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The classical Clifford correspondence for normal subgroups is considered in the
setting of semisimple Hopf algebras. We prove that this correspondence still holds
if the extension determined by the normal Hopf subalgebra is cocentral. Other
particular situations where Clifford theory also works will be discussed. This talk is
based on the paper ”Clifford theory for cocentral extensions” Israel J. Math, 181,
2011, (1), 111-123 and some work in progress of the author.
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Historical background

A. H. Clifford initiated the theory for groups [[1], ’37].
Blattner worked a similar theory for Lie algebras ( [5],’69)
Dade generalized Clifford’s results to graded rings ([3], ’80)
Rieffel extended the theory for an arbitrary normal
extension of semisimple artin rings. ([8], ’79)
Schneider unified the existent theories in a more general
setting, that of Hopf Galois extensions ([2], ’90).
Witherspoon used Rieffel’s work in the setting of finite
dimensional Hopf algebras. ([4], ’99 and [6], ’02).
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Motivation

Let A be a semisimple Hopf algebra and let B be a Hopf
subalgebra of A.

B is called a normal Hopf subalgebra if it is closed under the
adjoint action of A on itself, i.e a1BS(a2) ⊂ B for all a ∈ A.

Clifford theory for normal Hopf subalgebras
Let B ⊂ A be a normal Hopf subalgebra of the semisimple Hopf
algebra A. For a given irreducible B-module M,
find a Hopf subalgebra ZM of A with B ⊂ ZM ⊂ A such that the
induction map ind : Irr(ZM |M)→ Irr(A|M) given by
V 7→ A⊗ZM V is a bijection.

When such a Hopf sualgebra ZM exists?
Based on Isr. J. Math, 2011 and some work in progress.
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Rieffel’s work on semisimple normal extensions

Definition of normal subrings:
Let B ⊂ A an extension of semisimple rings. The extension is
called normal if A(I ∩ B) = (I ∩ B)A for any maximal ideal I of A.

If B = kH ⊂ A = kG for two finite groups H ⊂ G then the
extension B ⊂ A is normal if and only if H is a normal subgroup
of G.

Normal extensions of Hopf algebras
More generally the same thing is true for semisimple Hopf
algebras.
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Rieffel’s definition for the stabilizer

Stabilizer of a simple module W

Let B ⊂ A be a normal extension of semisimple artin rings,
and W be an irreducible B-module. Then a stability subring for
W is a semisimple artin subring T , with B ⊂ T ⊂ A and
(1) B is a normal subring of T ,
(2) J is T -invariant, i.e JT = TJ
(3) T + AJ + JA = A, where
J := AnnB(W ).

The stabilizer always exists but is not unique; there might be
more then one stabilizers for a given module W .
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Clifford’s correspondence holds in Rieffel’s sense

THEOREM (Rieffel, 1979.)
Let B be a normal subring of the semi-simple artin ring A, let W
be an irreducible B-module, and let T be a stability subring for
W .

Then the process of inducing modules from T to A gives a
bijection between equivalence classes of simple T -modules
havingW as (the) B-constituent and equivalence classes of
simple A-modules having W as (a) B-constituent.
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More on Rieffel’s work on semisimple normal
extensions B ⊂ A

Let B ⊂ A be an extension of semisimple rings.

Rieffel’s equivalence relation on the set of irreducible
A-representations Irr(A).

Write M ∼A N if there is an irreducible W ∈ B −mod , common
constituent both for M ↓AB and N ↓AB.
In general ∼A is not an equivalence relation.
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Characterization of Rieffel’s notion of normal
extensions

Theorem (B, Kadison, Kuelshammer, [9])
Let B ⊂ A be an extension of semisimple finite dimensional
algebras. The relation ∼A is an equivalence relation if and only
if B ⊂ A is a depth three extension.

Theorem (B, Kadison, Kuelshammer, [9])
An extension B ⊂ A of finite dimensional semisimple algebras
is a normal extension if and only if it is a depth two extension.
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Rieffel’s equivalence relations in our settings

Let B ⊂ A an extension of normal ss. Hopf algebras.

Some notations
Let Bi be an equivalence class under Rieffel’s equivalence
relation for B ⊂ A on Irr(B) .
Let Ai be the corresponding equivalence class on Irr(A).
Let

bi =
∑
β∈Bi

β(1)β.

Let
ai =

∑
χ∈Ai

χ(1)χ.
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Generalization of the first theorem of Clifford
Conjugate modules

Let M be an irreducible B-module with character α ∈ C(B).

If W is an A∗-module then W ⊗M becomes a B-module
with

b(w ⊗m) = w0 ⊗ (S(w1)bw2)m (1)

Here we used that any left A∗-module W is a right
A-comodule via ρ(w) = w0 ⊗ w1.
For any irreducible character d ∈ Irr(A∗) associated to a
simple A-comodule W define dM := W ⊗M as a
B-module.
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Conjugate modules and stabilizers

Generalization of the first theorem of Clifford
Theorem (B. ’10) Let B ⊂ A be a normal extension of
semisimple Hopf algebras and M be an irreducible B-module.
Then M ↑AB↓

A
B and ⊕d∈Irr(A∗)

dM have the same irreducible
B-constituents.

For A = kG one has Irr(kG∗) = G.
If A = kG and B = kH for a normal subgroup H then d = g ∈ G
and dM coincides with the conjugate module gM introduced by
Clifford in [1].
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Clifford correspondence for normal Hopf algebras
The case when the stabilizer is a Hopf subalgebra

If α is the char. of M then the char. dα of dM is given by
dα(x) = α(Sd1xd2) (2)

for all x ∈ B (see Proposition 5.3 of [10]).

Proposition (B, ’11)

The set {d ∈ Irr(A∗) | dα = ε(d)α} is closed under
multiplication and “ ∗ ”. Thus it generates a Hopf subalgebra
Zα of A that contains B.

Zα is called the stabilizer of α in A.
If A = kG and B = kN for a normal subgroup N then the
stabilizer Zα coincides with the stabilizer ZM of M
introduced by Clifford in [1].
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Clifford correspondence for normal Hopf algebras
The case of the stabilizer Zα

On the dimension of the stabilizer (B, ’11)
Let B ⊂ A a normal extension of semisimple Hopf algebras.
With the above notations:

1 |Zα| ≤ |A|α(1)
2

bi (1)
where Bi is the equivalence class of α.

2 Equality holds if and only if Zα is a stabilizer in the sense of
Rieffel, see [4].
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Clifford correspondence for normal Hopf algebras
Main result

Theorem (B, ’11)
Clifford correspondence holds for Zα if and only if one has
equality in the previous inequality.

Corrolary (B, 11’.)
Clifford theory works for the stabilizer Zα if and only if this is a
stabilizer in Rieffel’s sense.

Sebastian Burciu Clifford theory for semisimple Hopf algebras



Motivation of the talk
Rieffel’s generalization for semisimple artin algebras

New results obtained: stabilizers as Hopf subalgebras
Applications

A counterexample

Clifford correspondence for normal Hopf algebras
Main result

Theorem (B, ’11)
Clifford correspondence holds for Zα if and only if one has
equality in the previous inequality.

Corrolary (B, 11’.)
Clifford theory works for the stabilizer Zα if and only if this is a
stabilizer in Rieffel’s sense.

Sebastian Burciu Clifford theory for semisimple Hopf algebras



Motivation of the talk
Rieffel’s generalization for semisimple artin algebras

New results obtained: stabilizers as Hopf subalgebras
Applications

A counterexample

Clifford correspondence for normal Hopf algebras
Main result

Theorem (B, ’11)
Clifford correspondence holds for Zα if and only if one has
equality in the previous inequality.

Corrolary (B, 11’.)
Clifford theory works for the stabilizer Zα if and only if this is a
stabilizer in Rieffel’s sense.

Sebastian Burciu Clifford theory for semisimple Hopf algebras



Motivation of the talk
Rieffel’s generalization for semisimple artin algebras

New results obtained: stabilizers as Hopf subalgebras
Applications

A counterexample

Clifford correspondence for normal Hopf algebras
Main result

Theorem (B, ’11)
Clifford correspondence holds for Zα if and only if one has
equality in the previous inequality.

Corrolary (B, 11’.)
Clifford theory works for the stabilizer Zα if and only if this is a
stabilizer in Rieffel’s sense.

Sebastian Burciu Clifford theory for semisimple Hopf algebras



Motivation of the talk
Rieffel’s generalization for semisimple artin algebras

New results obtained: stabilizers as Hopf subalgebras
Applications

A counterexample

Clifford correspondence for normal Hopf algebras
The case when the stabilizer is a Hopf subalgebra

Back to the group case

If A = kG and B = kN for a normal subgroup N then the above
inequality is equality.

It states that the number of conjugate
modules of α is the index of the stabilizer of α in G. (Orbit
formula)
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Extensions by kF .
The Drinfeld double D(A)

Applying Schneider’s work to our settings
The case H = kF .

Let H := A//B and suppose that H = kF for a finite group F .
Let Af := ρ−1(A⊗ kf ), for all f ∈ F .

Schneider’s stabilizer when H = kF
The stabilizer Z of M is the set of all f ∈ F such that
Af ⊗B M ∼= M as B-modules. It is a subgroup of F .

Let S := ρ−1(A⊗ Z ). Then S is a subalgebra of A
S is not a Hopf subalgebra in general.
Clifford correspondence holds for S as a stabilizer of M.
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Extensions by kF .

Theorem (B,’11).
Suppose that H = kF for some finite group F .

Let M be an
irreducible representation of B with character α and let Z ≤ F
be the stabilizer of M.

1) Then Zα ⊂ S.

2)Clifford correspondence holds for Zα if and only if Zα = S.

3) Clifford correspondence holds for Zα if and only S is a Hopf
subalgebra of A.
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A Corollary

Corollary (B, ’11)
Suppose that the extension

k −−−−→ B i−−−−→ A π−−−−→ H −−−−→ k

is cocentral. Then the Clifford correspondence holds for ZM for
any irreducible B-module M.
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Application of Clifford’s correspondence for normal
Hopf algebras
The Drinfeld double case

Definition of K (A)

Let K (A) = kG∗ be the largest central Hopf subalgebra of A.
Then G is the universal grading group of Rep(A).

Theorem (B, 11’.)

K (A) is a normal Hopf subalgebra of D(A).
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Application to D(A)

Theorem (B, 11’.)
Clifford correspondence holds for the extension
K (A) ⊂ D(A).

This gives that any irreducible D(A)-module has
the following form A⊗L(g) V where g ∈ G, L(g) is a Hopf
subalgebra of A containing K (A) and V is an irreducible
L(g)-module.

Drinfeld double D(G) of a group

If A = kG∗ then K (A) = A and the previous theorem gives the
well known description of the irreducible modules over D(G) in
terms of the centralizers CG(g).
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terms of the centralizers CG(g).
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A Counterexample

Exact factorization of groups

Let Σ = FG be an an exact factorization of finite groups. This
gives a right action C : G × F → G of F on the set G, and a left
action B : G × F → F of G on the set F subject to the following
two conditions:

s B xy = (s B x)((s C x) B y) st C x = (s C (t B x))(t C x)

The actions B and C are determined by the relations
gx = (g B x)(g C x) for all x ∈ F , g ∈ G. Note that 1 B x = x
and s C 1 = s.
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Definition of the Hopf algebra A

Definition of the smashed product

Consider the Hopf algebra A = kG#kF which is a smashed
product and coproduct using the above two action. The
structure of A is given by:

(δgx)(δhy) = δgCx ,hδgxy

∆(δgx) =
∑
st=g

δs(t B x)⊗ δtx

Then A fits into the abelian extension

k −−−−→ kG i−−−−→ A π−−−−→ kF −−−−→ k
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A counterexample

As above F acts on Irr(kG) = G. It is easy to see that this
action is exactly C.
Let g ∈ G and Z be the stabilizer of g under C. Using the
above notations it follows that S = A(Z ) = kG#kZ .
Remark that the above comultiplication formula implies S is a
Hopf subalgebra if and only if G B Z ⊂ Z .

Constructing the counterexample

Consider the exact fact factorization S4 = C4S3 where C4 is
generated by the four cycle g = (1234) and S3 is given by the
permutations that leave 4 fixed. If t = (12) and s = (123) then
the actions C and B are given in Tables 1 and 2.
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C4 C S3 g g2 g3

t g g3 g2

s g2 g3 g

s2 g3 g g2

st g3 g2 g

ts g2 g g3

Table: The right action of S3 on C4

C4 B S3 t s s2 st ts

g ts t s st s2

g2 s2 ts t st s

g3 s s2 ts st t

Table: The left action of C4 on S3
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The counterexample

The stabilizer of the element g is the subgroup Z = {1, t}

which
is not invariant by the action of C4. Thus the Clifford
correspondence does not hold for g.
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