Finite quantum groups and quantum permutation groups

Julien Bichon (University Blaise Pascal, Clermont-Ferrand II, France) Julien.Bichon@math.univ-bpclermont.fr

This talk reports on joint work with Teodor Banica and Sonia Natale (arXiv:1104. 1400).

A quantum permutation algebra is a Hopf algebra having the diagonal algebra k^n as a faithful comodule algebra. The corresponding quantum group acts faithfully on a finite classical space and is called a quantum permutation group. Several unexpected Hopf algebras appear as quantum permutation algebras and so it is natural to ask if any finite-dimensional semisimple Hopf algebra is a quantum permutation algebra, i.e., if a Cayley theorem holds for finite quantum groups. We show, by considering bicrossed products associated to exact factorizations of finite groups, the existence of a semisimple Hopf algebra of dimension 24 that is not a quantum permutation algebra. This example is minimal since on the other hand, we show that any semisimple Hopf algebra of dimension less than 23 is a quantum permutation algebra.

Finite quantum groups and quantum permutation groups

Julien Bichon Université Blaise Pascal, Clermont-Ferrand II

Conference Hopf algebras and tensor categories Almería, July 2011 ******

Talk based on joint work with Teodor Banica and Sonia Natale

Julien Bichon ()

Hopf algebras and tensor categories
/ 12

Quantum permutation algebras

We work over k, an algebraically closed field of characteristic zero.

Definition

A quantum permutation algebra is a Hopf algebra generated (as an algebra) by the coefficients of a matrix $x = (x_{ij}) \in M_n(H)$ such that

() x is a permutation matrix : for all $i, j, k \in \{1, \ldots, n\}$

$$\sum_{l=1}^{n} x_{li} = 1 = \sum_{l=1}^{n} x_{il}, \quad x_{ij} x_{ik} = \delta_{kj} x_{ij}, \ x_{ji} x_{ki} = \delta_{jk} x_{ji}$$

2 x is a multiplicative matrix : for all $i, j \in \{1, \dots, n\}$

$$\Delta(x_{ij}) = \sum_{l=1}^{n} x_{il} \otimes x_{lj}, \ \varepsilon(x_{ij}) = \delta_{ij}, \ S(x_{ij}) = x_{ji}$$

Hopf algebras and tensor categories

Definition

A quantum permutation algebra is a Hopf algebra generated (as an algebra) by the coefficients of a matrix $x = (x_{ij}) \in M_n(H)$ such that

- x is a permutation matrix
- 2 x is a multiplicative matrix

Example

 $k^{\mathbb{S}_n}$ is a quantum permutation algebra with $x_{ij}(\sigma) = \delta_{i,\sigma(j)}$, for all $\sigma \in \mathbb{S}_n$.

Definition

Let $A_s(n)$ be the universal algebra generated by the coefficients of a permutation matrix of size n. $A_s(n)$ is a quantum permutation algebra.

The Hopf algebra $A_s(n)$ arose first in Wang's work on compact quantum actions on finite (classical) spaces (1998).

A Hopf algebra H is a quantum permutation algebra if and only if $A_s(n) \twoheadrightarrow H$ for some n.

Theorem

 $A_{s}(n)$ is the universal cosemisimple Hopf algebra coacting on the algebra $k^{n}.$ This means :

• $A_s(n)$ is cosemisimple and k^n is an $A_s(n)$ -comodule algebra via

$$k^n \longrightarrow k^n \otimes A_s(n)$$

 $e_i \longmapsto \sum_{k=1}^n e_k \otimes x_{ki}$

2 If k^n is a comodule algebra over a cosemisimple Hopf algebra H with coaction $\beta : k^n \longrightarrow k^n \otimes H$, then there is a unique Hopf algebra map $f : A_s(n) \longrightarrow H$ with $(1 \otimes f) \circ \alpha = \beta$

Thus we write $A_s(n) = \mathcal{O}(S_n^+)$, where S_n^+ is the quantum permutation group on n points, and quantum permutation algebras correspond to quantum permutation groups.

Theorem

 $A_s(n)$ is the universal cosemisimple Hopf algebra coacting on the algebra k^n .

Thus we write $A_s(n) = \mathcal{O}(S_n^+)$, where S_n^+ is the quantum permutation group on n points, and quantum permutation algebras correspond to quantum permutation groups.

We observe that

Hence the symmetric group S_n has an infinite quantum analogue if $n \ge 4$!

Banica has shown that the fusion rules of $A_s(n)$ are the same as those of PGL_2 (1999, when $k = \mathbb{C}$).

Early examples of quantum permutation algebras

- $\mathcal{O}(O_{-1}(n))$ (corresponding to the quantum automorphism group of the hypercube in \mathbb{R}^n).
- (k^{A₅})^σ (so that A₅ has a quantum analogue acting faithfully on 4 points).
- The Kac-Paljutkin algebra of dimension 8 (as well as other series of Hopf algebras studied by Masuoka).
- Some 2-cocycle deformations of $k^{\mathbb{S}_n}$.

Several of these examples were unexpected at first sight.

So it becomes natural to wonder if there are lots of quantum permutation algebras. A basic obstruction to being a quantum permutation algebra is the following one :

If *H* is a quantum permutation algebra, then $\operatorname{Hom}_{k-alg}(H,k)$ is finite and $S^2 = \operatorname{id}_H$. So if *H* is a finite-dimensional quantum permutation algebra, then *H* is semisimple.

So a reasonable question is :

Is any (finite dimensional) semisimple Hopf algebra a quantum permutation algebra ?

In other words, in view of the universal property of $A_s(n) = \mathcal{O}(S_n^+)$, is there a Cayley theorem for finite quantum groups?

Naturally this leads to other more specific questions. Is the class of finite quantum permutation algebras stable under

- duality ?
- extensions?
- 3 2-cocycle deformations?

Extensions and quantum permutation algebras

We now wish to study the stability of the class of quantum permutation algebras under extensions.

If Γ is a finite group, the algebras k^{Γ} and $k\Gamma$ are quantum permutation algebras.

Theorem

Let H be a Hopf algebra that fits into an exact sequence

$$k \to k^{\Gamma} \to H \to kF \to k$$

for some finite groups $\Gamma,$ F. Assume that one of the following conditions holds :

- k^{Γ} is central in H;
- **2** the sequence is split $(H = k^{\Gamma} \# kF)$ and F is generated by its Γ -stable abelian subgroups;

Then H is a quantum permutation algebra.

Idea of proof : we observe that H is a quantum permutation algebra if and only if H is generated by its commutative (right) coideal subalgebras. So we find a family of such coideal subalgebras. \Box

By using the theorem together with various classification results (Masuoka, Natale, Kashina) we get

Corollary

Let H be a semisimple Hopf algebra. Then H is a quantum permutation algebra if one the following holds :

• dim
$$H = p^3$$
, with p prime;

2 dim
$$H = 2q^2$$
, with q prime;

3 dim
$$H = pq^2$$
, with $p > q$ prime;

• dim H = pqr, with p, q, r distinct primes;

• dim H = 16.

In particular if dim $H \leq 23$, then H is a quantum permutation algebra

Theorem

The Hopf algebras $k^{C_4} \# k \mathbb{S}_3$, $k^{C_5} \# k \mathbb{S}_4$, $k^{C_5} \# k \mathbb{A}_4$ (respectively associated to the group exact factorizations $\mathbb{S}_4 = \mathbb{S}_3 C_4$, $\mathbb{S}_5 = \mathbb{S}_4 C_5$, $\mathbb{A}_5 = \mathbb{A}_4 C_5$) are not quantum permutation algebras.

Thus there exists a semisimple Hopf algebra of dimension 24 that is not a quantum permutation algebra.

Corollary

The class of quantum permutation algebras is not stable under extensions, duality or 2-cocycle deformations.

Indeed, $H = k^{C_4} \# k \mathbb{S}_3$ is not a quantum permutation algebra, while $H^* = k^{\mathbb{S}_3} \# k C_4$ is a quantum permutation algebra by the first theorem. Moreover $D(H)^* \cong (D(S_4)^*)^{\sigma}$ for some 2-cocycle σ (Beggs-Majid). The first theorem ensures that $D(S_4)^*$ is a quantum permutation algebra, while $D(H)^*$ is not (because $D(H)^* \twoheadrightarrow H$). \Box

Sketch of the proof of the theorem

We have to see that $H = k^{\Gamma} # kF$ is not generated by its commutative (right) coideal subalgebras. It is not easy to have the full list of these coideal subalgebras, so instead we use the following observations :

Lemma

If $\pi : H \to kF$ is a surjective Hopf algebra map and if there exits a proper subgroup $F' \subsetneq F$ such that $\pi(R) \subset kF'$ for any commutative (right) coideal subalgebra $R \subset H$, then H is not a quantum permutation algebra.

Lemma

Let $H = k^{\Gamma} \# kF$ and $\pi = \epsilon \otimes id : H \rightarrow kF$. Let $R \subseteq H$ be a commutative right coideal subalgebra. Then $\pi(R) = kT$, where T is an abelian subgroup of F, and we have :

(i) If
$$k^{\Gamma} \subseteq R$$
, then T acts trivially on Γ via \triangleleft .

(ii) If $k^{\Gamma} \cap R = k1$, then T is stable under the action \triangleright of Γ .

Now assume that $H = k^{C_5} \# k \mathbb{S}_4$ (exact factorization $\mathbb{S}_5 = \mathbb{S}_4 C_5$ and actions : $C_5 \xleftarrow{\triangleleft} C_5 \times \mathbb{S}_4 \xrightarrow{\triangleright} \mathbb{S}_4$). If R is a commutative right coideal subalgebra of H, then $R \cap k^{C_5}$ is a right coideal subalgebra of k^{C_5} , hence a Hopf subalgebra of k^{C_5} and thus dim $(R \cap k^{C_5})$ divides 5. We are in the situation of the previous lemma : we have $\pi(R) = kT$ where T is an abelian subgroup of \mathbb{S}_4 and either T acts trivially on C_5 via \triangleleft or T is stable under the action \triangleright of C_5 . The only subgroup of \mathbb{S}_4 that acts trivially on C_5 is $\{1\}$, and the only abelian subgroups of \mathbb{S}_4 that are stable under the action \triangleright of C_5 are contained in $\langle (1324) \rangle = F'$. Thus $\pi(R) \subset kF'$, and we conclude by the first lemma. 🗆

Question

What is the smallest dimension that a self dual non quantum permutation algebra can have?

Some quantum permutation algebras obtained by 2-cocycle deformations

We have seen that the class of quantum permutation algebras is not stable under 2-cocycle deformations. We wish to show however that large classes of quantum permutation algebras can be constructed in this way.

Let Γ be an abelian group and let $\sigma \in Z^2(\Gamma, k^*)$. The character group $\widehat{\Gamma}$ acts faithfully on the twisted group algebra $k_{\sigma}\Gamma$ by $\chi \cdot g = \chi(g)g$ ($\chi \in \widehat{\Gamma}$, $g \in \Gamma$), hence $\widehat{\Gamma} \subset \operatorname{Aut}(k_{\sigma}\Gamma)$.

Theorem

Let Γ be a finite abelian group and let $\sigma \in Z^2(\Gamma, k^*)$. Let G be a linear algebraic group with $\widehat{\Gamma} \subset G \subset \operatorname{Aut}(k_{\sigma}\Gamma)$. Then σ induces a 2-cocycle σ' on $\mathcal{O}(G)$ such that $\mathcal{O}(G)^{\sigma'}$ is a quantum permutation algebra (non commutative if the only subgroup of $\widehat{\Gamma}$ that is normal in G is $\{1\}$ and if $k_{\sigma}\Gamma$ is non commutative).

Examples :
$$\widehat{\Gamma} = C_2^n \subset G \subset O_n(k) \subset \operatorname{Aut}(Cl_n(k))$$

 $\widehat{\Gamma} = C_n \times C_n \subset G \subset PGL_n(k) = \operatorname{Aut}(M_n(k))$

Question

If G is a finite group and σ is a 2-cocycle on k^{G} , is $(k^{G})^{\sigma}$ a quantum permutation algebra?