Classifying Hopf algebras of a given dimension

Margaret Beattie (Mount Allison University, Canada)

mbeattie@mta.ca
Over an algebraically closed field, the problem of classifying all Hopf algebras even for some given small dimension, such as 16 or 32 , or for a class of dimensions, such as $p, p q, p q^{2}$, etc, for p, q prime, is a difficult one. Some recent techniques using the coradical filtration are due to D. Fukuda; he applied these to dimensions 18 and 30. Cheng and Ng have recently investigated Hopf algebras of dimension p in the Yetter-Drinfeld category over the 4-dimensional Sweedler Hopf algebra and used these results to study dimension $4 p$. They show that Hopf algebras of dimensions 20,28 , or 44 are either semisimple, pointed or copointed.

In this talk some more techniques will be mentioned with applications to dimension p^{3} in mind. Hopf algebras of dimension 27 will be completely described.

This is joint work with G.A. García.

Classifying Hopf algebras of a given dimension

Margaret Beattie ${ }^{1}$

Mt Allison U.
July 7, 2011
${ }^{1}$ Joint work with Gastón García, U. Cordoba.

The problem

The question of classification of all Hopf algebras of a given dimension over an algebraically closed field k of characteristic zero up to isomorphism dates back 35 years or more to Kaplansky's monograph on bialgebras. A little progress has been made....

- 1994 Kac-Zhu Theorem: Hopf algebras of prime dimension are group algebras.
- 1995, 1996, Masuoka: Semisimple Hopf algebras of dim p^{2} are group algebras. Classified all of dimension p^{3}, not all are group algebras.
- 1998 Andruskiewitsch \& Schneider, Caenepeel \& Dăscălescu, Stefan \& van Oystaeyen independently: Found $(p-1)(p+9) / 2$ isomorphism classes of pointed Hopf algebras of $\operatorname{dim} p^{3}$. Two isomorphism types have nonpointed duals.

very brief history

- 1998-2004 Masuoka, Izumi \& Kasaki, Sommerhaüser, Gelaki, Westreich, Etingof : Semisimple Hopf algebras of dimension pq are group algebras or their duals.
- 1999-2001 Natale: classification of semisimple Hopf algebras of dimension $p q^{2}$, also Masuoka
- 2001 Andruskiewitsch \& Natale: pointed Hopf algebras of dim pq².
- 2002 Ng : Nonsemisimple Hopf algebras of dimension p^{2} are Taft Hopf algebras.
- 2004 Natale: Semisimple Hopf algebra of dimension $p q^{r}$

history cont'd

- 2005 G.A.García: Classified the ribbon Hopf algebras of dimension p^{3} and showed that a nonsemisimple nonpointed noncopointed Hopf algebra of dimension p^{3} is of type (p, p) or $(p, 1)$ and has no nontrivial normal sub-Hopf algebra.
- 2008 Ng : Hopf algebras of $\operatorname{dim} p q$ with $2<p<q \leq 4 p+11$ are semisimple. Also earlier results of Ng ($\operatorname{dim} 2 p$ done in general), as well as Etingof \& Gelaki, D. Fukuda.
- 2009 Hilgemann \& Ng: All Hopf algebras of dimension $2 p^{2}$ are semisimple, pointed or copointed
- 2011 Cheng \& Ng: partial classification of Hopf algebras of dimension $4 p$; dimensions 20, 28, 44 are semisimple, pointed or copointed.

Methods

No standard methods of attack - but some approaches are:
(i) S. Natale: Hopf algebras H generated by a simple subcoalgebra of dimension 4 stable under the antipode have a central exact sequence:

$$
k^{G} \hookrightarrow H \rightarrow A
$$

where G is a finite group and A is copointed nonsemisimple.
(ii) H nonsemisimple, then the trace of the square of the antipode is 0 .
(iii) Study Hopf algebras in categories of Yetter-Drinfeld modules.
(iv) Projective covers of simple modules
(v) Injective envelopes of simple comodules
(vi) Dimension arguments - useful for some general and for some particular small dimensions.

Some recent generalizations

Natale's theorem about Hopf algebras generated by a simple subcoalgebra of dimension 4 stable under the antipode depends on a theorem of D.
Stefan about matrix coalgebras. Here is part of the generalization due to C. Vay:

Proposition
Let $D \cong \mathcal{M}^{*}(d, k)$. If f is a coalgebra automorphism of D of finite order n, there is a comatrix basis (also called a multiplcative matrix) e for D consisting of eigenvectors for f and such that $f\left(e_{i j}\right)=\omega_{i} \omega_{j}^{-1} e_{i j}$ for some scalars ω_{i}.

Other generalizations of methods in the literature use a description of the coradical filtration due to Nichols and explained in [AN] 2001, together with some results of D. Fukuda.

On the coradical filtration

For C a coalgebra, there is a (non-unique) coalgebra projection π from C to its coradical C_{0} with kernel I. Define:
$\rho_{L}:=(\pi \otimes C) \Delta: C \rightarrow C_{0} \otimes C \quad$ and $\quad \rho_{R}:=(C \otimes \pi) \Delta: C \rightarrow C \otimes C_{0}$
Define a sequence of subspaces P_{n} recursively by

$$
\begin{aligned}
& P_{0}=0 \\
& P_{1}=\left\{x \in C: \Delta(x)=\rho_{L}(x)+\rho_{R}(x)\right\}=\Delta^{-1}\left(C_{0} \otimes I+I \otimes C_{0}\right) \\
& P_{n}=\left\{x \in C: \Delta(x)-\rho_{L}(x)-\rho_{R}(x) \in \sum_{1 \leq i \leq n-1} P_{i} \otimes P_{n-i}\right\}, \quad n \geq 2
\end{aligned}
$$

$P_{n}=C_{n} \cap /$ for $n \geq 0$ and $C_{n}=C_{0} \oplus P_{n}$. Also $H_{n}=H_{0} \oplus P_{n}$ for all $n \geq 0$. H_{n} and P_{n} are H_{0}-sub-bicomodules of H via ρ_{R} and ρ_{L}.

Coradical filtration

Let $C_{0}=\bigoplus_{\tau \in I} C_{\tau}$, where $C_{\tau} \cong M^{c}\left(d_{\tau}, k\right)$.
Every simple C_{0}-bicomodule has coefficient coalgebras C_{τ}, C_{γ} and has dimension $d_{\tau} d_{\gamma}=\sqrt{\operatorname{dim} C_{\tau} \operatorname{dim} C_{\gamma}}$ for some $\tau, \gamma \in I$.
Some notation:

- $P_{n}^{\tau, \gamma}$ is the isotypic component of the H_{0}-bicomodule P_{n} of type the simple bicomodule with coalgebra of coefficients $C_{\tau} \otimes C_{\gamma}$.
- $P^{\tau, \gamma}=\sum_{n} P_{n}^{\tau, \gamma}$.
- If g is grouplike, write $P_{n}^{g, \tau}$ for $P_{n}^{k g, \tau}$.
- Similar abbreviations for $S C_{\tau}, g C_{\tau}$, etc.
- If $\Gamma \subseteq G(C)$, write $P^{\Gamma, \Gamma}$ for $\sum_{g, h \in \Gamma} P^{g, h}$.

Dimension arguments

The subspace $P_{n}^{\tau, \gamma}$ is called non-degenerate if $P_{n}^{\tau, \gamma} \nsubseteq P_{n-1}$. Then if H is a Hopf algebra:

$$
\operatorname{dim} P_{n}^{\tau, \gamma}=\operatorname{dim} P_{n}^{S \gamma, S \tau}=\operatorname{dim} P_{n}^{g \tau, g \gamma}=\operatorname{dim} P_{n}^{\tau g, \gamma g},
$$

Some standard useful facts are:

- For all $n,|G(H)|$ divides the dimension of H_{n}, P_{n}, and $H_{0, d}$ where this last is the sum of the simple subcoalgebras of dimension d^{2}. [AN]
- If H is noncosemisimple with no nontrivial skew-primitives, then for all $g \in G(H)$ there is a simple subcoalgebra C of H of dimension greater than 1 such that $P_{1}^{g, C}$ is nonzero. [BD]

results of Fukuda

Lemma

If the subspace $P_{n}^{\tau, \gamma}$ is nondegenerate for some $n>1$ then for all $1 \leq i \leq n-1$ there is a simple coalgebra C_{i} such that $P_{i}^{\tau, C_{i}}, P_{n-i}^{C_{i}, \gamma}$ are nondegenerate.

Lemma

Let C, D be simple subcoalgebras such that $P_{m}^{C, D}$ is nondegenerate. If either

$$
\operatorname{dim} C \neq \operatorname{dim} D \quad \text { or } \quad \operatorname{dim} P_{m}^{C, D}-\operatorname{dim} P_{m-1}^{C, D} \neq \operatorname{dim} C
$$

there exists a simple subcoalgebra E and $t \geq m+1$ such that $P_{t}^{C, E}$ is nondegenerate.

Bound on the dimension

Fukuda's results lead to an improved bound on the dimension of Hopf algebras with no nontrivial skew-primitive elements from an old result of $B / D a ̆ s c a ̆ l e s c u: ~$

Proposition
Let H be a non-cosemisimple Hopf algebra with no nontrivial skew-primitives. Then

$$
\operatorname{dim}(H) \geq \operatorname{dim}\left(H_{0}\right)+(2 n+1)|G|+n^{2},
$$

where n^{2} is the dimension of the smallest simple subcoalgebra of H of dimension greater than 1.

Application: Every Hopf algebra of dimension 27 and grouplikes of order 3 has a nontrivial skew-primitive element.

Dim 27 with only trivial grouplike elements

Suppose H has dimension 27 and $|G(H)|=1$. The possible coradicals for H are $k \cdot 1 \oplus E$ where E is:

- $\mathcal{M}^{*}(2, k)^{n}$ with $n=1,2,3,4,5,6$;
- $\mathcal{M}^{*}(3, k)^{n}$ with $n=1,2$;
- $\mathcal{M}^{*}(4, k)$;
- $\mathcal{M}^{*}(5, k)$;
- $\mathcal{M}^{*}(2, k)^{n} \oplus \mathcal{M}^{*}(3, k)^{m}$ with $(n, m)=(1,1),(2,1),(3,1),(4,1),(1,2)$;
- $\mathcal{M}^{*}(2, k)^{n} \oplus \mathcal{M}^{*}(3, k)^{m} \oplus \mathcal{M}^{*}(4, k)$ with $0 \leq n, m$ and $0<4 n+9 m+16<26$.

A simple application of the proposition bounding the dimension eliminates many of these....

Dim 27 with only trivial grouplike elements

What remains:

- $\mathcal{M}^{*}(2, k)^{n}$ with $n=1,2,3,4,5,6$;
- $\mathcal{M}^{*}(3, k)^{n}$ with $n=1,2$;
- $\mathcal{M}^{*}(4, k)$;
- $\mathcal{M}^{*}(5, k)$;
- $\mathcal{M}^{*}(2, k)^{n} \oplus \mathcal{M}^{*}(3, k)^{m}$ with

$$
(n, m)=(1,1),(2,1),(3,1),(4,1),(1,2)
$$

- $\mathcal{M}^{*}(2, k)^{n} \oplus \mathcal{M}^{*}(3, k)^{m} \oplus \mathcal{M}^{*}(4, k)$ with $0 \leq n, m$ and $0<4 n+9 m+16<26$.
Now recall by Natale's theorem that here if H is generated by a simple subcoalgebra of dimension 4 stable under the antipode, then H is copointed.

Dim 27 with only trivial grouplike elements

What remains:

- $\mathcal{M}^{*}(2, k)^{n}$ with $n=12,3,4,5,6$;
- $\mathcal{M}^{*}(3, k)^{n}$ with $n=1,2$;
- $\mathcal{M}^{*}(4, k)$;
- $\mathcal{M}^{*}(5, k)$;
- $\mathcal{M}^{*}(2, k)^{n} \oplus \mathcal{M}^{*}(3, k)^{m}$ with

$$
(n, m)=(1,1),(2,1),(3,1),(4,1),(1,2)
$$

- $\mathcal{M}^{*}(2, k)^{n} \oplus \mathcal{M}^{*}(3, k)^{m} \oplus \mathcal{M}^{*}(4, k)$ with $0 \leq n, m$ and $0<4 n+9 m+16<26$.

Now with exactly two copies of $\mathcal{M}^{*}(2, k)$ in the coradical either S fixes both or permutes them properly. The first case is impossible by Natale's theorem and the second is impossible by a counting result obtained from Fukuda's lemmas.

Dimension lemma

Lemma
Let H be a Hopf algebra of dimension 27. Then the coradical $H_{0} \nsubseteq k \cdot 1 \oplus C \oplus D$ where $S(C)=D$ and $C \cong D \cong \mathcal{M}^{*}(2, k)$.

Idea of the proof:
$27=\operatorname{dim}\left(H_{0}\right)+\operatorname{dim}\left(P^{1,1}\right)+\sum_{E, F \in\{C, D\}}\left[\operatorname{dim}\left(P^{1, E}\right)+\operatorname{dim}\left(P^{E, 1}\right)+\operatorname{dim}\left(P^{E, F}\right)\right]$
so the dimension of $P^{1,1}$ is congruent to $2 \bmod 4$. From Fukuda, $P_{3}^{1,1}$ is nondegenerate, so that again by Fukuda, $P_{2}^{1, E}$ is nondegenerate for some $E \in\{C, D\}$. Then count the dimensions.

Dim 27 with only trivial grouplike elements

What remains:

- $\mathcal{M}^{*}(2, k)^{n}$ with $n=1,2,3,4,5,6$;
- $\mathcal{M}^{*}(3, k)^{n}$ with $n=1,2$;
- $\mathcal{M}^{*}(4, k)$;
- $\mathcal{M}^{*}(5, k)$;
- $\mathcal{M}^{*}(2, k)^{n} \oplus \mathcal{M}^{*}(3, k)^{m}$ with $(n, m)=(1,1),(2,1),(3,1),(4,1),(1,2)$;
- $\mathcal{M}^{*}(2, k)^{n} \oplus \mathcal{M}^{*}(3, k)^{m} \oplus \mathcal{M}^{*}(4, k)$ with $0 \leq n, m$ and $0<4 n+9 m+16<26$.

The following lemma builds on the results of Fukuda:
Lemma
If $\operatorname{dim}(H)$ is divisible by $N>2, H_{0} \cong k \cdot 1 \oplus E$ where E is a sum of simple subcoalgebras each of dimension divisible by N^{2} then the dimension of H is greater than or equal to $\operatorname{dim}(E)+5 N+2 N^{2}$.

And this eliminates the last possibility.

Dimension 27 type (3, 3)

Recall that:

- If $\operatorname{dim}(H)$ is 27 and $G(H) \cong C_{3}$ then H has a nontrivial skew-primitive element.
- p divides the dimension of each of P_{n} and each $H_{0, d}$
- The only possible coradicals for H of dimension 27 with $G(H) \cong C_{3}$ are
- $k C_{3} \oplus \mathcal{M}^{*}(2, k)^{3}$
- $k C_{3} \oplus \mathcal{M}^{*}(2, k)^{3} \oplus \mathcal{M}^{*}(3, k)$ - impossible by counting dimensions
- $k C_{3} \oplus \mathcal{M}^{*}(3, k)$ or
- $k C_{3} \oplus \mathcal{M}^{*}(3, k)^{2}$.

Some general results for Hopf algebras of dimension p^{3} and type (p, p) will eliminate each of these possibilities.

Dimension p^{3}, type (p, p), coradical with copies of

 $\mathcal{M}^{*}(p-1, k)$Assume H is of $\operatorname{dim} p^{3}$, type (p, p) nonsemisimple, nonpointed, non-copointed.

Proposition

Suppose H contains a Taft Hopf algebra T and $T=H^{G(H), G(H)}$. Suppose that $d^{2}<p^{2}$ divides the dimension of every simple subcoalgebra of H of dimension greater than 1. Then

- d must divide $p-1$, and if d is even then $2 d$ divides $p-1$.
- Also if $P_{1}^{g, E}=0$ for all $g \in G(H)$ and E a simple subcoalgebra of H of dimension greater than 1 then d^{2} divides $p-1$.

Corollary

H of dimension p^{3}. Then $H_{0} \not \equiv k C_{p} \oplus \mathcal{M}^{*}(p-1, k)^{p} \oplus E$ where E is zero or a sum of simple coalgebras isomorphic to $\mathcal{M}^{*}(p, k)$.

Dimension p^{3}, type (p, p), coradical with copies of $\mathcal{M}^{*}(p, k)$

Proposition

Suppose that both H and H^{*} have nontrivial skew-primitive elements so that there is a Hopf algebra projection $\pi: H \rightarrow T_{q}$ where T_{q} is a Taft Hopf algebra of dimension p^{2}. Then H has no simple subcoalgebra D of dimension p^{2} such that $P^{D, D}=0$. If H has dimension 27 then the condition that $P^{D, D}=0$ is not necessary.

Remark that the proof relies heavily on the fact that we have a basis $e_{i j}$ for D consisting of eigenvectors for the inner action by a nontrivial grouplike.

Other examples

Other applications:
Corollary
Let $p>5$ and H be of type (p, p) with $H_{0} \cong k C_{p} \oplus \mathcal{M}^{*}(p, k)^{t}$ where $t \geq p-3$. Then H^{*} has no nontrivial skew primitive element.

Proof.

H has a nontrivial skew-primitive by the usual dimension arguments.
Suppose that H^{*} also has a nontrivial skew-primitive. If $P^{D, D} \neq 0$ for all
D simple of dimension p^{2} then the dimension of H is at least
$p^{2}+2 t p^{2}=(1+2 t) p^{2} \geq(1+2(p-3)) p^{2}=2 p^{3}-5 p^{2}>p^{3}$.

Remark

The same argument shows that if $p=5$ and $H_{0} \cong k C_{5} \oplus \mathcal{M}^{*}(5, k)^{t}$ with $t=3,4$, then H^{*} has no nontrivial skew-primitive.

Dim 27 Hopf algebras are semisimple, pointed or copointed

Semisimple Hopf algebras [Mas]:
(a) 5 of form $k G, 2$ of form $k G^{*} G$ nonabelian.
(c) 4 self-dual extensions of $k\left[C_{3} \times C_{3}\right]$ by $k C_{3}$, noncomm, noncocomm. List of pointed and copointed Hopf algebras [AS], [CD], [SvO]. Here g denotes a grouplike, x skew-primitive, $q^{3}=1, \xi^{9}=1$.
(c) $T_{q} \otimes k C_{3}$.
(d) $\widetilde{T_{q}}:=k\left\langle g, x \mid g x g^{-1}=\xi x, g^{9}=1, x^{3}=0\right\rangle, x,\left(g^{3}, 1\right)$-prim.
(e) $\widehat{T_{q}}:=k\left\langle g, x \mid g \times g^{-1}=q x, g^{9}=1, x^{3}=0\right\rangle, x(g, 1)$-prim.
(f) $\mathbf{r}(q):=k\left\langle g, x \mid g \times g^{-1}=q x, g^{9}=1, x^{3}=1-g^{3}\right\rangle, x(g, 1)$-prim.
(g) Frobenius-Lusztig kernel $\mathbf{u}_{q}\left(\mathfrak{s l}_{2}\right)$.
(h) The book Hopf algebra $\mathbf{h}(q, m)$.
(i) Dual of the Frobenius-Lusztig kernel, $\mathbf{u}_{q}\left(\mathfrak{s l}_{2}\right)^{*}$. Not pointed.
(j) Dual of the case $f), \mathbf{r}(q)^{*}$. Not pointed.

Small dimensions

All Hopf algebras of dimension less than 32 have been shown to be semisimple, pointed or copointed except for dimension $24=2^{3} \cdot 3$.

- Dim p: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31
- $\operatorname{Dim} p^{2}: 4,9,25$
- $\operatorname{Dim} p q: 6,10,14,15,21,22,26$
- $\operatorname{Dim} p^{3}: 8$ by Williams (also [S]]), 27
- $\operatorname{Dim} p^{4}: 16$ by García and Vay (Also [K], [CDR], [B].)
- $\operatorname{Dim} 2 p^{2}: 18$ by D. Fukuda (gen'I result by Hilgemann \& Ng)
- Dim 4p: 12 Natale (N. Fukuda ss case, also Natale $p q^{2}$ ss in gen'l, Masuoka, [AN] pted), 20, 28 Cheng and Ng
- Dim pqr: 30 by D. Fukuda

After that the next dimensions which have not been classified are $32=2^{5}, 40=2^{3} \cdot 5,42=2 \cdot 3 \cdot 7,45=3^{2} \cdot 5,48=2^{4} \cdot 3$.

