right A-modules V with a right A-linear $\rho: V \rightarrow V \otimes_{A} A^{(2)} \cong V \otimes A$. These have to satisfy the appropriate coassociativity and counit conditions. If we write $\rho(v)=v_{[0]} \otimes v_{[1]} \in V \otimes A$, then these come down to

$$
\begin{gathered}
\rho\left(v_{[0]}\right) \otimes v_{[1]}=v_{[0]} \otimes 1 \otimes v_{[1]} \\
v_{[0]} v_{[1]}=v
\end{gathered}
$$

Right A-linearity of ρ means

$$
\rho(v a)=v_{[0]} \otimes v_{[1]} a
$$

The weak right center of $A \mathcal{M}_{A}$

Take $\left(V, c_{-, V}\right) \in{ }_{A} \mathcal{M}_{A}$. Consider

$$
g=c_{A \otimes A, V}: A^{(2)} \otimes_{A} V \cong A \otimes V \rightarrow V \otimes_{A} A^{(2)} \cong V \otimes A
$$

The weak right center of AN_{A}

Take $\left(V, c_{-, ~}\right) \in{ }_{A} \mathcal{M}_{A}$. Consider

$$
g=c_{A \otimes A, V}: A^{(2)} \otimes_{A} V \cong A \otimes V \rightarrow V \otimes_{A} A^{(2)} \cong V \otimes A
$$

$$
\rho: V \rightarrow V \otimes A, \quad \rho(v)=g(1 \otimes v)=v_{[0]} \otimes v_{[1]}
$$

The weak right center of $A \mathcal{M}_{A}$

Take $\left(V, c_{-, V}\right) \in{ }_{A} \mathcal{M}_{A}$. Consider

$$
\begin{gathered}
g=c_{A \otimes A, V}: A^{(2)} \otimes_{A} V \cong A \otimes V \rightarrow V \otimes_{A} A^{(2)} \cong V \otimes A \\
\rho: V \rightarrow V \otimes A, \quad \rho(v)=g(1 \otimes v)=v_{[0]} \otimes v_{[1]}
\end{gathered}
$$

Then ρ determines c completely:

$$
c_{M, v}\left(m \otimes_{A} v\right)=v_{[0]} \otimes_{A} m v_{[1]}
$$

The weak right center of $A \mathcal{M}_{A}$

Take $\left(V, c_{-, V}\right) \in{ }_{A} \mathcal{M}_{A}$. Consider

$$
\begin{gathered}
g=c_{A \otimes A, V}: A^{(2)} \otimes_{A} V \cong A \otimes V \rightarrow V \otimes_{A} A^{(2)} \cong V \otimes A \\
\rho: V \rightarrow V \otimes A, \quad \rho(v)=g(1 \otimes v)=v_{[0]} \otimes v_{[1]}
\end{gathered}
$$

Then ρ determines c completely:

$$
\begin{equation*}
c_{M, v}\left(m \otimes_{A} v\right)=v_{[0]} \otimes_{A} m v_{[1]} \tag{1}
\end{equation*}
$$

Furthermore, $(V, \rho) \in \mathcal{M}^{A \otimes A}$, and

$$
\begin{gathered}
\rho(a v)=v_{[0]} \otimes a v_{[1]} \\
a \rho(v)=a v_{[0]} \otimes v_{[1]}=v_{[0]} a \otimes v_{[1]}
\end{gathered}
$$

The weak right center of $A \mathcal{M}_{A}$

Take $\left(V, c_{-, V}\right) \in{ }_{A} \mathcal{M}_{A}$. Consider

$$
\begin{gathered}
g=c_{A \otimes A, V}: A^{(2)} \otimes_{A} V \cong A \otimes V \rightarrow V \otimes_{A} A^{(2)} \cong V \otimes A \\
\rho: V \rightarrow V \otimes A, \quad \rho(v)=g(1 \otimes v)=v_{[0]} \otimes v_{[1]}
\end{gathered}
$$

Then ρ determines c completely:

$$
\begin{equation*}
c_{M, v}\left(m \otimes_{A} v\right)=v_{[0]} \otimes_{A} m v_{[1]} \tag{1}
\end{equation*}
$$

Furthermore, $(V, \rho) \in \mathcal{M}^{A \otimes A}$, and

$$
\begin{gathered}
\rho(a v)=v_{[0]} \otimes a v_{[1]} \\
a \rho(v)=a v_{[0]} \otimes v_{[1]}=v_{[0]} a \otimes v_{[1]}
\end{gathered}
$$

We call (V, ρ) a Yetter-Drinfeld A-module. $\mathcal{Y D}^{A}$ is the category of Yetter-Drinfeld A-modules.

The weak right center of $A \mathcal{M}_{A}$

Take $\left(V, c_{-, ~}\right) \in{ }_{A} \mathcal{M}_{A}$. Consider

$$
\begin{gathered}
g=c_{A \otimes A, V}: A^{(2)} \otimes_{A} V \cong A \otimes V \rightarrow V \otimes_{A} A^{(2)} \cong V \otimes A \\
\rho: V \rightarrow V \otimes A, \quad \rho(v)=g(1 \otimes v)=v_{[0]} \otimes v_{[1]}
\end{gathered}
$$

Then ρ determines c completely:

$$
\begin{equation*}
c_{M, v}\left(m \otimes_{A} v\right)=v_{[0]} \otimes_{A} m v_{[1]} \tag{1}
\end{equation*}
$$

Furthermore, $(V, \rho) \in \mathcal{M}^{A \otimes A}$, and

$$
\begin{gathered}
\rho(a v)=v_{[0]} \otimes a v_{[1]} \\
a \rho(v)=a v_{[0]} \otimes v_{[1]}=v_{[0]} a \otimes v_{[1]}
\end{gathered}
$$

We call (V, ρ) a Yetter-Drinfeld A-module. $\mathcal{Y D}^{A}$ is the category of Yetter-Drinfeld A-modules.
Conversely, given a Yetter-Drinfeld A-module (V, ρ), we obtain a local braiding $c_{-, V}$ using (1).

Theorem

$\mathcal{W}_{r}\left({ }_{A} \mathcal{M}_{A}\right)$ and $\mathcal{Y} \mathcal{D}^{A}$ are isomorphic

Let $(V, \rho) \in \mathcal{Y D}^{A}$. Then

$$
a v_{[0]} \otimes v_{[1]}=v_{[0]} a \otimes v_{[1]}
$$

Let $(V, \rho) \in \mathcal{Y} \mathcal{D}^{A}$. Then

$$
a v_{[0]} \otimes v_{[1]}=v_{[0]} a \otimes v_{[1]}
$$

hence

$$
a v=a v_{[0]} v_{[1]}=v_{[0]} a v_{[1]}
$$

Let $(V, \rho) \in \mathcal{Y} \mathcal{D}^{A}$. Then

$$
a v_{[0]} \otimes v_{[1]}=v_{[0]} a \otimes v_{[1]}
$$

hence

$$
a v=a v_{[0]} v_{[1]}=v_{[0]} a v_{[1]}
$$

so the left A-action on V is determined by the right one. This is the clue to the following result.

Theorem

The forgetful functor $\mathcal{Y} \mathcal{D}^{A} \rightarrow \mathcal{M}^{A \otimes A}$ is an isomorphism of categories.

The forgetful functor $\mathcal{Y} \mathcal{D}^{A} \rightarrow \mathcal{M}^{A \otimes A}$ is an isomorphism of categories.

Proof: On $(V, \rho) \in \mathcal{M}^{A \otimes A}$, define a left A-action using the formula we just obtained:

The forgetful functor $\mathcal{Y} \mathcal{D}^{A} \rightarrow \mathcal{M}^{A \otimes A}$ is an isomorphism of categories.

Proof: On $(V, \rho) \in \mathcal{M}^{A \otimes A}$, define a left A-action using the formula we just obtained:

$$
a v=v_{[0]} a v_{[1]}
$$

Then show that $(V, \rho) \in \mathcal{Y} \mathcal{D}^{A}$.

Let $V \in{ }_{A} \mathcal{M}_{A}$ and assume that $\rho: V \rightarrow V \otimes A$ satisfies all the conditions needed to make $V \in \mathcal{Y} \mathcal{D}^{A}$, except $v_{[0]} v_{[1]}=v$.

Let $V \in{ }_{A} \mathcal{M}_{A}$ and assume that $\rho: V \rightarrow V \otimes A$ satisfies all the conditions needed to make $V \in \mathcal{Y} \mathcal{D}^{A}$, except $v_{[0]} v_{[1]}=v$. Then the condition $v_{[0]} v_{[1]}=v$, for all $v \in V$ is equivalent to

Let $V \in{ }_{A} \mathcal{M}_{A}$ and assume that $\rho: V \rightarrow V \otimes A$ satisfies all the conditions needed to make $V \in \mathcal{Y} \mathcal{D}^{A}$, except $v_{[0]} v_{[1]}=v$.
Then the condition $v_{[0]} v_{[1]}=v$, for all $v \in V$ is equivalent tothe invertibility of

$$
g: A \otimes V \rightarrow V \otimes A, \quad g(a \otimes v)=a v_{[0]} \otimes v_{[1]}
$$

a related result is the following.

The (right) center of the category of A-bimodules coincides with its (right) weak center: $\mathcal{Z}_{r}\left({ }_{A} \mathcal{M}_{A}\right)=\mathcal{W}_{r}\left({ }_{A} \mathcal{M}_{A}\right)$.

The (right) center of the category of A-bimodules coincides with its (right) weak center: $\mathcal{Z}_{r}\left({ }_{A} \mathcal{M}_{A}\right)=\mathcal{W}_{r}\left({ }_{A} \mathcal{M}_{A}\right)$.

Proof: take $\left(V, c_{-}, V\right)$ in the weak center, and take the associated map $\rho: V \rightarrow V \otimes A$. The inverse of $c_{M, V}$ is given by

$$
c_{M, V}^{-1}\left(v \otimes_{A} m\right)=v_{[1]} m \otimes_{A} v_{[0]} .
$$

Descent data

If V and W are A-bimodules, then $V \otimes W$ is an $A^{(2)}$-bimodule. Let A be a k-algebra. A descent datum consists of an A-bimodule V together with an $A^{(2)}$-bimodule map $g: A \otimes V \rightarrow V \otimes A$ such that $g_{2}=g_{3} \circ g_{1}$ and $(m \circ g)(a \otimes v)=v$, for all $v \in V$.

Descent data

If V and W are A-bimodules, then $V \otimes W$ is an $A^{(2)}$-bimodule. Let A be a k-algebra. A descent datum consists of an A-bimodule V together with an $A^{(2)}$-bimodule map $g: A \otimes V \rightarrow V \otimes A$ such that $g_{2}=g_{3} \circ g_{1}$ and $(m \circ g)(a \otimes v)=v$, for all $v \in V$.
The last condition can be replaced by invertibility of g.

Descent data

If V and W are A-bimodules, then $V \otimes W$ is an $A^{(2)}$-bimodule. Let A be a k-algebra. A descent datum consists of an A-bimodule V together with an $A^{(2)}$-bimodule map $g: A \otimes V \rightarrow V \otimes A$ such that $g_{2}=g_{3} \circ g_{1}$ and $(m \circ g)(a \otimes v)=v$, for all $v \in V$.
The last condition can be replaced by invertibility of g.
$\underline{\operatorname{Desc}}(A / k)$ is the category of descent data.
If A is commutative, then these descent data coincide with the Knus-Ojanguren descent data.

Theorem

The categories $\underline{\operatorname{Desc}}(A / k)$ and $\mathcal{Y D}^{A}$ are isomorphic.

Conclusion

The categories $\underline{\operatorname{Desc}}(A / k), \mathcal{Y D}^{A}, \mathcal{M}^{A \otimes A}, \mathcal{W}_{r}\left(A \mathcal{M}_{A}\right)$ and $\mathcal{Z}_{r}\left({ }_{A} \mathcal{M}_{A}\right)$ are isomorphic.

Conclusion

The categories $\underline{\operatorname{Desc}}(A / k), \mathcal{Y D}^{A}, \mathcal{M}^{A \otimes A}, \mathcal{W}_{r}\left(A \mathcal{M}_{A}\right)$ and $\mathcal{Z}_{r}\left({ }_{A} \mathcal{M}_{A}\right)$ are isomorphic.
We have a pair of adjoint functors $\left(K=-\otimes A, R=(-)^{\operatorname{co} A \otimes A}\right)$ between \mathcal{M}_{k} and $\mathcal{M}^{A \otimes A}$.

Conclusion

The categories $\underline{\operatorname{Desc}}(A / k), \mathcal{Y D}^{A}, \mathcal{M}^{A \otimes A}, \mathcal{W}_{r}\left(A \mathcal{M}_{A}\right)$ and $\mathcal{Z}_{r}\left({ }_{A} \mathcal{M}_{A}\right)$ are isomorphic.
We have a pair of adjoint functors $\left(K=-\otimes A, R=(-)^{\mathrm{co} A \otimes A}\right)$
between \mathcal{M}_{k} and $\mathcal{M}^{A \otimes A}$.
(K, R) is a pair of inverse equivalences if A / k is faithfully flat.

