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This talk reports on joint work with Teodor Banica and Sonia Natale (arXiv:1104.
1400).

A quantum permutation algebra is a Hopf algebra having the diagonal algebra
k™ as a faithful comodule algebra. The corresponding quantum group acts faithfully
on a finite classical space and is called a quantum permutation group. Several unex-
pected Hopf algebras appear as quantum permutation algebras and so it is natural
to ask if any finite-dimensional semisimple Hopf algebra is a quantum permutation
algebra, i.e., if a Cayley theorem holds for finite quantum groups. We show, by con-
sidering bicrossed products associated to exact factorizations of finite groups, the
existence of a semisimple Hopf algebra of dimension 24 that is not a quantum per-
mutation algebra. This example is minimal since on the other hand, we show that
any semisimple Hopf algebra of dimension less than 23 is a quantum permutation
algebra.
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Quantum permutation algebras
We work over k, an algebraically closed field of characteristic zero.
Definition

A quantum permutation algebra is a Hopf algebra generated (as an algebra) by
the coefficients of a matrix x = (x;) € M,(H) such that

@ x is a permutation matrix : for all i,j, k € {1,...,n}

n n
E xj=1= g Xit,  XiXik = OkjXijs XjiXii = OjkXji
=1 =1

@ x is a multiplicative matrix : for all i,j € {1,...,n}

Alxg) = xia @ xi, e(xz) = 6, S(x5) = x;
=1
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Definition

A quantum permutation algebra is a Hopf algebra generated (as an

algebra) by the coefficients of a matrix x = (xj;) € M,(H) such that
© x is a permutation matrix

@ x is a multiplicative matrix

Example

kSn is a quantum permutation algebra with x;;(0) = dio(j) for all o € S,.

Definition
Let As(n) be the universal algebra generated by the coefficients of a
permutation matrix of size n. Ags(n) is a quantum permutation algebra.

The Hopf algebra Ag(n) arose first in Wang's work on compact quantum
actions on finite (classical) spaces (1998).
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A Hopf algebra H is a quantum permutation algebra if and only if
As(n) — H for some n.

Theorem

As(n) is the universal cosemisimple Hopf algebra coacting on the algebra
k". This means :

© As(n) is cosemisimple and k" is an As(n)-comodule algebra via
k" — k" @ As(n)

n
e +—— E ex & Xii
k=1

@ If k" is a comodule algebra over a cosemisimple Hopf algebra H with
coaction (3 : k™ — k" ® H, then there is a unique Hopf algebra map
f:As(n) — Hwith(l®f)oa=0

Thus we write As(n) = O(S;), where S is the quantum permutation group on
n points, and quantum permutation algebras correspond to quantum permutation
groups.
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Theorem

As(n) is the universal cosemisimple Hopf algebra coacting on the algebra
k™.

Thus we write As(n) = O(S;}), where S; is the quantum permutation group on
n points, and quantum permutation algebras correspond to quantum permutation
groups.

We observe that
Q As(n) = kS if n <3,
O A:(n+ m) — As(n) x As(m), so dim As(n) = oo if n > 4.
Hence the symmetric group S, has an infinite quantum analogue if n > 4!

Banica has shown that the fusion rules of A;(n) are the same as those of PGL,
(1999, when k = C).
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Early examples of quantum permutation algebras

© O(0_1(n)) (corresponding to the quantum automorphism group of
the hypercube in R”).

@ (k*5)7 (so that As has a quantum analogue acting faithfully on 4
points).
© The Kac-Paljutkin algebra of dimension 8 (as well as other series of
Hopf algebras studied by Masuoka).
Q@ Some 2-cocycle deformations of kSn.
Several of these examples were unexpected at first sight.
So it becomes natural to wonder if there are lots of quantum permutation

algebras. A basic obstruction to being a quantum permutation algebra is
the following one :

If His a quantum permutation algebra, then Homy_ ., (H, k) is finite and
$2 =idy. So if H is a finite-dimensional quantum permutation algebra,
then H is semisimple.
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So a reasonable question is :

Is any (finite dimensional) semisimple Hopf algebra a quantum permutation
algebra ?

In other words, in view of the universal property of As(n) = O(S;}), is
there a Cayley theorem for finite quantum groups?

Naturally this leads to other more specific questions.
Is the class of finite quantum permutation algebras stable under

O duality?
@ extensions?

© 2-cocycle deformations?
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Extensions and quantum permutation algebras

We now wish to study the stability of the class of quantum permutation
algebras under extensions.

If T is a finite group, the algebras k" and kI are quantum permutation algebras.
Theorem
Let H be a Hopf algebra that fits into an exact sequence

k— k' — H— kF — k
for some finite groups I', F. Assume that one of the following conditions
holds :
@ k" is central in H;

Q the sequence is split (H = k" #kF ) and F is generated by its I-stable
abelian subgroups ;

Then H is a quantum permutation algebra.

Hopf algebras and tensor categories 1
Julien Bichon () Finite quantum permutation groups



Idea of proof : we observe that H is a quantum permutation algebra if and
only if H is generated by its commutative (right) coideal subalgebras. So
we find a family of such coideal subalgebras. (J

By using the theorem together with various classification results (Masuoka,
Natale, Kashina) we get

Corollary

Let H be a semisimple Hopf algebra. Then H is a quantum permutation
algebra if one the following holds :

@ dim H = p3, with p prime;

Q dim H = 2¢°, with q prime;

Q dim H = pq?, with p > q prime;

Q dim H = pgr, with p, q, r distinct primes;
Q dimH =16.

In particular if dim H < 23, then H is a quantum permutation algebra
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Theorem

The Hopf algebras k“#kS3, k5 #kSy, k#kAy (respectively associated
to the group exact factorizations Sy = S3Cy, S5 = S4Cs, As = Ay Gs) are
not quantum permutation algebras.

Thus there exists a semisimple Hopf algebra of dimension 24 that is not a
quantum permutation algebra.

Corollary

The class of quantum permutation algebras is not stable under extensions,
duality or 2-cocycle deformations.

Indeed, H = k“#kS3 is not a quantum permutation algebra, while

H* = kS34:kCy is a quantum permutation algebra by the first theorem.
Moreover D(H)* = (D(S54)*)° for some 2-cocycle o (Beggs-Majid). The
first theorem ensures that D(S4)* is a quantum permutation algebra, while
D(H)* is not (because D(H)* — H). O
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Sketch of the proof of the theorem

We have to see that H = k" #kF is not generated by its commutative
(right) coideal subalgebras. It is not easy to have the full list of these
coideal subalgebras, so instead we use the following observations :

Lemma

If 7 : H — kF is a surjective Hopf algebra map and if there exits a proper
subgroup F’ & F such that m(R) C kF' for any commutative (right)
coideal subalgebra R C H, then H is not a quantum permutation algebra.

Lemma

Let H= k" #kF and m = e®id : H — kF. Let R C H be a commutative
right coideal subalgebra. Then w(R) = kT, where T is an abelian subgroup
of F, and we have :

(i) If k" C R, then T acts trivially on T via <.
(i) If k"N R = k1, then T is stable under the action > of I.
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Now assume that H = k©#kS, (exact factorization Ss = S4Cs and
actions : Cg 2 Cs X Sy LA Sa).

If R is a commutative right coideal subalgebra of H, then RN k% is a right
coideal subalgebra of k%, hence a Hopf subalgebra of k% and thus

dim(R N k) divides 5. We are in the situation of the previous lemma : we
have m(R) = kT where T is an abelian subgroup of S4 and either T acts
trivially on Cs via <0 or T is stable under the action > of Gs.

The only subgroup of Sy that acts trivially on Cs is {1}, and the only
abelian subgroups of S, that are stable under the action > of Cg are
contained in ((1324)) = F’. Thus 7(R) C kF’, and we conclude by the first
lemma. [J

Question

What is the smallest dimension that a self dual non quantum permutation
algebra can have?
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Some quantum permutation algebras obtained by 2-cocycle
deformations

We have seen that the class of quantum permutation algebras is not stable
under 2-cocycle deformations. We wish to show however that large classes
of quantum permutation algebras can be constructed in this way.

Let I be an abelian group and let o € Z2(T', k*). The character groupf
acts faithfully on the twisted group algebra k,I" by x.g = x(g)g (x €T,
g €T), hence I C Aut(k,I").

Theorem

Let T be a finite abelian group and let o € Z*(T', k*). Let G be a linear
algebraic group with T C G C Aut(k,I'). Then o induces a 2-cocycle o’ on
O(G) such that O(G)” is a quantum permutation algebra (non

commutative if the only subgroup of I' that is normal in G is {1} and if
kI is non commutative).
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Examples : T = Cf € G C O,(k) C Aut(Cly(k))
['=Cpx Cy C G C PGLy(k) = Aut(Ma(k))
Question

If G is a finite group and o is a 2-cocycle on k€, is (k®)? a quantum
permutation algebra ?
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