A presentation by generators and relations of Nichols algebras of diagonal type

Iván Angiono (National University of Córdoba, Argentina) ivanangiono@gmail.com

The Lifting Method of Andruskiewitsch and Schneider is the leading method to classify pointed Hopf algebras [AS]. It involves as an inicial step to know for which braided vector spaces their associated Nichols algebra is finite-dimensional; such braided vector spaces were classified by Heckenberger [H].

A second step is the following one: for each of these Nichols algebras, give a nice presentation by generators a relations. In the present talk we give an answer to this question, following [A]. We characterize convex orders on root systems associated to finite Weyl groupoids and use a description of coideal subalgebras of Nichols algebras [HS]. We describe then a set of relations using the PBW bases of [Kh].

We use such presentation to prove that every finite-dimensional pointed Hopf algebra over \mathbb{C}, whose group of group-like elements is abelian, is generated by its group-like and skew-primitive elements, a conjecture due to Andruskiewitsch and Schneider.

Bibliography

[AS] N. Andruskiewitsch and H.-J. Schneider, On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. 171 (2010), No. 1, 375-417.
[A] I. Angiono, Presentation of Nichols algebras of diagonal type by generators and relations, submitted. arXiv:1008.4144.
[HS] I. Heckenberger and H.-J. Schneider, Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid. math.QA/0909.0293.
[H] I. Heckenberger, Classification of arithmetic root systems, Adv. Math. 220 (2009), 59-124.
[Kh] V. Kharchenko, A quantum analog of the Poincare-Birkhoff-Witt theorem, Algebra and Logic 38, (1999), 259-276.

A presentation by generators and relations of Nichols algebras of diagonal type

Iván Angiono

Universidad Nacional de Cordoba (Arg)

Hopf algebras and tensor categories - Almería, 2011

Fix the following setting

- V vector space, $\operatorname{dim} V=\theta<\infty, X=\left\{x_{1}, \ldots, x_{\theta}\right\}$ a basis,

Fix the following setting

- V vector space, $\operatorname{dim} V=\theta<\infty, X=\left\{x_{1}, \ldots, x_{\theta}\right\}$ a basis,
- $\left(q_{i j}\right) \in\left(k^{\times}\right)^{\theta \times \theta}$,

Fix the following setting

- V vector space, $\operatorname{dim} V=\theta<\infty, X=\left\{x_{1}, \ldots, x_{\theta}\right\}$ a basis,
- $\left(q_{i j}\right) \in\left(\mathrm{k}^{\times}\right)^{\theta \times \theta}$,
- $\alpha_{1}, \ldots, \alpha_{\theta}$ the canonical basis of \mathbb{Z}^{θ} :

$$
\chi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \rightarrow \mathrm{k}^{\times} \mathbb{Z} \text {-bilinear, } \quad \chi\left(\alpha_{i}, \alpha_{j}\right)=q_{i j} .
$$

Fix the following setting

- V vector space, $\operatorname{dim} V=\theta<\infty, X=\left\{x_{1}, \ldots, x_{\theta}\right\}$ a basis,
- $\left(q_{i j}\right) \in\left(k^{\times}\right)^{\theta \times \theta}$,
- $\alpha_{1}, \ldots, \alpha_{\theta}$ the canonical basis of \mathbb{Z}^{θ} :

$$
\chi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \rightarrow \mathrm{k}^{\times} \mathbb{Z} \text {-bilinear, } \quad \chi\left(\alpha_{i}, \alpha_{j}\right)=q_{i j} .
$$

- $\mathbb{X}=$ set of words with letters in X (a basis of $T(V)$).

Fix the following setting

- V vector space, $\operatorname{dim} V=\theta<\infty, X=\left\{x_{1}, \ldots, x_{\theta}\right\}$ a basis,
- $\left(q_{i j}\right) \in\left(k^{\times}\right)^{\theta \times \theta}$,
- $\alpha_{1}, \ldots, \alpha_{\theta}$ the canonical basis of \mathbb{Z}^{θ} :

$$
\chi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \rightarrow \mathrm{k}^{\times} \mathbb{Z} \text {-bilinear, } \quad \chi\left(\alpha_{i}, \alpha_{j}\right)=q_{i j} .
$$

- $\mathbb{X}=$ set of words with letters in X (a basis of $T(V)$).
- $T(V)=\oplus_{\alpha \in \mathbb{Z}^{\ominus}} T^{\alpha}(V)$, with \mathbb{Z}^{θ}-graduation $\operatorname{deg}\left(x_{i}\right)=\alpha_{i}$.

Fix the following setting

- V vector space, $\operatorname{dim} V=\theta<\infty, X=\left\{x_{1}, \ldots, x_{\theta}\right\}$ a basis,
- $\left(q_{i j}\right) \in\left(\mathrm{k}^{\times}\right)^{\theta \times \theta}$,
- $\alpha_{1}, \ldots, \alpha_{\theta}$ the canonical basis of \mathbb{Z}^{θ} :

$$
\chi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \rightarrow \mathrm{k}^{\times} \mathbb{Z} \text {-bilinear, } \quad \chi\left(\alpha_{i}, \alpha_{j}\right)=q_{i j} .
$$

- $\mathbb{X}=$ set of words with letters in X (a basis of $T(V)$).
- $T(V)=\oplus_{\alpha \in \mathbb{Z}^{\theta}} T^{\alpha}(V)$, with \mathbb{Z}^{θ}-graduation $\operatorname{deg}\left(x_{i}\right)=\alpha_{i}$.
- Product in $T(V) \otimes T(V): a, b, c, d \in T(V)$, $\beta=\operatorname{deg}(b), \gamma=\operatorname{deg}(c)$,

$$
(a \otimes b)(c \otimes d)=\chi(\beta, \gamma) a c \otimes b d
$$

Fix the following setting

- V vector space, $\operatorname{dim} V=\theta<\infty, X=\left\{x_{1}, \ldots, x_{\theta}\right\}$ a basis,
- $\left(q_{i j}\right) \in\left(\mathrm{k}^{\times}\right)^{\theta \times \theta}$,
- $\alpha_{1}, \ldots, \alpha_{\theta}$ the canonical basis of \mathbb{Z}^{θ} :

$$
\chi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \rightarrow \mathrm{k}^{\times} \mathbb{Z} \text {-bilinear, } \quad \chi\left(\alpha_{i}, \alpha_{j}\right)=q_{i j} .
$$

- $\mathbb{X}=$ set of words with letters in X (a basis of $T(V)$).
- $T(V)=\oplus_{\alpha \in \mathbb{Z}^{\theta}} T^{\alpha}(V)$, with \mathbb{Z}^{θ}-graduation $\operatorname{deg}\left(x_{i}\right)=\alpha_{i}$.
- Product in $T(V) \otimes T(V): a, b, c, d \in T(V)$, $\beta=\operatorname{deg}(b), \gamma=\operatorname{deg}(c)$,

$$
(a \otimes b)(c \otimes d)=\chi(\beta, \gamma) a c \otimes b d
$$

- $\Delta: T(V) \rightarrow T(V) \otimes T(V)$ morfism of algebras defined by $\Delta\left(x_{i}\right)=x_{i} \otimes 1+1 \otimes x_{i}$.

Proposition (Lusztig, Andruskiewitsch-Schneider)

\exists a unique bilinear form in $T(V)$ such that

$$
\forall x, x^{\prime}, y, y^{\prime} \in T(V), 1 \leq i, j \leq \theta, \alpha \neq \beta \in \mathbb{Z}^{\theta}
$$

Proposition (Lusztig, Andruskiewitsch-Schneider)

\exists a unique bilinear form in $T(V)$ such that

- $\left(x \mid y y^{\prime}\right)=\left(\Delta(x) \mid y \otimes y^{\prime}\right)$,
$\forall x, x^{\prime}, y, y^{\prime} \in T(V), 1 \leq i, j \leq \theta, \alpha \neq \beta \in \mathbb{Z}^{\theta}$.

Proposition (Lusztig, Andruskiewitsch-Schneider)

\exists a unique bilinear form in $T(V)$ such that

- $\left(x \mid y y^{\prime}\right)=\left(\Delta(x) \mid y \otimes y^{\prime}\right)$,
- $\left(x x^{\prime} \mid y\right)=\left(x^{\prime} \otimes x \mid \Delta(y)\right)$,
$\forall x, x^{\prime}, y, y^{\prime} \in T(V), 1 \leq i, j \leq \theta, \alpha \neq \beta \in \mathbb{Z}^{\theta}$.

Proposition (Lusztig, Andruskiewitsch-Schneider)

\exists a unique bilinear form in $T(V)$ such that

- $\left(x \mid y y^{\prime}\right)=\left(\Delta(x) \mid y \otimes y^{\prime}\right)$,
- $\left(x x^{\prime} \mid y\right)=\left(x^{\prime} \otimes x \mid \Delta(y)\right)$,
- $\left(x_{i} \mid x_{j}\right)=\delta_{i j}$,

$$
\forall x, x^{\prime}, y, y^{\prime} \in T(V), 1 \leq i, j \leq \theta, \alpha \neq \beta \in \mathbb{Z}^{\theta}
$$

Proposition (Lusztig, Andruskiewitsch-Schneider)

\exists a unique bilinear form in $T(V)$ such that

- $\left(x \mid y y^{\prime}\right)=\left(\Delta(x) \mid y \otimes y^{\prime}\right)$,
- $\left(x x^{\prime} \mid y\right)=\left(x^{\prime} \otimes x \mid \Delta(y)\right)$,
- $\left(x_{i} \mid x_{j}\right)=\delta_{i j}$,
- $\left(T^{\alpha}(V) \mid T^{\beta}(V)\right)=0$,
$\forall x, x^{\prime}, y, y^{\prime} \in T(V), 1 \leq i, j \leq \theta, \alpha \neq \beta \in \mathbb{Z}^{\theta}$.

Proposition (Lusztig, Andruskiewitsch-Schneider)

\exists a unique bilinear form in $T(V)$ such that

- $\left(x \mid y y^{\prime}\right)=\left(\Delta(x) \mid y \otimes y^{\prime}\right)$,
- $\left(x x^{\prime} \mid y\right)=\left(x^{\prime} \otimes x \mid \Delta(y)\right)$,
- $\left(x_{i} \mid x_{j}\right)=\delta_{i j}$,
- $\left(T^{\alpha}(V) \mid T^{\beta}(V)\right)=0$,
$\forall x, x^{\prime}, y, y^{\prime} \in T(V), 1 \leq i, j \leq \theta, \alpha \neq \beta \in \mathbb{Z}^{\theta}$.

Definition

$\mathcal{I}(V)$ radical of (\mid), an ideal of $T(V) . \mathfrak{B}(V):=T(V) / \mathcal{I}(V)$ is the Nichols algebra asociated to the matrix $\left(q_{i j}\right)$.

Problem

Classify all the matrices $\left(q_{i j}\right)_{1 \leq i, j \leq \theta}$ such that $\operatorname{dim} \mathfrak{B}(V)<\infty$.
For each one of these Nichols algebras, give a minimal presentation by generators and relations, and its dimension. ${ }^{a}$
${ }^{a}$ N. Andruskiewitsch, Contemp. Math. 294, 1-57 (2002).

Problem

Classify all the matrices $\left(q_{i j}\right)_{1 \leq i, j \leq \theta}$ such that $\operatorname{dim} \mathfrak{B}(V)<\infty$.
For each one of these Nichols algebras, give a minimal presentation by generators and relations, and its dimension. ${ }^{a}$
${ }^{a}$ N. Andruskiewitsch, Contemp. Math. 294, 1-57 (2002).
Answer to the first question: I. Heckenberger, Classification of arithmetic root systems, Adv. Math. 220 (2009) 59-124.

- $\mathfrak{B}(V) \mathbb{Z}^{\theta}$-graded: Hilbert series

$$
\mathcal{H}_{\mathfrak{B}(V)}:=\sum_{\alpha \in \mathbb{N}_{0}^{\theta}}\left(\operatorname{dim} \mathfrak{B}(V)_{\alpha}\right) x^{\alpha} \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{\theta}\right]\right], \quad x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{\theta}^{a_{\theta}}
$$

- $\mathfrak{B}(V) \mathbb{Z}^{\theta}$-graded: Hilbert series

$$
\mathcal{H}_{\mathfrak{B}(V)}:=\sum_{\alpha \in \mathbb{N}_{0}^{\theta}}\left(\operatorname{dim} \mathfrak{B}(V)_{\alpha}\right) x^{\alpha} \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{\theta}\right]\right], \quad x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{\theta}^{a_{\theta}}
$$

- Kharchenko: \exists a basis PBW of $\mathfrak{B}(V)$, whose generators are \mathbb{Z}^{θ}-homogeneous, $h: T \rightarrow \mathbb{N} \cup\{\infty\}$:

$$
B(T,<, h):=\left\{t_{1}^{e_{1}} \ldots t_{r}^{e_{r}}: t_{1}>\ldots>t_{r}, t_{i} \in T, 0<e_{i}<h\left(t_{i}\right)\right\} .
$$

- $\mathfrak{B}(V) \mathbb{Z}^{\theta}$-graded: Hilbert series

$$
\mathcal{H}_{\mathfrak{B}(V)}:=\sum_{\alpha \in \mathbb{N}_{0}^{\theta}}\left(\operatorname{dim} \mathfrak{B}(V)_{\alpha}\right) x^{\alpha} \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{\theta}\right]\right], \quad x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{\theta}^{a_{\theta}}
$$

- Kharchenko: \exists a basis PBW of $\mathfrak{B}(V)$, whose generators are \mathbb{Z}^{θ}-homogeneous, $h: T \rightarrow \mathbb{N} \cup\{\infty\}$:

$$
B(T,<, h):=\left\{t_{1}^{e_{1}} \ldots t_{r}^{e_{r}}: t_{1}>\ldots>t_{r}, t_{i} \in T, 0<e_{i}<h\left(t_{i}\right)\right\} .
$$

- $\operatorname{deg} t_{i}=\alpha \in \mathbb{Z}^{\theta}, h\left(t_{i}\right)<\infty, \Rightarrow h\left(t_{i}\right)=\operatorname{ord}(\chi(\alpha, \alpha))=: N_{\alpha}$.
- $\mathfrak{B}(V) \mathbb{Z}^{\theta}$-graded: Hilbert series

$$
\mathcal{H}_{\mathfrak{B}(V)}:=\sum_{\alpha \in \mathbb{N}_{0}^{\theta}}\left(\operatorname{dim} \mathfrak{B}(V)_{\alpha}\right) x^{\alpha} \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{\theta}\right]\right], \quad x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{\theta}^{a_{\theta}}
$$

- Kharchenko: \exists a basis PBW of $\mathfrak{B}(V)$, whose generators are \mathbb{Z}^{θ}-homogeneous, $h: T \rightarrow \mathbb{N} \cup\{\infty\}$:

$$
B(T,<, h):=\left\{t_{1}^{e_{1}} \ldots t_{r}^{e_{r}}: t_{1}>\ldots>t_{r}, t_{i} \in T, 0<e_{i}<h\left(t_{i}\right)\right\} .
$$

- $\operatorname{deg} t_{i}=\alpha \in \mathbb{Z}^{\theta}, h\left(t_{i}\right)<\infty, \Rightarrow h\left(t_{i}\right)=\operatorname{ord}(\chi(\alpha, \alpha))=: N_{\alpha}$.
- $\Delta_{+}^{V}:=\{$ degrees of generators of a PBW basis of $\mathfrak{B}(V)\}$: it does not depend on the PBW basis.
- $\mathfrak{B}(V) \mathbb{Z}^{\theta}$-graded: Hilbert series

$$
\mathcal{H}_{\mathfrak{B}(V)}:=\sum_{\alpha \in \mathbb{N}_{0}^{\theta}}\left(\operatorname{dim} \mathfrak{B}(V)_{\alpha}\right) x^{\alpha} \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{\theta}\right]\right], \quad x^{\alpha}=x_{1}^{a_{1}} \cdots x_{\theta}^{a_{\theta}} .
$$

- Kharchenko: \exists a basis PBW of $\mathfrak{B}(V)$, whose generators are \mathbb{Z}^{θ}-homogeneous, $h: T \rightarrow \mathbb{N} \cup\{\infty\}$:

$$
B(T,<, h):=\left\{t_{1}^{e_{1}} \ldots t_{r}^{e_{r}}: t_{1}>\ldots>t_{r}, t_{i} \in T, 0<e_{i}<h\left(t_{i}\right)\right\} .
$$

- $\operatorname{deg} t_{i}=\alpha \in \mathbb{Z}^{\theta}, h\left(t_{i}\right)<\infty, \Rightarrow h\left(t_{i}\right)=\operatorname{ord}(\chi(\alpha, \alpha))=: N_{\alpha}$.
- $\Delta_{+}^{V}:=\{$ degrees of generators of a PBW basis of $\mathfrak{B}(V)\}$: it does not depend on the PBW basis.
- Δ_{+}^{V} root system:

$$
\mathcal{H}_{\mathfrak{B}(V)}=\prod_{\alpha \in \Delta_{+}^{v}}\left(1+x^{\alpha}+x^{2 \alpha}+\cdots+x^{\alpha\left(N_{\alpha}-1\right)}\right) .
$$

$$
-a_{i j}:=\max \left\{n:\left(\operatorname{ad}_{c} x_{i}\right)^{n} x_{j} \neq 0\right\}=\max \left\{n: \alpha_{j}+n \alpha_{i} \in \Delta_{+}^{V}\right\},
$$

$$
\begin{aligned}
& -a_{i j}:=\max \left\{n:\left(\operatorname{ad}_{c} x_{i}\right)^{n} x_{j} \neq 0\right\}=\max \left\{n: \alpha_{j}+n \alpha_{i} \in \Delta_{+}^{v}\right\}, \\
& s_{i} \in \operatorname{Aut}\left(\mathbb{Z}^{\theta}\right), \quad s_{i}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j} \alpha_{i} \quad\left(a_{i i}:=2\right) .
\end{aligned}
$$

$$
-a_{i j}:=\max \left\{n:\left(\operatorname{ad}_{c} x_{i}\right)^{n} x_{j} \neq 0\right\}=\max \left\{n: \alpha_{j}+n \alpha_{i} \in \Delta_{+}^{V}\right\},
$$

$$
s_{i} \in \operatorname{Aut}\left(\mathbb{Z}^{\theta}\right), \quad s_{i}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j} \alpha_{i} \quad\left(a_{i i}:=2\right)
$$

Proposition (Heckenberger)

$$
\begin{aligned}
& \operatorname{dim} V_{i}=\theta, \tilde{q}_{k j}=\chi\left(s_{i}\left(\alpha_{k}\right), s_{i}\left(\alpha_{j}\right)\right) \\
& \Delta_{+}^{V_{i}}=s_{i}\left(\Delta_{+}^{v} \backslash\left\{\alpha_{i}\right\}\right) \cup\left\{\alpha_{i}\right\} .
\end{aligned}
$$

$$
-a_{i j}:=\max \left\{n:\left(\operatorname{ad}_{c} x_{i}\right)^{n} x_{j} \neq 0\right\}=\max \left\{n: \alpha_{j}+n \alpha_{i} \in \Delta_{+}^{V}\right\},
$$

$$
s_{i} \in \operatorname{Aut}\left(\mathbb{Z}^{\theta}\right), \quad s_{i}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j} \alpha_{i} \quad\left(a_{i i}:=2\right)
$$

Proposition (Heckenberger)

$$
\begin{aligned}
& \operatorname{dim} V_{i}=\theta, \tilde{q}_{k j}=\chi\left(s_{i}\left(\alpha_{k}\right), s_{i}\left(\alpha_{j}\right)\right) \\
& \Delta_{+}^{V_{i}}=s_{i}\left(\Delta_{+}^{v} \backslash\left\{\alpha_{i}\right\}\right) \cup\left\{\alpha_{i}\right\} .
\end{aligned}
$$

\rightsquigarrow Weyl groupoid: in some cases, $s_{i}\left(\Delta^{V}\right)=\Delta^{V_{i}} \neq \Delta^{V}$.

Definition

Weyl Groupoid and generalized root system (Heckenberger-Yamane): set of objects \mathcal{X} (for us, a certain family of matrices $\left(q_{i j}\right)$),

Definition

Weyl Groupoid and generalized root system (Heckenberger-Yamane): set of objects \mathcal{X} (for us, a certain family of matrices $\left(q_{i j}\right)$),

- $\Delta^{X}=\Delta_{+}^{X} \cup-\Delta_{+}^{X}, \Delta_{+} \subset \mathbb{N}_{0}^{\theta}(X \in \mathcal{X})$,

Definition

Weyl Groupoid and generalized root system (Heckenberger-Yamane): set of objects \mathcal{X} (for us, a certain family of matrices $\left(q_{i j}\right)$),

- $\Delta^{X}=\Delta_{+}^{X} \cup-\Delta_{+}^{X}, \Delta_{+} \subset \mathbb{N}_{0}^{\theta}(X \in \mathcal{X})$,
- symmetries $s_{i}^{X}, 1 \leq i \leq \theta$,

Definition

Weyl Groupoid and generalized root system (Heckenberger-Yamane): set of objects \mathcal{X} (for us, a certain family of matrices $\left(q_{i j}\right)$),

- $\Delta^{X}=\Delta_{+}^{X} \cup-\Delta_{+}^{X}, \Delta_{+} \subset \mathbb{N}_{0}^{\theta}(X \in \mathcal{X})$,
- symmetries $s_{i}^{X}, 1 \leq i \leq \theta$,
- $s_{i}^{X}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j}^{X} \alpha_{i}, a_{i i}^{X}=2, a_{i j}^{X} \in-\mathbb{N}_{0}$ if $i \neq j$;

Definition

Weyl Groupoid and generalized root system (Heckenberger-Yamane): set of objects \mathcal{X} (for us, a certain family of matrices $\left(q_{i j}\right)$),

- $\Delta^{X}=\Delta_{+}^{X} \cup-\Delta_{+}^{X}, \Delta_{+} \subset \mathbb{N}_{0}^{\theta}(X \in \mathcal{X})$,
- symmetries $s_{i}^{X}, 1 \leq i \leq \theta$,
- $s_{i}^{X}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j}^{X} \alpha_{i}, a_{i i}^{X}=2, a_{i j}^{X} \in-\mathbb{N}_{0}$ if $i \neq j$;
- $s_{i}^{X}\left(\Delta_{+}^{X}-\left\{\alpha_{i}\right\}\right)=\Delta_{+}^{Y}-\left\{\alpha_{i}\right\}$, if s_{i}^{X} goes to Y.

Definition

Weyl Groupoid and generalized root system (Heckenberger-Yamane): set of objects \mathcal{X} (for us, a certain family of matrices $\left(q_{i j}\right)$),

- $\Delta^{X}=\Delta_{+}^{X} \cup-\Delta_{+}^{X}, \Delta_{+} \subset \mathbb{N}_{0}^{\theta}(X \in \mathcal{X})$,
- symmetries $s_{i}^{X}, 1 \leq i \leq \theta$,
- $s_{i}^{X}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j}^{X} \alpha_{i}, a_{i i}^{X}=2, a_{i j}^{X} \in-\mathbb{N}_{0}$ if $i \neq j$;
- $s_{i}^{X}\left(\Delta_{+}^{X}-\left\{\alpha_{i}\right\}\right)=\Delta_{+}^{Y}-\left\{\alpha_{i}\right\}$, if s_{i}^{X} goes to Y.

If $\mathcal{X}=\{X\} \rightsquigarrow$ classic root system + Weyl group.

Finite root system: Δ^{X} finite for some (all) $X \in \mathcal{X}$, i.e. the groupoid is finite ([HY]).

Finite root system: Δ^{X} finite for some (all) $X \in \mathcal{X}$, i.e. the groupoid is finite ([HY]).

$$
\ell(w)=\min \left\{k \in \mathbb{N}: \exists i_{1}, \ldots, i_{k} \in I \text { such that } w=s_{i_{1}} \cdots s_{i_{k}}\right\} .
$$

Finite root system: Δ^{X} finite for some (all) $X \in \mathcal{X}$, i.e. the groupoid is finite ([HY]).

$$
\ell(w)=\min \left\{k \in \mathbb{N}: \exists i_{1}, \ldots, i_{k} \in I \text { such that } w=s_{i_{1}} \cdots s_{i_{k}}\right\} .
$$

Proposition (Cuntz and Heckenberger)

If $w=\operatorname{id}_{x} s_{i_{1}} \cdots s_{i_{m}}$ is such that $\ell(w)=m$ (reduced expression), then $\beta_{j}=s_{i_{1}} \cdots s_{i_{j-1}}\left(\alpha_{i_{j}}\right) \in \Delta^{X}$ are positive and all different.

Finite root system: Δ^{X} finite for some (all) $X \in \mathcal{X}$, i.e. the groupoid is finite ([HY]).

$$
\ell(w)=\min \left\{k \in \mathbb{N}: \exists i_{1}, \ldots, i_{k} \in I \text { such that } w=s_{i_{1}} \cdots s_{i_{k}}\right\} .
$$

Proposition (Cuntz and Heckenberger)

If $w=\operatorname{id}_{x} s_{i_{1}} \cdots s_{i_{m}}$ is such that $\ell(w)=m$ (reduced expression), then $\beta_{j}=s_{i_{1}} \cdots s_{i_{j-1}}\left(\alpha_{i_{j}}\right) \in \Delta^{X}$ are positive and all different.

Finite root system: Δ^{X} finite for some (all) $X \in \mathcal{X}$, i.e. the groupoid is finite ([HY]).

$$
\ell(w)=\min \left\{k \in \mathbb{N}: \exists i_{1}, \ldots, i_{k} \in I \text { such that } w=s_{i_{1}} \cdots s_{i_{k}}\right\} .
$$

Proposition (Cuntz and Heckenberger)

If $w=\operatorname{id}_{x} s_{i_{1}} \cdots s_{i_{m}}$ is such that $\ell(w)=m$ (reduced expression), then $\beta_{j}=s_{i_{1}} \cdots s_{i_{j-1}}\left(\alpha_{i_{j}}\right) \in \Delta^{X}$ are positive and all different.

There exists a unique w_{0}^{X} of maximal length por any $X \in \mathcal{X}$, and so $\left\{\beta_{j}\right\}=\Delta_{+}^{X}$: all the roots are real and of multiplicity one.
k an algebraically closed field, char $\mathrm{k}=0 . \mathbb{G}_{N}$ group of roots of unity such that $q^{N}=1$.

Theorem (General presentation)

$\operatorname{dim} V=\theta,\left(q_{i j}\right) \in\left(\mathrm{k}^{\times}\right)^{\theta \times \theta}$ such that $\left|\Delta_{+}^{V}\right|<\infty . \mathfrak{B}(V)$ is presented by generators $x_{1}, \ldots, x_{\theta}$ and relations:
k an algebraically closed field, char $\mathrm{k}=0 . \mathbb{G}_{N}$ group of roots of unity such that $q^{N}=1$.

Theorem (General presentation)

$\operatorname{dim} V=\theta,\left(q_{i j}\right) \in\left(\mathrm{k}^{\times}\right)^{\theta \times \theta}$ such that $\left|\Delta_{+}^{V}\right|<\infty . \mathfrak{B}(V)$ is presented by generators $x_{1}, \ldots, x_{\theta}$ and relations:
(1) $x_{\beta}^{N_{\beta}}=0, \quad \beta \in \Delta_{+}^{V}, N_{\beta}<\infty$,
k an algebraically closed field, char $\mathrm{k}=0 . \mathbb{G}_{N}$ group of roots of unity such that $q^{N}=1$.

Theorem (General presentation)

$\operatorname{dim} V=\theta,\left(q_{i j}\right) \in\left(\mathrm{k}^{\times}\right)^{\theta \times \theta}$ such that $\left|\Delta_{+}^{V}\right|<\infty . \mathfrak{B}(V)$ is presented by generators $x_{1}, \ldots, x_{\theta}$ and relations:
(1) $x_{\beta}^{N_{\beta}}=0, \quad \beta \in \Delta_{+}^{V}, N_{\beta}<\infty$,
(2) $\left[x_{\alpha}, x_{\beta}\right]_{c}=\sum_{\operatorname{deg} u=\alpha+\beta} c_{\alpha, \beta}^{u} u, \quad \alpha<\beta$,
u : elements of the PBW basis written in letters $x_{\gamma}, \alpha \leq \gamma \leq \beta$.
k an algebraically closed field, char $\mathrm{k}=0 . \mathbb{G}_{N}$ group of roots of unity such that $q^{N}=1$.

Theorem (General presentation)

$\operatorname{dim} V=\theta,\left(q_{i j}\right) \in\left(\mathrm{k}^{\times}\right)^{\theta \times \theta}$ such that $\left|\Delta_{+}^{V}\right|<\infty . \mathfrak{B}(V)$ is presented by generators $x_{1}, \ldots, x_{\theta}$ and relations:
(1) $x_{\beta}^{N_{\beta}}=0, \quad \beta \in \Delta_{+}^{V}, N_{\beta}<\infty$,
(2) $\left[x_{\alpha}, x_{\beta}\right]_{c}=\sum_{\operatorname{deg} u=\alpha+\beta} c_{\alpha, \beta}^{u} u, \quad \alpha<\beta$,
u : elements of the PBW basis written in letters $x_{\gamma}, \alpha \leq \gamma \leq \beta$.
Explicit formula for the coefficients $c_{\alpha, \beta}^{u}$.
k an algebraically closed field, char $\mathrm{k}=0 . \mathbb{G}_{N}$ group of roots of unity such that $q^{N}=1$.

Theorem (General presentation)

$\operatorname{dim} V=\theta,\left(q_{i j}\right) \in\left(\mathrm{k}^{\times}\right)^{\theta \times \theta}$ such that $\left|\Delta_{+}^{V}\right|<\infty . \mathfrak{B}(V)$ is presented by generators $x_{1}, \ldots, x_{\theta}$ and relations:
(1) $x_{\beta}^{N_{\beta}}=0, \quad \beta \in \Delta_{+}^{v}, N_{\beta}<\infty$,
(2) $\left[x_{\alpha}, x_{\beta}\right]_{c}=\sum_{\operatorname{deg} u=\alpha+\beta} c_{\alpha, \beta}^{u} u, \quad \alpha<\beta, \longleftarrow \longleftarrow$
u : elements of the PBW basis written in letters $x_{\gamma}, \alpha \leq \gamma \leq \beta$.

Generalization of quantum Serre relations:

$$
0=\left(\operatorname{ad}_{c} x_{i}\right)^{1-a_{i j}} x_{j}=\left[x_{i},\left(\operatorname{ad}_{c} x_{i}\right)^{-a_{i j}} x_{j}\right]_{c} .
$$

$w=\operatorname{id} V s_{i_{1}} \cdots s_{i_{k}} \in \operatorname{Hom}(W, V)$ reduced expression:
 - $L_{w}=\left\{\alpha \in \Delta_{+}^{V}: w^{-1}(\alpha) \in \Delta_{-}^{W}\right\}$.

$w=\operatorname{id} V s_{i_{1}} \cdots s_{i_{k}} \in \operatorname{Hom}(W, V)$ reduced expression:
 - $L_{w}=\left\{\alpha \in \Delta_{+}^{V}: w^{-1}(\alpha) \in \Delta_{-}^{W}\right\}$.

- order associated to $s_{i_{1}} \cdots s_{i_{k}}$:

$$
\alpha_{i_{1}}<s_{i_{1}}\left(\alpha_{i_{2}}\right)<\ldots<s_{i_{1}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)
$$

$w=\operatorname{id} V s_{i_{1}} \cdots s_{i_{k}} \in \operatorname{Hom}(W, V)$ reduced expression:

- $L_{w}=\left\{\alpha \in \Delta_{+}^{V}: w^{-1}(\alpha) \in \Delta_{-}^{W}\right\}$.
- order associated to $s_{i_{1}} \cdots s_{i_{k}}$:

$$
\alpha_{i_{1}}<s_{i_{1}}\left(\alpha_{i_{2}}\right)<\ldots<s_{i_{1}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)
$$

Definition

A total order $<$ en Δ_{+}^{V} is convex if for each $\alpha, \beta \in \Delta^{+}, \alpha<\beta$, $\alpha+\beta \in \Delta^{+}$, it holds $\alpha<\alpha+\beta<\beta$.
It is strongly convex if for each $\beta=\sum \beta_{j} \in \Delta^{+}, \beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{n}$, it holds $\beta_{1}<\beta<\beta_{n}$.

Theorem

Given $<$ on Δ_{+}^{v}, the following statements are equivalent:

Theorem

Given $<$ on Δ_{+}^{v}, the following statements are equivalent:
(1) the order is associated to an expression of the element of maximal length of $\operatorname{Hom}(\mathcal{W}, V)$,

Theorem

Given $<$ on Δ_{+}^{V}, the following statements are equivalent:
(1) the order is associated to an expression of the element of maximal length of $\operatorname{Hom}(\mathcal{W}, V)$,
(2) the order is strongly convex,

Theorem

Given $<$ on Δ_{+}^{V}, the following statements are equivalent:
(1) the order is associated to an expression of the element of maximal length of $\operatorname{Hom}(\mathcal{W}, V)$,
(2) the order is strongly convex,
(3) the order is convex.

Theorem

Given $<$ on Δ_{+}^{V}, the following statements are equivalent:
(1) the order is associated to an expression of the element of maximal length of $\operatorname{Hom}(\mathcal{W}, V)$,
(2) the order is strongly convex,
(3) the order is convex.

Theorem

The order on Kharchenko's PBW generators is convex.

Theorem

Given $<$ on Δ_{+}^{v}, the following statements are equivalent:
(1) the order is associated to an expression of the element of maximal length of $\operatorname{Hom}(\mathcal{W}, V)$,
(2) the order is strongly convex,
(3) the order is convex.

Theorem

The order on Kharchenko's PBW generators is convex.

Proposition

The Kharchenko's PBW basis of $\mathfrak{B}(V)$ is orthogonal for $(\cdot \mid \cdot)$.

Introduction

Remark

Remark

- Fundamental step: clssification of coideal subalgebras of $\mathfrak{B}(V)$, with a bijection with the Weyl groupoid presenving orders (Heckenberger-Schneider).

Remark

- Fundamental step: clssification of coideal subalgebras of $\mathfrak{B}(V)$, with a bijection with the Weyl groupoid presenving orders (Heckenberger-Schneider).
- Finitely generated ideal.

Remark

- Fundamental step: clssification of coideal subalgebras of $\mathfrak{B}(V)$, with a bijection with the Weyl groupoid presenving orders (Heckenberger-Schneider).
- Finitely generated ideal.
- Proof does not involve Heckenberger's classification.

Remark

- Fundamental step: clssification of coideal subalgebras of $\mathfrak{B}(V)$, with a bijection with the Weyl groupoid presenving orders (Heckenberger-Schneider).
- Finitely generated ideal.
- Proof does not involve Heckenberger's classification.
- Key step to obtain a minimal presentation.

Theorem (Minimal presentation)

$\left(q_{i j}\right)_{1 \leq i, j \leq \theta}, \theta=\operatorname{dim} V, \Delta_{+}^{V}=\left\{\beta_{1}, \ldots, \beta_{M}\right\}$ finite. $\mathfrak{B}(V)$ presented by generators $x_{1}, \ldots, x_{\theta}$ and relations:

$$
\begin{array}{lr}
x_{\alpha}^{N_{\alpha}}, & \alpha \in \mathcal{O}(\chi) ; \\
\left(\operatorname{ad}_{{ }_{c}} x_{i}\right)^{m_{i j}+1} x_{j}, & q_{i i}^{m_{j i}+1} \neq 1 ; \\
x_{i}^{N_{i}}, & i \text { a non Cartan vertex; }
\end{array}
$$

if $q_{i i}=q_{i j} q_{j i}=q_{j j}=-1, \quad\left(\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right)^{2}$;
if $q_{j j}=-1, q_{i k} q_{k i}=q_{i j} q_{j i} q_{j k} q_{k j}=1, \quad\left[\left(\operatorname{ad}_{c} x_{i}\right)\left(\operatorname{ad}_{c} x_{j}\right) x_{k}, x_{j}\right]_{c}$;
if $q_{j j}=-1, q_{i i} q_{i j} q_{j i} \in \mathbb{G}_{6}$, and also $q_{i i} \in \mathbb{G}_{3}$ or $m_{i j} \geq 3$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2} x_{j},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c} ;
$$

Theorem (Minimal presentation)

if $q_{i i}= \pm q_{i j} q_{j i} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, and also $-q_{j j}=q_{j i} q_{i j} q_{j k} q_{k j}=1$ or $q_{j j}^{-1}=q_{j j} q_{i j}=q_{j k} q_{k j} \neq-1$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2}\left(\mathrm{ad}_{c} x_{j}\right) x_{k},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c} ;
$$

Theorem (Minimal presentation)

if $q_{i i}= \pm q_{i j} q_{j i} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, and also $-q_{j j}=q_{j i} q_{i j} q_{j k} q_{k j}=1$ or $q_{j j}^{-1}=q_{j j} q_{i j}=q_{j k} q_{k j} \neq-1$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2}\left(\mathrm{ad}_{c} x_{j}\right) x_{k},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c} ;
$$

Theorem (Minimal presentation)

if $q_{i j}= \pm q_{i j} q_{j i} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, and also $-q_{j j}=q_{j i} q_{i j} q_{j k} q_{k j}=1$ or $q_{j j}^{-1}=q_{j j} q_{i j}=q_{j k} q_{k j} \neq-1$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2}\left(\mathrm{ad}_{c} x_{j}\right) x_{k},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c} ;
$$

if $q_{i k} q_{k i}, q_{i j} q_{j i}, q_{j k} q_{k j} \neq 1$,
$\left[x_{i},\left(\operatorname{ad}_{c} x_{j}\right) x_{k}\right]_{c}-\frac{1-q_{j k} q_{k j}}{q_{k j}\left(1-q_{i k} q_{k i}\right)}\left[\left(\operatorname{ad}_{c} x_{i}\right) x_{k}, x_{j}\right]_{c}-q_{i j}\left(1-q_{k j} q_{j k}\right) x_{j}\left(\operatorname{ad}_{c} x_{i}\right) x_{k} ;$

Theorem (Minimal presentation)

if $q_{i j}= \pm q_{i j} q_{j i} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, and also $-q_{j j}=q_{j i} q_{i j} q_{j k} q_{k j}=1$ or $q_{j j}^{-1}=q_{j j} q_{i j}=q_{j k} q_{k j} \neq-1$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2}\left(\mathrm{ad}_{c} x_{j}\right) x_{k},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c} ;
$$

if $q_{i k} q_{k i}, q_{i j} q_{j i}, q_{j k} q_{k j} \neq 1$,
$\left[x_{i},\left(\operatorname{ad}_{c} x_{j}\right) x_{k}\right]_{c}-\frac{1-q_{j k} q_{k j}}{q_{k j}\left(1-q_{i k} q_{k i}\right)}\left[\left(\operatorname{ad}_{c} x_{i}\right) x_{k}, x_{j}\right]_{c}-q_{i j}\left(1-q_{k j} q_{j k}\right) x_{j}\left(\operatorname{ad}_{c} x_{i}\right) x_{k} ;$
if $i, j, k \in\{1, \ldots, \theta\}$ are such that

- $q_{i i}=q_{j j}=-1,\left(q_{i j} q_{j i}\right)^{2}=\left(q_{j k} q_{k j}\right)^{-1}, q_{i k} q_{k i}=1$, or

$$
\left[\left[\left(\mathrm{ad}_{c} x_{i}\right) x_{j},\left(\operatorname{ad}_{c} x_{i}\right)\left(\mathrm{ad}_{c} x_{j}\right) x_{k}\right]_{c}, x_{j}\right]_{c} ;
$$

Theorem (Minimal presentation)

if $q_{i i}= \pm q_{i j} q_{j i} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, and also $-q_{j j}=q_{j i} q_{i j} q_{j k} q_{k j}=1$ or $q_{j j}^{-1}=q_{j i} q_{i j}=q_{j k} q_{k j} \neq-1$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2}\left(\operatorname{ad}_{c} x_{j}\right) x_{k},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c}
$$

if $q_{i k} q_{k i}, q_{i j} q_{j i}, q_{j k} q_{k j} \neq 1$,
$\left[x_{i},\left(\operatorname{ad}_{c} x_{j}\right) x_{k}\right]_{c}-\frac{1-q_{j k} q_{k j}}{q_{k j}\left(1-q_{i k} q_{k i}\right)}\left[\left(\operatorname{ad}_{c} x_{i}\right) x_{k}, x_{j}\right]_{c}-q_{i j}\left(1-q_{k j} q_{j k}\right) x_{j}\left(\operatorname{ad}_{c} x_{i}\right) x_{k} ;$
if $i, j, k \in\{1, \ldots, \theta\}$ are such that

- $q_{i i}=q_{j j}=-1,\left(q_{i j} q_{j i}\right)^{2}=\left(q_{j k} q_{k j}\right)^{-1}, q_{i k} q_{k i}=1$, or
- $q_{j j}=q_{k k}=q_{j k} q_{k j}=-1, q_{i i}=-q_{i j} q_{j i} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, or

$$
\left[\left[\left(\mathrm{ad}_{c} x_{i}\right) x_{j},\left(\operatorname{ad}_{c} x_{i}\right)\left(\operatorname{ad}_{c} x_{j}\right) x_{k}\right]_{c}, x_{j}\right]_{c} ;
$$

Theorem (Minimal presentation)

if $q_{i i}= \pm q_{i j} q_{j i} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, and also $-q_{j j}=q_{j i} q_{i j} q_{j k} q_{k j}=1$ or $q_{j j}^{-1}=q_{j i} q_{i j}=q_{j k} q_{k j} \neq-1$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2}\left(\operatorname{ad}_{c} x_{j}\right) x_{k},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c}
$$

if $q_{i k} q_{k i}, q_{i j} q_{j i}, q_{j k} q_{k j} \neq 1$,
$\left[x_{i},\left(\operatorname{ad}_{c} x_{j}\right) x_{k}\right]_{c}-\frac{1-q_{j k} q_{k j}}{q_{k j}\left(1-q_{i k} q_{k i}\right)}\left[\left(\operatorname{ad}_{c} x_{i}\right) x_{k}, x_{j}\right]_{c}-q_{i j}\left(1-q_{k j} q_{j k}\right) x_{j}\left(\operatorname{ad}_{c} x_{i}\right) x_{k} ;$
if $i, j, k \in\{1, \ldots, \theta\}$ are such that

- $q_{i i}=q_{j j}=-1,\left(q_{i j} q_{j i}\right)^{2}=\left(q_{j k} q_{k j}\right)^{-1}, q_{i k} q_{k i}=1$, or
- $q_{j j}=q_{k k}=q_{j k} q_{k j}=-1, q_{i i}=-q_{i j} q_{j i} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, or
- $q_{i i}=q_{j j}=q_{k k}=-1, q_{i j} q_{j i}=q_{k j} q_{j k} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, or

$$
\left[\left[\left(\mathrm{ad}_{c} x_{i}\right) x_{j},\left(\mathrm{ad}_{c} x_{i}\right)\left(\mathrm{ad}_{c} x_{j}\right) x_{k}\right]_{c}, x_{j}\right]_{c} ;
$$

Theorem (Minimal presentation)

if $q_{i i}= \pm q_{i j} q_{j i} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, and also $-q_{j j}=q_{j i} q_{i j} q_{j k} q_{k j}=1$ or $q_{j j}^{-1}=q_{j i} q_{i j}=q_{j k} q_{k j} \neq-1$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2}\left(\operatorname{ad}_{c} x_{j}\right) x_{k},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c}
$$

if $q_{i k} q_{k i}, q_{i j} q_{j i}, q_{j k} q_{k j} \neq 1$,
$\left[x_{i},\left(\operatorname{ad}_{c} x_{j}\right) x_{k}\right]_{c}-\frac{1-q_{j k} q_{k j}}{q_{k j}\left(1-q_{i k} q_{k i}\right)}\left[\left(\operatorname{ad}_{c} x_{i}\right) x_{k}, x_{j}\right]_{c}-q_{i j}\left(1-q_{k j} q_{j k}\right) x_{j}\left(\operatorname{ad}_{c} x_{i}\right) x_{k} ;$
if $i, j, k \in\{1, \ldots, \theta\}$ are such that

- $q_{i i}=q_{j j}=-1,\left(q_{i j} q_{j i}\right)^{2}=\left(q_{j k} q_{k j}\right)^{-1}, q_{i k} q_{k i}=1$, or
- $q_{j j}=q_{k k}=q_{j k} q_{k j}=-1, q_{i i}=-q_{i j} q_{j i} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, or
- $q_{i i}=q_{j j}=q_{k k}=-1, q_{i j} q_{j i}=q_{k j} q_{j k} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$, or
- $q_{i i}=q_{k k}=-1, q_{j j}=-q_{k j} q_{j k}=\left(q_{i j} q_{j i}\right)^{ \pm 1} \in \mathbb{G}_{3}, q_{i k} q_{k i}=1$,

$$
\left[\left[\left(\operatorname{ad}_{c} x_{i}\right) x_{j},\left(\operatorname{ad}_{c} x_{i}\right)\left(\operatorname{ad}_{c} x_{j}\right) x_{k}\right]_{c}, x_{j}\right]_{c} ;
$$

Theorem (Minimal presentation)

if $q_{i i}=q_{j j}=-1,\left(q_{i j} q_{j i}\right)^{3}=\left(q_{j k} q_{k j}\right)^{-1}, q_{i k} q_{k i}=1$,

$$
\left[\left[\left(\operatorname{ad}_{c} x_{i}\right) x_{j},\left[\left(\operatorname{ad}_{c} x_{i}\right) x_{j},\left(\operatorname{ad}_{c} x_{i}\right)\left(\operatorname{ad}_{c} x_{j}\right) x_{k}\right]_{c}\right]_{c}, x_{j}\right]_{c} ;
$$

if $q_{j j} q_{i j} q_{j i}=q_{j j} q_{k j} q_{j k}=1,\left(q_{k j} q_{j k}\right)^{2}=\left(q_{l k} q_{k l}\right)^{-1}=q_{I I}, q_{k k}=-1$, $q_{i k} q_{k i}=q_{i l} q_{l i}=q_{j i} q_{l j}=1$,

$$
\left[\left[\left[\left(\operatorname{ad}_{c} x_{i}\right)\left(\operatorname{ad}_{c} x_{j}\right)\left(\operatorname{ad}_{c} x_{k}\right) x_{l}, x_{k}\right]_{c}, x_{j}\right]_{c}, x_{k}\right]_{c} ;
$$

if $q_{j j}=q_{i j}^{-1} q_{j i}^{-1}=q_{j k} q_{k j} \in \mathbb{G}_{3}$,

$$
\left[\left[\left(\operatorname{ad}_{c} x_{i}\right)\left(\operatorname{ad}_{c} x_{j}\right) x_{k}, x_{j}\right]_{c} x_{j}\right]_{c} ;
$$

if $q_{j j}=q_{i j}^{-1} q_{j i}^{-1}=q_{j k} q_{k j} \in \mathbb{G}_{4}$,

$$
\left[\left[\left[\left(\operatorname{ad}_{c} x_{i}\right)\left(\operatorname{ad}_{c} x_{j}\right) x_{k}, x_{j}\right]_{c}, x_{j}\right]_{c}, x_{j}\right]_{c} ;
$$

Theorem (Minimal presentation)

if $q_{i i}=-1, q_{j j}^{-1}=-q_{i j} q_{j i} q_{j k} q_{k j} \notin\left\{-1, q_{i j} q_{j i}\right\}, q_{i k} q_{k i}=1$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right) x_{j},\left(\operatorname{ad}_{c} x_{i}\right)\left(\operatorname{ad}_{c} x_{j}\right) x_{k}\right]_{c}
$$

if $q_{j k} q_{k j}=1, q_{i i} \in \mathbb{G}_{3}, q_{i j} q_{j i}, q_{k i} q_{i k} \neq q_{i i}^{-1}$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2} x_{j},\left(\operatorname{ad}_{c} x_{i}\right)^{2} x_{k}\right]_{c} ;
$$

if $-q_{i i},-q_{j j}, q_{i i} q_{i j} q_{j i}, q_{j j} q_{j i} q_{i j} \neq 1$,
$\left(1-q_{i j} q_{j i}\right) q_{j j} q_{j i}\left[x_{i},\left[\left(\operatorname{ad}_{c} x_{i}\right) x_{j}, x_{j}\right]_{c}\right]_{c}-\left(1+q_{j j}\right)\left(1-q_{j j} q_{j i} q_{i j}\right)\left(\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right)^{2}$;
if $q_{j j}=-1, q_{i i} q_{i j} q_{j i} \notin \mathbb{G}_{6}$, and also $m_{i j} \in\{4,5\}$, or $m_{i j}=3, q_{i i} \in \mathbb{G}_{4}$,

$$
\left[x_{i},\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2} x_{j},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c}\right]_{c}-\frac{1-q_{i i} q_{j i} q_{i j}-q_{i i}^{2} q_{j i}^{2} q_{i j}^{2} q_{j j}}{\left(1-q_{i i} q_{i j} q_{j i}\right) q_{j i}}\left(\left(\operatorname{ad}_{c} x_{i}\right)^{2} x_{j}\right)^{2}
$$

Theorem (Minimal presentation)

if $4 \alpha_{i}+3 \alpha_{j} \notin \Delta_{+}^{\chi}, q_{j j}=-1$ or $m_{j i} \geq 2$, and $m_{i j} \geq 3$, or $m_{i j}=2$,
$q_{i i} \in \mathbb{G}_{3}$,

$$
\left[x_{3 \alpha_{i}+2 \alpha_{j}},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c} ;
$$

if $3 \alpha_{i}+2 \alpha_{j} \in \Delta_{+}^{\chi}, 5 \alpha_{i}+3 \alpha_{j} \notin \Delta_{+}^{\chi}$, and $q_{i i}^{3} q_{i j} q_{j i}, q_{i i}^{4} q_{i j} q_{j i} \neq 1$,

$$
\left[\left(\operatorname{ad}_{c} x_{i}\right)^{2} x_{j}, x_{3 \alpha_{i}+2 \alpha_{j}}\right]_{c} ;
$$

if $4 \alpha_{i}+3 \alpha_{j} \in \Delta_{+}^{\chi}, 5 \alpha_{i}+4 \alpha_{j} \notin \Delta_{+}^{\chi}$,

$$
\left[x_{4 \alpha_{i}+3 \alpha_{j}},\left(\operatorname{ad}_{c} x_{i}\right) x_{j}\right]_{c} ;
$$

if $q_{j j}=-1,5 \alpha_{i}+4 \alpha_{j} \in \Delta_{+}^{\chi}$,

$$
\left[x_{2 \alpha_{i}+\alpha_{j}}, x_{4 \alpha_{i}+3 \alpha_{j}}\right]_{c}-\frac{b-\left(1+q_{i i}\right)\left(1-q_{i i} \zeta\right)\left(1+\zeta+q_{i i} \zeta^{2}\right) q_{i i}^{6} \zeta^{4}}{a q_{i j}^{3} q_{i j}^{2} q_{j i}^{3}} x_{3 \alpha_{i}+2 \alpha_{j}}^{2} .
$$

Andruskiewitsch-Schneider Conjecture: Any finite-dimensional pointed Hopf algebra is generated by group-like and skew-primitive elements.

Andruskiewitsch-Schneider Conjecture: Any finite-dimensional pointed Hopf algebra is generated by group-like and skew-primitive elements.

Theorem

True when $G(H)$ is abelian.

Andruskiewitsch-Schneider Conjecture: Any finite-dimensional pointed Hopf algebra is generated by group-like and skew-primitive elements.

Theorem

True when $G(H)$ is abelian.
That is, every f.d. pointed Hopf algebra over an abelian group is a deformation of some $\mathfrak{B}(V) \# \mathrm{k} \Gamma$.

Andruskiewitsch-Schneider Conjecture: Any finite-dimensional pointed Hopf algebra is generated by group-like and skew-primitive elements.

Theorem

True when $G(H)$ is abelian.

Problem: Obtain all the deformations (liftings) of $H=\mathfrak{B}(V) \# \mathrm{k} \Gamma$, Γ abelian, which are pointed Hopf algebras.
Work in progress: Andruskiewitsch - A. - García Iglesias

About the proof: use Lusztig's isomorphisms T_{i} moving through the Weyl groupoid (Heckenberger).

About the proof: use Lusztig's isomorphisms T_{i} moving through the Weyl groupoid (Heckenberger).

$$
U(\chi)=D\left(T(V, \chi) \# \mathbb{Z}^{\theta}\right), \mathcal{U}(\chi)=D\left(\mathfrak{B}(V, \chi) \# \mathbb{Z}^{\theta}\right),
$$

About the proof: use Lusztig's isomorphisms T_{i} moving through the Weyl groupoid (Heckenberger).
$U(\chi)=D\left(T(V, \chi) \# \mathbb{Z}^{\theta}\right), \mathcal{U}(\chi)=D\left(\mathfrak{B}(V, \chi) \# \mathbb{Z}^{\theta}\right)$,
$I_{i}(\chi)$ ideal generated by $\left(\operatorname{ad}_{c} E_{i}\right)^{1-a_{i j}} E_{j},\left(\operatorname{ad}_{c} F_{i}\right)^{1-a_{i j}} F_{j}$ and/or $E_{i}^{N_{i}}, F_{i}^{N_{i}}$, depending on i,

About the proof: use Lusztig's isomorphisms T_{i} moving through the Weyl groupoid (Heckenberger).
$U(\chi)=D\left(T(V, \chi) \# \mathbb{Z}^{\theta}\right), \mathcal{U}(\chi)=D\left(\mathfrak{B}(V, \chi) \# \mathbb{Z}^{\theta}\right)$,
$I_{i}(\chi)$ ideal generated by $\left(\operatorname{ad}_{c} E_{i}\right)^{1-a_{i j}} E_{j},\left(\operatorname{ad}_{c} F_{i}\right)^{1-a_{i j}} F_{j}$ and/or $E_{i}^{N_{i}}, F_{i}^{N_{i}}$, depending on i,

About the proof: use Lusztig's isomorphisms T_{i} moving through the Weyl groupoid (Heckenberger).
$\tilde{\mathcal{U}}(\chi)=D\left(\widetilde{\mathfrak{B}}(V, \chi) \# \mathbb{Z}^{\theta}\right), \widetilde{\mathfrak{B}}(V, \chi)=T(V, \chi) / I(\chi)$,
$I(\chi)$: enough relations to ensure the existence of all the isomorphisms. Just does not contain the power root vectors.

Generalized Dynkin diagrams (Heckenberger)

$$
\left(\begin{array}{ll}
q_{i i} & q_{i j} \\
q_{j i} & q_{j j}
\end{array}\right): \quad \circ^{q_{i i}} \quad \circ^{q_{j j}} \quad q_{i j} q_{j i}=1
$$

Generalized Dynkin diagrams (Heckenberger)

$$
\left(\begin{array}{ll}
q_{i i} & q_{i j} \\
q_{j i} & q_{j j}
\end{array}\right): \quad \circ^{q_{i i}} \quad \circ q_{j j} \quad q_{i j} q_{j i}=1 .
$$

Example (Matrices 'super')

Type G(3): $q \in \mathrm{k}^{\times}, q^{3}, q^{2} \neq 1$,

Generalized Dynkin diagrams (Heckenberger)

$$
\left(\begin{array}{ll}
q_{i i} & q_{i j} \\
q_{j i} & q_{j j}
\end{array}\right): \quad \circ^{q_{i i}} \quad \circ q_{j j} \quad q_{i j} q_{j i}=1 .
$$

Example (Matrices 'super')

Type G(3): $q \in \mathrm{k}^{\times}, q^{3}, q^{2} \neq 1$,

Generalized Dynkin diagrams (Heckenberger)

$$
\left(\begin{array}{ll}
q_{i i} & q_{i j} \\
q_{j i} & q_{j j}
\end{array}\right): \quad \circ^{q_{i i}} \quad \circ q_{j j} \quad q_{i j} q_{j i}=1 .
$$

Example (Matrices 'super')

Type G(3): $q \in \mathrm{k}^{\times}, q^{3}, q^{2} \neq 1$,

Generalized Dynkin diagrams (Heckenberger)

$$
\left(\begin{array}{ll}
q_{i i} & q_{i j} \\
q_{j i} & q_{j j}
\end{array}\right): \quad \circ^{q_{i i}} \quad \circ^{q_{j j}} \quad q_{i j} q_{j i}=1 .
$$

Example (Matrices 'super')

Type G(3): $q \in \mathrm{k}^{\times}, q^{3}, q^{2} \neq 1$,
(a) $\circ^{-1} \xrightarrow{q^{-1}} \circ^{q} \stackrel{q^{-3}}{\square} \circ^{q^{3}}$, (b) $\circ^{-1} \leadsto q \circ^{-1} \stackrel{q^{-3}}{\square} \circ^{q^{3}}$,

Generalized Dynkin diagrams (Heckenberger)

$$
\left(\begin{array}{ll}
q_{i i} & q_{i j} \\
q_{j i} & q_{j j}
\end{array}\right): \quad \circ^{q_{i i}} \quad \circ^{q_{j j}} \quad q_{i j} q_{j i}=1 .
$$

Example (Matrices 'super')

Type G(3): $q \in \mathrm{k}^{\times}, q^{3}, q^{2} \neq 1$,
(a) $o^{-1} q^{-1}$
$\circ^{q} \xrightarrow{q^{-3}} \circ^{q^{3}}$,
(b) \circ^{-1}
$q \circ^{-1} \xrightarrow[q^{-3}]{q} \circ^{q^{3}}$,
(c)

Generalized Dynkin diagrams (Heckenberger)

$$
\left(\begin{array}{ll}
q_{i i} & q_{i j} \\
q_{j i} & q_{j j}
\end{array}\right): \quad \circ^{q_{i i}} \quad \circ^{q_{j j}} \quad q_{i j} q_{j i}=1 .
$$

Example (Matrices 'super')

Type G(3): $q \in \mathrm{k}^{\times}, q^{3}, q^{2} \neq 1$,
(a) $\circ^{-1} \frac{q^{-1}}{} \circ^{q} \frac{q^{-3}}{} \circ^{q^{3}}$,
(b) $\circ^{-1} \xrightarrow{q} \circ^{-1} \xrightarrow{q^{-3}} \circ^{q^{3}}$,
(c)

Generalized Dynkin diagrams (Heckenberger)

$$
\left(\begin{array}{ll}
q_{i i} & q_{i j} \\
q_{j i} & q_{j j}
\end{array}\right): \quad \circ^{q_{i i}} \quad \circ^{q_{j j}} \quad q_{i j} q_{j i}=1
$$

Example (Matrices 'super')

Type G(3): $q \in \mathrm{k}^{\times}, q^{3}, q^{2} \neq 1$,
(a) $\circ^{-1} \xrightarrow{q^{-1}} \circ^{q} \xrightarrow{q^{-3}} \circ^{q^{3}}$,
(b) $\circ^{-1} \xrightarrow{q} \circ^{-1} \xrightarrow{q^{-3}} \circ^{q^{3}}$,
(c)

$$
\Delta_{+}^{a} \neq \Delta_{+}^{b} \neq \Delta_{+}^{c} \neq \Delta_{+}^{d}
$$

Example (Super G(3))

(a) Admits a presentation by generators x_{1}, x_{2}, x_{3} and relations

$$
\begin{aligned}
& x_{1}^{2}=x_{\alpha}^{N_{\alpha}}=0, \quad \alpha \in \Delta_{+}^{\chi}, N_{\alpha} \neq 2, \\
& \left(\mathrm{ad}_{c} x_{2}\right)^{2} x_{1}=\left(\mathrm{ad}_{c} x_{1}\right) x_{3}=\left(\operatorname{ad}_{c} x_{2}\right)^{4} x_{3}=\left(\operatorname{ad}_{c} x_{3}\right)^{2} x_{2}=0 .
\end{aligned}
$$

Example (Super G(3))

(a) Admits a presentation by generators x_{1}, x_{2}, x_{3} and relations

$$
\begin{aligned}
& x_{1}^{2}=x_{\alpha}^{N_{\alpha}}=0, \quad \alpha \in \Delta_{+}^{\chi}, N_{\alpha} \neq 2, \\
& \left(\mathrm{ad}_{c} x_{2}\right)^{2} x_{1}=\left(\mathrm{ad}_{c} x_{1}\right) x_{3}=\left(\operatorname{ad}_{c} x_{2}\right)^{4} x_{3}=\left(\operatorname{ad}_{c} x_{3}\right)^{2} x_{2}=0 .
\end{aligned}
$$

Example (Super G(3))

(a) Admits a presentation by generators x_{1}, x_{2}, x_{3} and relations

$$
\begin{aligned}
& x_{1}^{2}=x_{\alpha}^{N_{\alpha}}=0, \quad \alpha \in \Delta_{+}^{\chi}, N_{\alpha} \neq 2, \\
& \left(\mathrm{ad}_{c} x_{2}\right)^{2} x_{1}=\left(\mathrm{ad}_{c} x_{1}\right) x_{3}=\left(\operatorname{ad}_{c} x_{2}\right)^{4} x_{3}=\left(\operatorname{ad}_{c} x_{3}\right)^{2} x_{2}=0 .
\end{aligned}
$$

Add too $\left[\left[\left[\left(\operatorname{ad}_{c} x_{i}\right)\left(\operatorname{ad}_{c} x_{j}\right) x_{k}, x_{j}\right]_{c}, x_{j}\right]_{c}, x_{j}\right]_{c}$, if $q \in \mathbb{G}_{4}$.

Example (Super G(3))

(a) Admits a presentation by generators x_{1}, x_{2}, x_{3} and relations

$$
\begin{aligned}
& x_{1}^{2}=x_{\alpha}^{N_{\alpha}}=0, \quad \alpha \in \Delta_{+}^{\chi}, N_{\alpha} \neq 2, \\
& \left(\operatorname{ad}_{c} x_{2}\right)^{2} x_{1}=\left(\operatorname{ad}_{c} x_{1}\right) x_{3}=\left(\operatorname{ad}_{c} x_{2}\right)^{4} x_{3}=\left(\operatorname{ad}_{c} x_{3}\right)^{2} x_{2}=0 .
\end{aligned}
$$

Add too $\left[\left[\left[\left(\operatorname{ad}_{c} x_{i}\right)\left(\operatorname{ad}_{c} x_{j}\right) x_{k}, x_{j}\right]_{c}, x_{j}\right]_{c}, x_{j}\right]_{c}$, if $q \in \mathbb{G}_{4}$.
(b) Admits a presentation by generators x_{1}, x_{2}, x_{3} and relations

$$
\begin{aligned}
& x_{1}^{2}=x_{2}^{2}=x_{\alpha}^{N_{\alpha}}=0, \quad \alpha \in \Delta_{+}^{\chi}, N_{\alpha} \neq 2, \\
& {\left[\left[\left(\operatorname{ad}_{c} x_{1}\right) x_{2},\left[\left(\operatorname{ad}_{c} x_{1}\right) x_{2},\left(\operatorname{ad}_{c} x_{1}\right)\left(\operatorname{ad}_{c} x_{2}\right) x_{3}\right]_{c}\right]_{c}, x_{2}\right]_{c}=\left(\operatorname{ad}_{c} x_{3}\right)^{2} x_{2}=0 .}
\end{aligned}
$$

Example (Strange type)

ζ root of unity of order 12

Example (Strange type)

ζ root of unity of order 12

Example (Strange type)

ζ root of unity of order 12.

(a) $\circ \zeta^{8}-\zeta \zeta^{8}$,

Example (Strange type)

ζ root of unity of order 12 .
(a) $\circ \zeta^{8}-\zeta \quad \zeta^{8}$,
(b) $\circ^{\zeta^{8}} \xrightarrow{\zeta^{3}} \circ^{-1}$,

Example (Strange type)

ζ root of unity of order 12 .
(a) $\circ \zeta^{8}-\zeta \zeta^{8}$,
(b) $\circ \varsigma^{8} \stackrel{\zeta^{3}}{ } \circ^{-1}$,
(c) $\circ^{\zeta^{5}}-\zeta^{9} \circ^{-1}$.

- $\Delta_{+}^{a}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\}$.

Example (Strange type)

ζ root of unity of order 12 .
(a) $\circ \zeta^{8}-\zeta \quad \zeta^{8}$,
(b) $\circ^{8} \xrightarrow{\zeta^{3}} \circ^{-1}$,
(c) $\circ \zeta^{5} \xrightarrow{\zeta^{9}} \circ^{-1}$.

- $\Delta_{+}^{a}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\}$.
- $s_{1}\left(\alpha_{1}\right)=-\alpha_{1}, s_{1}\left(\alpha_{2}\right)=\alpha_{2}+2 \alpha_{1}: s_{1}\left(\Delta^{a}\right)=\Delta^{b}$.

Example (Strange type)

ζ root of unity of order 12 .
(a) $\circ \zeta^{8}-\zeta \zeta^{8}$,
(b) $\circ \varsigma^{8} \stackrel{\zeta^{3}}{ } \circ^{-1}$,
(c) $\circ^{\zeta^{5}}-\zeta^{9} \circ^{-1}$.

- $\Delta_{+}^{a}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\}$.
- $s_{1}\left(\alpha_{1}\right)=-\alpha_{1}, s_{1}\left(\alpha_{2}\right)=\alpha_{2}+2 \alpha_{1}: s_{1}\left(\Delta^{a}\right)=\Delta^{b}$.
- $\Delta_{+}^{b}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$.

Example (Strange type)

ζ root of unity of order 12 .
(a) $\circ \zeta^{8}-\zeta \quad \zeta^{8}$,
(b) $\circ \zeta^{8} \xrightarrow{\zeta^{3}} \circ^{-1}$,
(c) $\circ^{\zeta^{5}} \quad \zeta^{9} \circ^{-1}$.

- $\Delta_{+}^{a}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\}$.
- $s_{1}\left(\alpha_{1}\right)=-\alpha_{1}, s_{1}\left(\alpha_{2}\right)=\alpha_{2}+2 \alpha_{1}: s_{1}\left(\Delta^{a}\right)=\Delta^{b}$.
- $\Delta_{+}^{b}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$.
- $s_{2}\left(\alpha_{1}\right)=\alpha_{1}+\alpha_{2}, s_{2}\left(\alpha_{2}\right)=-\alpha_{2}: s_{2}\left(\Delta^{b}\right)=\Delta^{c}$.

Example (Strange type)

ζ root of unity of order 12 .
(a) $\circ \zeta^{8}-\zeta \zeta^{8}$,
(b) $\circ \varsigma^{8} \stackrel{\zeta^{3}}{ } \circ^{-1}$,
(c) $\circ^{\zeta^{5}} \stackrel{\zeta^{9}}{ } \circ^{-1}$.

- $\Delta_{+}^{a}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\}$.
- $s_{1}\left(\alpha_{1}\right)=-\alpha_{1}, s_{1}\left(\alpha_{2}\right)=\alpha_{2}+2 \alpha_{1}: s_{1}\left(\Delta^{a}\right)=\Delta^{b}$.
- $\Delta_{+}^{b}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$.
- $s_{2}\left(\alpha_{1}\right)=\alpha_{1}+\alpha_{2}, s_{2}\left(\alpha_{2}\right)=-\alpha_{2}: s_{2}\left(\Delta^{b}\right)=\Delta^{c}$.
- $\Delta_{+}^{c}=\left\{\alpha_{1}, 3 \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$.

Example (Strange type)

ζ root of unity of order 12 .
(a) $\circ \zeta^{8}-\zeta \zeta^{8}$,
(b) $\circ^{\zeta^{8}} \stackrel{\zeta^{3}}{ } \circ^{-1}$,
(c) $\circ^{\zeta^{5}}-\zeta^{9} o^{-1}$.

- $\Delta_{+}^{a}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, \alpha_{2}\right\}$.
- $s_{1}\left(\alpha_{1}\right)=-\alpha_{1}, s_{1}\left(\alpha_{2}\right)=\alpha_{2}+2 \alpha_{1}: s_{1}\left(\Delta^{a}\right)=\Delta^{b}$.
- $\Delta_{+}^{b}=\left\{\alpha_{1}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$.
- $s_{2}\left(\alpha_{1}\right)=\alpha_{1}+\alpha_{2}, s_{2}\left(\alpha_{2}\right)=-\alpha_{2}: s_{2}\left(\Delta^{b}\right)=\Delta^{c}$.
- $\Delta_{+}^{c}=\left\{\alpha_{1}, 3 \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}$.
- $s_{1}\left(\alpha_{1}\right)=-\alpha_{1}, s_{1}\left(\alpha_{2}\right)=\alpha_{2}+3 \alpha_{1}$: fixes Δ^{c}.

Example (Strange)

$\operatorname{dim} \mathfrak{B}(V)=432$.
(a) Admits a presentation by generators x_{1}, x_{2} and relations

$$
x_{1}^{3}=x_{2}^{3}=x_{\alpha_{1}+\alpha_{2}}^{12}=\left[x_{1}, x_{\alpha_{1}+2 \alpha_{2}}\right]_{c}+\frac{\left(1+\zeta^{8}\right)\left(1-\zeta^{7}\right) q_{12}}{1-\zeta^{9}} x_{\alpha_{1}+\alpha_{2}}^{2}=0 .
$$

Example (Strange)

$\operatorname{dim} \mathfrak{B}(V)=432$.
(a) Admits a presentation by generators x_{1}, x_{2} and relations

$$
x_{1}^{3}=x_{2}^{3}=x_{\alpha_{1}+\alpha_{2}}^{12}=\left[x_{1}, x_{\alpha_{1}+2 \alpha_{2}}\right]_{c}+\frac{\left(1+\zeta^{8}\right)\left(1-\zeta^{7}\right) q_{12}}{1-\zeta^{9}} x_{\alpha_{1}+\alpha_{2}}^{2}=0 .
$$

Example (Strange)

$\operatorname{dim} \mathfrak{B}(V)=432$.
(a) Admits a presentation by generators x_{1}, x_{2} and relations

$$
x_{1}^{3}=x_{2}^{3}=x_{\alpha_{1}+\alpha_{2}}^{12}=\left[x_{1}, x_{\alpha_{1}+2 \alpha_{2}}\right]_{c}+\frac{\left(1+\zeta^{8}\right)\left(1-\zeta^{7}\right) q_{12}}{1-\zeta^{9}} x_{\alpha_{1}+\alpha_{2}}^{2}=0 .
$$

(b) Admits a presentation by generators x_{1}, x_{2} and relations

$$
x_{1}^{3}=x_{2}^{2}=x_{\alpha_{1}+\alpha_{2}}^{12}=\left[x_{3 \alpha_{1}+2 \alpha_{2}}, x_{\alpha_{1}+\alpha_{2}}\right]_{c}=0 .
$$

Example (Strange)

$\operatorname{dim} \mathfrak{B}(V)=432$.
(a) Admits a presentation by generators x_{1}, x_{2} and relations

$$
x_{1}^{3}=x_{2}^{3}=x_{\alpha_{1}+\alpha_{2}}^{12}=\left[x_{1}, x_{\alpha_{1}+2 \alpha_{2}}\right]_{c}+\frac{\left(1+\zeta^{8}\right)\left(1-\zeta^{7}\right) q_{12}}{1-\zeta^{9}} x_{\alpha_{1}+\alpha_{2}}^{2}=0 .
$$

(b) Admits a presentation by generators x_{1}, x_{2} and relations

$$
x_{1}^{3}=x_{2}^{2}=x_{\alpha_{1}+\alpha_{2}}^{12}=\left[x_{3 \alpha_{1}+2 \alpha_{2}}, x_{\alpha_{1}+\alpha_{2}}\right]_{c}=0 .
$$

(c) Admits a presentation by generators x_{1}, x_{2} and relations

$$
x_{1}^{12}=x_{2}^{2}=\left(\operatorname{ad}_{c} x_{1}\right)^{4} x_{2}=\left[x_{2 \alpha_{1}+\alpha_{2}}, x_{\alpha_{1}+\alpha_{2}}\right]_{c}=0 .
$$

