A presentation by generators and relations of Nichols algebras of diagonal type

Iván Angiono (National University of Córdoba, Argentina) ivanangiono@gmail.com

The Lifting Method of Andruskiewitsch and Schneider is the leading method to classify pointed Hopf algebras [AS]. It involves as an inicial step to know for which braided vector spaces their associated Nichols algebra is finite-dimensional; such braided vector spaces were classified by Heckenberger [H].

A second step is the following one: for each of these Nichols algebras, give a nice presentation by generators a relations. In the present talk we give an answer to this question, following [A]. We characterize convex orders on root systems associated to finite Weyl groupoids and use a description of coideal subalgebras of Nichols algebras [HS]. We describe then a set of relations using the PBW bases of [Kh].

We use such presentation to prove that every finite-dimensional pointed Hopf algebra over \mathbb{C} , whose group of group-like elements is abelian, is generated by its group-like and skew-primitive elements, a conjecture due to Andruskiewitsch and Schneider.

Bibliography

- [AS] N. Andruskiewitsch and H.-J. Schneider, On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. 171 (2010), No. 1, 375–417.
- [A] I. Angiono, Presentation of Nichols algebras of diagonal type by generators and relations, submitted. arXiv:1008.4144.
- [HS] I. Heckenberger and H.-J. Schneider, Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid. math.QA/0909.0293.
- [H] I. Heckenberger, Classification of arithmetic root systems, Adv. Math. 220 (2009), 59–124.
- [Kh] V. Kharchenko, A quantum analog of the Poincare-Birkhoff-Witt theorem, Algebra and Logic 38, (1999), 259–276.

A presentation by generators and relations of Nichols algebras of diagonal type

Iván Angiono

Universidad Nacional de Cordoba (Arg)

Hopf algebras and tensor categories - Almería, 2011

Introduction	Nichols algebras of diagonal type
General presentation by generators and relations	Our problem
Minimal presentation	Weyl groupoid

• V vector space, dim $V = \theta < \infty$, $X = \{x_1, \dots, x_{\theta}\}$ a basis,

Introduction General presentation by generators and relations Minimal presentation Weyl groupoid Weyl groupoid

Fix the following setting

- V vector space, dim $V = \theta < \infty$, $X = \{x_1, \ldots, x_{\theta}\}$ a basis,
- $(q_{ij}) \in (\mathsf{k}^{ imes})^{ heta imes heta}$,

General presentation by generat Mini	Introduction ors and relations mal presentation	Nichols algebras of diagonal type Our problem Weyl groupoid

- V vector space, dim $V = \theta < \infty$, $X = \{x_1, \dots, x_{\theta}\}$ a basis,
- $(q_{ij}) \in (\mathsf{k}^{ imes})^{ heta imes heta}$,
- $\alpha_1, \ldots, \alpha_{\theta}$ the canonical basis of \mathbb{Z}^{θ} :

$$\chi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \to \mathsf{k}^{\times} \mathbb{Z}\text{-bilinear}, \qquad \chi(\alpha_i, \alpha_j) = q_{ij}.$$

Minimal presentation Weyl groupoid	Introduction General presentation by generators and relations Minimal presentation	Nichols algebras of diagonal type Our problem Weyl groupoid
------------------------------------	--	---

- V vector space, dim $V = \theta < \infty$, $X = \{x_1, \dots, x_{\theta}\}$ a basis,
- $(q_{ij}) \in (\mathsf{k}^{ imes})^{ heta imes heta}$,
- $\alpha_1, \ldots, \alpha_{\theta}$ the canonical basis of \mathbb{Z}^{θ} :

$$\chi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \to \mathsf{k}^{\times} \mathbb{Z}\text{-bilinear}, \qquad \chi(\alpha_i, \alpha_j) = q_{ij}.$$

• X = set of words with letters in X (a basis of T(V)).

winimal presentation vveyi groupoid	Introduction General presentation by generators and relations Minimal presentation	Nichols algebras of diagonal type Our problem Weyl groupoid
-------------------------------------	--	---

- V vector space, dim $V = \theta < \infty$, $X = \{x_1, \dots, x_{\theta}\}$ a basis,
- $(q_{ij}) \in (\mathsf{k}^{ imes})^{ heta imes heta}$,
- $\alpha_1, \ldots, \alpha_{\theta}$ the canonical basis of \mathbb{Z}^{θ} :

$$\chi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \to \mathsf{k}^{\times} \mathbb{Z}\text{-bilinear}, \qquad \chi(\alpha_i, \alpha_j) = q_{ij}.$$

• X = set of words with letters in X (a basis of T(V)).

•
$$T(V) = \oplus_{\alpha \in \mathbb{Z}^{\theta}} T^{\alpha}(V)$$
, with \mathbb{Z}^{θ} -graduation deg $(x_i) = \alpha_i$.

- V vector space, dim $V = \theta < \infty$, $X = \{x_1, \dots, x_{\theta}\}$ a basis,
- $(q_{ij}) \in (\mathsf{k}^{ imes})^{ heta imes heta}$,
- $\alpha_1, \ldots, \alpha_{\theta}$ the canonical basis of \mathbb{Z}^{θ} :

$$\chi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \to \mathsf{k}^{\times} \mathbb{Z}\text{-bilinear}, \qquad \chi(\alpha_i, \alpha_j) = q_{ij}.$$

- X = set of words with letters in X (a basis of T(V)).
- $T(V) = \bigoplus_{\alpha \in \mathbb{Z}^{\theta}} T^{\alpha}(V)$, with \mathbb{Z}^{θ} -graduation deg $(x_i) = \alpha_i$.
- Product in $T(V) \otimes T(V)$: $a, b, c, d \in T(V)$, $\beta = \deg(b), \gamma = \deg(c)$,

 $(a \otimes b)(c \otimes d) = \chi(\beta, \gamma)ac \otimes bd.$

Intr	oduction Nich	ols algebras of diagonal type
General presentation by generators and	relations Our	problem
Minimal pres	sentation Wey	I groupoid

- V vector space, dim $V = \theta < \infty$, $X = \{x_1, \dots, x_{\theta}\}$ a basis,
- $(q_{ij}) \in (\mathsf{k}^{ imes})^{ heta imes heta}$,
- $\alpha_1, \ldots, \alpha_{\theta}$ the canonical basis of \mathbb{Z}^{θ} :

$$\chi: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \to \mathsf{k}^{\times} \mathbb{Z}\text{-bilinear}, \qquad \chi(\alpha_i, \alpha_j) = q_{ij}.$$

- X = set of words with letters in X (a basis of T(V)).
- $T(V) = \bigoplus_{\alpha \in \mathbb{Z}^{\theta}} T^{\alpha}(V)$, with \mathbb{Z}^{θ} -graduation deg $(x_i) = \alpha_i$.
- Product in $T(V) \otimes T(V)$: $a, b, c, d \in T(V)$, $\beta = \deg(b), \gamma = \deg(c)$,

 $(a \otimes b)(c \otimes d) = \chi(\beta, \gamma)ac \otimes bd.$

• $\Delta : T(V) \rightarrow T(V) \otimes T(V)$ morfism of algebras defined by $\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i$.

Proposition (Lusztig, Andruskiewitsch-Schneider)

 \exists a unique bilinear form in T(V) such that

$\forall x, x', y, y' \in T(V), 1 \leq i, j \leq \theta, \alpha \neq \beta \in \mathbb{Z}^{\theta}.$

 Introduction
 Nichols algebras of diagonal type

 General presentation by generators and relations Minimal presentation
 Our problem

 Weyl groupoid
 Weyl groupoid

Proposition (Lusztig, Andruskiewitsch-Schneider)

 \exists a unique bilinear form in $\mathcal{T}(V)$ such that

•
$$(x|yy') = (\Delta(x)|y \otimes y'),$$

$\forall x, x', y, y' \in T(V), 1 \leq i, j \leq \theta, \alpha \neq \beta \in \mathbb{Z}^{\theta}.$

Proposition (Lusztig, Andruskiewitsch-Schneider)

 \exists a unique bilinear form in T(V) such that

- $(x|yy') = (\Delta(x)|y \otimes y'),$
- $(xx'|y) = (x' \otimes x | \Delta(y)),$

$\forall x, x', y, y' \in T(V), \ 1 \leq i, j \leq \theta, \ \alpha \neq \beta \in \mathbb{Z}^{\theta}.$

Proposition (Lusztig, Andruskiewitsch-Schneider)

 \exists a unique bilinear form in T(V) such that

- $(x|yy') = (\Delta(x)|y \otimes y'),$
- $(xx'|y) = (x' \otimes x | \Delta(y)),$

•
$$(x_i|x_j) = \delta_{ij}$$
,

$\forall x, x', y, y' \in T(V), \ 1 \leq i, j \leq \theta, \ \alpha \neq \beta \in \mathbb{Z}^{\theta}.$

Proposition (Lusztig, Andruskiewitsch-Schneider)

 \exists a unique bilinear form in T(V) such that

•
$$(x|yy') = (\Delta(x)|y \otimes y'),$$

•
$$(xx'|y) = (x' \otimes x | \Delta(y)),$$

•
$$(x_i|x_j) = \delta_{ij},$$

•
$$(T^{\alpha}(V)|T^{\beta}(V)) = 0$$
,

 $\forall x, x', y, y' \in T(V), 1 \leq i, j \leq \theta, \alpha \neq \beta \in \mathbb{Z}^{\theta}.$

Proposition (Lusztig, Andruskiewitsch-Schneider)

 \exists a unique bilinear form in T(V) such that

•
$$(x|yy') = (\Delta(x)|y \otimes y'),$$

•
$$(xx'|y) = (x' \otimes x | \Delta(y)),$$

•
$$(x_i|x_j) = \delta_{ij}$$
,

•
$$(T^{\alpha}(V)|T^{\beta}(V)) = 0$$
,

 $\forall x, x', y, y' \in T(V), \ 1 \leq i, j \leq \theta, \ \alpha \neq \beta \in \mathbb{Z}^{\theta}.$

Definition

 $\mathcal{I}(V)$ radical of (|), an ideal of $\mathcal{T}(V)$. $\mathfrak{B}(V) := \mathcal{T}(V)/\mathcal{I}(V)$ is the **Nichols algebra** asociated to the matrix (q_{ij}) .

Nichols algebras of diagonal type Our problem Weyl groupoid

Problem

Classify all the matrices $(q_{ij})_{1 \le i,j \le \theta}$ such that dim $\mathfrak{B}(V) < \infty$. For each one of these Nichols algebras, give a *minimal* presentation by generators and relations, and its dimension.^{*a*}

^aN. Andruskiewitsch, Contemp. Math. 294, 1-57 (2002).

Nichols algebras of diagonal type Our problem Weyl groupoid

Problem

Classify all the matrices $(q_{ij})_{1 \le i,j \le \theta}$ such that dim $\mathfrak{B}(V) < \infty$. For each one of these Nichols algebras, give a *minimal* presentation by generators and relations, and its dimension.^{*a*}

^aN. Andruskiewitsch, Contemp. Math. 294, 1-57 (2002).

Answer to the first question: I. Heckenberger, *Classification of arithmetic root systems*, Adv. Math. **220** (2009) 59–124.

Nichols algebras of diagonal type Our problem Weyl groupoid

• $\mathfrak{B}(V) \mathbb{Z}^{\theta}$ -graded: *Hilbert series*

$$\mathcal{H}_{\mathfrak{B}(V)} := \sum_{\alpha \in \mathbb{N}_0^{\theta}} (\dim \mathfrak{B}(V)_{\alpha}) x^{\alpha} \in \mathbb{Z}[[x_1, \ldots, x_{\theta}]], \qquad x^{\alpha} = x_1^{\mathfrak{a}_1} \cdots x_{\theta}^{\mathfrak{a}_{\theta}}.$$

•
$$\mathfrak{B}(V) \mathbb{Z}^{\theta}$$
-graded: *Hilbert series*

$$\mathcal{H}_{\mathfrak{B}(V)} := \sum_{lpha \in \mathbb{N}_0^{ heta}} (\dim \mathfrak{B}(V)_{lpha}) x^{lpha} \in \mathbb{Z}[[x_1, \dots, x_{ heta}]], \qquad x^{lpha} = x_1^{\mathfrak{a}_1} \cdots x_{ heta}^{\mathfrak{a}_{ heta}}.$$

• Kharchenko: \exists a basis PBW of $\mathfrak{B}(V)$, whose generators are \mathbb{Z}^{θ} -homogeneous, $h: T \to \mathbb{N} \cup \{\infty\}$: $B(T, <, h) := \{t_1^{e_1} ... t_r^{e_r} : t_1 > ... > t_r, t_i \in T, 0 < e_i < h(t_i)\}.$

•
$$\mathfrak{B}(V) \mathbb{Z}^{\theta}$$
-graded: *Hilbert series*

$$\mathcal{H}_{\mathfrak{B}(V)} := \sum_{lpha \in \mathbb{N}_0^{ heta}} (\dim \mathfrak{B}(V)_{lpha}) x^{lpha} \in \mathbb{Z}[[x_1, \dots, x_{ heta}]], \qquad x^{lpha} = x_1^{\mathfrak{a}_1} \cdots x_{ heta}^{\mathfrak{a}_{ heta}}.$$

• Kharchenko: \exists a basis PBW of $\mathfrak{B}(V)$, whose generators are \mathbb{Z}^{θ} -homogeneous, $h: T \to \mathbb{N} \cup \{\infty\}$: $B(T, <, h) := \{t_1^{e_1} ... t_r^{e_r} : t_1 > ... > t_r, t_i \in T, 0 < e_i < h(t_i)\}.$

• deg
$$t_i = \alpha \in \mathbb{Z}^{\theta}$$
, $h(t_i) < \infty$, $\Rightarrow h(t_i) = \operatorname{ord}(\chi(\alpha, \alpha)) =: N_{\alpha}$.

• $\mathfrak{B}(V) \mathbb{Z}^{\theta}$ -graded: *Hilbert series*

$$\mathcal{H}_{\mathfrak{B}(V)} := \sum_{lpha \in \mathbb{N}_0^{ heta}} (\dim \mathfrak{B}(V)_{lpha}) x^{lpha} \in \mathbb{Z}[[x_1, \dots, x_{ heta}]], \qquad x^{lpha} = x_1^{\mathfrak{a}_1} \cdots x_{ heta}^{\mathfrak{a}_{ heta}}.$$

• Kharchenko: \exists a basis PBW of $\mathfrak{B}(V)$, whose generators are \mathbb{Z}^{θ} -homogeneous, $h: T \to \mathbb{N} \cup \{\infty\}$: $B(T, <, h) := \{t_1^{e_1} ... t_r^{e_r} : t_1 > ... > t_r, t_i \in T, 0 < e_i < h(t_i)\}.$

• deg
$$t_i = \alpha \in \mathbb{Z}^{ heta}$$
, $h(t_i) < \infty$, $\Rightarrow h(t_i) = \operatorname{ord}(\chi(\alpha, \alpha)) =: N_{\alpha}$.

Δ^V₊ := {degrees of generators of a PBW basis of 𝔅(V)}: it does not depend on the PBW basis.

•
$$\mathfrak{B}(V) \mathbb{Z}^{\theta}$$
-graded: *Hilbert series*

$$\mathcal{H}_{\mathfrak{B}(V)} := \sum_{lpha \in \mathbb{N}_0^ heta} (\dim \mathfrak{B}(V)_lpha) x^lpha \in \mathbb{Z}[[x_1, \dots, x_ heta]], \qquad x^lpha = x_1^{a_1} \cdots x_ heta^{a_ heta}.$$

• Kharchenko: \exists a basis PBW of $\mathfrak{B}(V)$, whose generators are \mathbb{Z}^{θ} -homogeneous, $h: T \to \mathbb{N} \cup \{\infty\}$: $B(T, <, h) := \{t_1^{e_1} ... t_r^{e_r} : t_1 > ... > t_r, t_i \in T, 0 < e_i < h(t_i)\}.$

• deg
$$t_i = \alpha \in \mathbb{Z}^{\theta}$$
, $h(t_i) < \infty$, $\Rightarrow h(t_i) = \operatorname{ord}(\chi(\alpha, \alpha)) =: N_{\alpha}$.

- Δ^V₊ := {degrees of generators of a PBW basis of 𝔅(V)}: it does not depend on the PBW basis.
- Δ^V_+ root system:

$$\mathcal{H}_{\mathfrak{B}(V)} = \prod_{lpha \in \Delta^V_+} (1 + x^lpha + x^{2lpha} + \dots + x^{lpha(N_lpha - 1)}).$$

 Introduction
 Nichols algebras of diagonal type

 General presentation by generators and relations
 Our problem

 Minimal presentation
 Weyl groupoid

$$-a_{ij} := \max \left\{ n : (\mathrm{ad}_c x_i)^n x_j \neq 0 \right\} = \max \left\{ n : \alpha_j + n \alpha_i \in \Delta_+^V \right\},\$$

 Introduction
 Nichols algebras of diagonal type

 General presentation by generators and relations
 Our problem

 Minimal presentation
 Weyl groupoid

$$\begin{aligned} -a_{ij} &:= \max \left\{ n : (\mathsf{ad}_c x_i)^n x_j \neq 0 \right\} = \max \left\{ n : \alpha_j + n\alpha_i \in \Delta^V_+ \right\},\\ s_i &\in \operatorname{Aut}(\mathbb{Z}^\theta), \quad s_i(\alpha_j) = \alpha_j - a_{ij}\alpha_i \qquad (a_{ii} := 2). \end{aligned}$$

$$\begin{aligned} -a_{ij} &:= \max \left\{ n : (\mathsf{ad}_c x_i)^n x_j \neq 0 \right\} = \max \left\{ n : \alpha_j + n\alpha_i \in \Delta^V_+ \right\},\\ s_i &\in \mathsf{Aut}(\mathbb{Z}^\theta), \quad s_i(\alpha_j) = \alpha_j - a_{ij}\alpha_i \qquad (a_{ii} := 2). \end{aligned}$$

Proposition (Heckenberger)

dim $V_i = \theta$, $\tilde{q}_{kj} = \chi(s_i(\alpha_k), s_i(\alpha_j))$,

 $\Delta^{V_i}_+ = s_i \left(\Delta^V_+ \setminus \{\alpha_i\} \right) \cup \{\alpha_i\} \,.$

 Introduction
 Nichols algebras of diagonal type

 General presentation by generators and relations
 Our problem

 Minimal presentation
 Weyl grouppid

$$\begin{aligned} -a_{ij} &:= \max \left\{ n : (\mathrm{ad}_c x_i)^n x_j \neq 0 \right\} = \max \left\{ n : \alpha_j + n\alpha_i \in \Delta^V_+ \right\},\\ s_i &\in \mathrm{Aut}(\mathbb{Z}^\theta), \quad s_i(\alpha_j) = \alpha_j - a_{ij}\alpha_i \qquad (a_{ii} := 2). \end{aligned}$$

Proposition (Heckenberger)

dim $V_i = \theta$, $\tilde{q}_{kj} = \chi(s_i(\alpha_k), s_i(\alpha_j))$, $\Delta_+^{V_i} = s_i \left(\Delta_+^V \setminus \{\alpha_i\}\right) \cup \{\alpha_i\}.$

 \rightsquigarrow Weyl groupoid: in some cases, $s_i(\Delta^V) = \Delta^{V_i} \neq \Delta^V$.

Nichols algebras of diagonal type Our problem Weyl groupoid

Definition

Introduction Nichols alg General presentation by generators and relations Minimal presentation Weyl group

Nichols algebras of diagonal type Our problem Weyl groupoid

Definition

•
$$\Delta^X = \Delta^X_+ \cup -\Delta^X_+$$
, $\Delta_+ \subset \mathbb{N}^{ heta}_0$ $(X \in \mathcal{X})$,

Nichols algebras of diagonal type Our problem Weyl groupoid

Definition

•
$$\Delta^X = \Delta^X_+ \cup -\Delta^X_+$$
, $\Delta_+ \subset \mathbb{N}^{ heta}_0$ $(X \in \mathcal{X})$,

• symmetries
$$s_i^X$$
, $1 \le i \le \theta$,

Definition

•
$$\Delta^X = \Delta^X_+ \cup -\Delta^X_+$$
, $\Delta_+ \subset \mathbb{N}^ heta_0$ $(X \in \mathcal{X})$,

• symmetries
$$s_i^X$$
, $1 \le i \le \theta$

•
$$s_i^X(\alpha_j) = \alpha_j - a_{ij}^X \alpha_i$$
, $a_{ii}^X = 2$, $a_{ij}^X \in -\mathbb{N}_0$ if $i \neq j$;

 Introduction
 Nichols algebras of diagonal type

 General presentation by generators and relations
 Our problem

 Minimal presentation
 Weyl groupoid

Definition

•
$$\Delta^X = \Delta^X_+ \cup -\Delta^X_+$$
, $\Delta_+ \subset \mathbb{N}^ heta_0$ $(X \in \mathcal{X})$,

• symmetries
$$s_i^X$$
, $1 \le i \le \theta$

•
$$s_i^X(\alpha_j) = \alpha_j - a_{ij}^X \alpha_i$$
, $a_{ii}^X = 2$, $a_{ij}^X \in -\mathbb{N}_0$ if $i \neq j$;

•
$$s_i^X(\Delta_+^X - \{\alpha_i\}) = \Delta_+^Y - \{\alpha_i\}$$
, if s_i^X goes to Y .

Definition

Weyl Groupoid and generalized root system (Heckenberger-Yamane): set of objects \mathcal{X} (for us, a certain family of matrices (q_{ij})),

•
$$\Delta^X = \Delta^X_+ \cup -\Delta^X_+$$
, $\Delta_+ \subset \mathbb{N}^ heta_0$ $(X \in \mathcal{X})$,

• symmetries
$$s_i^X$$
, $1 \le i \le \theta$

•
$$s_i^X(\alpha_j) = \alpha_j - a_{ij}^X \alpha_i$$
, $a_{ii}^X = 2$, $a_{ij}^X \in -\mathbb{N}_0$ if $i \neq j$;

•
$$s_i^X(\Delta_+^X - \{\alpha_i\}) = \Delta_+^Y - \{\alpha_i\}$$
, if s_i^X goes to Y .

If $\mathcal{X} = \{X\} \quad \rightsquigarrow$ classic root system + Weyl group.

Finite root system: Δ^X finite for some (all) $X \in \mathcal{X}$, i.e. the groupoid is finite ([HY]).

Introduction	Nichols algebras of diagonal type
General presentation by generators and relations	Our problem
Minimal presentation	Weyl groupoid

Finite root system: Δ^X finite for some (all) $X \in \mathcal{X}$, i.e. the groupoid is finite ([HY]).

 $\ell(w) = \min\{k \in \mathbb{N} : \exists i_1, ..., i_k \in I \text{ such that } w = s_{i_1} \cdots s_{i_k}\}.$

Finite root system: Δ^X finite for some (all) $X \in \mathcal{X}$, i.e. the groupoid is finite ([HY]).

$$\ell(w) = \min\{k \in \mathbb{N} : \exists i_1, ..., i_k \in I \text{ such that } w = s_{i_1} \cdots s_{i_k}\}.$$

Proposition (Cuntz and Heckenberger)

If $w = id_X s_{i_1} \cdots s_{i_m}$ is such that $\ell(w) = m$ (reduced expression), then $\beta_j = s_{i_1} \cdots s_{i_{j-1}}(\alpha_{i_j}) \in \Delta^X$ are positive and all different.

Finite root system: Δ^X finite for some (all) $X \in \mathcal{X}$, i.e. the groupoid is finite ([HY]).

$$\ell(w) = \min\{k \in \mathbb{N} : \exists i_1, ..., i_k \in I \text{ such that } w = s_{i_1} \cdots s_{i_k}\}.$$

Proposition (Cuntz and Heckenberger)

If $w = id_X s_{i_1} \cdots s_{i_m}$ is such that $\ell(w) = m$ (reduced expression), then $\beta_j = s_{i_1} \cdots s_{i_{j-1}}(\alpha_{i_j}) \in \Delta^X$ are positive and all different.
Finite root system: Δ^X finite for some (all) $X \in \mathcal{X}$, i.e. the groupoid is finite ([HY]).

$$\ell(w) = \min\{k \in \mathbb{N} : \exists i_1, ..., i_k \in I \text{ such that } w = s_{i_1} \cdots s_{i_k}\}.$$

Proposition (Cuntz and Heckenberger)

If $w = id_X s_{i_1} \cdots s_{i_m}$ is such that $\ell(w) = m$ (reduced expression), then $\beta_j = s_{i_1} \cdots s_{i_{i-1}}(\alpha_{i_i}) \in \Delta^X$ are positive and all different.

There exists a unique w_0^X of maximal length por any $X \in \mathcal{X}$, and so $\{\beta_j\} = \Delta_+^X$: all the roots are real and of multiplicity one.

First result about a presentation Convex orders

k an algebraically closed field, char k = 0. \mathbb{G}_N group of roots of unity such that $q^N = 1$.

Theorem (General presentation)

dim $V = \theta$, $(q_{ij}) \in (k^{\times})^{\theta \times \theta}$ such that $|\Delta_{+}^{V}| < \infty$. $\mathfrak{B}(V)$ is presented by generators $x_{1}, \ldots, x_{\theta}$ and relations:

k an algebraically closed field, char k = 0. \mathbb{G}_N group of roots of unity such that $q^N = 1$.

Theorem (General presentation)

dim $V = \theta$, $(q_{ij}) \in (k^{\times})^{\theta \times \theta}$ such that $|\Delta_{+}^{V}| < \infty$. $\mathfrak{B}(V)$ is presented by generators $x_{1}, \ldots, x_{\theta}$ and relations:

$$\ \, \mathbf{ 0} \ \, x_{\beta}^{N_{\beta}}=\mathbf{ 0}, \qquad \beta\in\Delta_{+}^{V}, \ \, \textit{N}_{\beta}<\infty,$$

β.

k an algebraically closed field, char k = 0. \mathbb{G}_N group of roots of unity such that $q^N=1.$

Theorem (General presentation)

dim $V = \theta$, $(q_{ij}) \in (k^{\times})^{\theta \times \theta}$ such that $|\Delta_{+}^{V}| < \infty$. $\mathfrak{B}(V)$ is presented by generators $x_{1}, \ldots, x_{\theta}$ and relations:

k an algebraically closed field, char k = 0. \mathbb{G}_N group of roots of unity such that $q^N=1.$

Theorem (General presentation)

dim $V = \theta$, $(q_{ij}) \in (k^{\times})^{\theta \times \theta}$ such that $|\Delta_{+}^{V}| < \infty$. $\mathfrak{B}(V)$ is presented by generators x_1, \ldots, x_{θ} and relations:

k an algebraically closed field, char k = 0. \mathbb{G}_N group of roots of unity such that $q^N=1.$

Theorem (General presentation)

dim $V = \theta$, $(q_{ij}) \in (k^{\times})^{\theta \times \theta}$ such that $|\Delta_{+}^{V}| < \infty$. $\mathfrak{B}(V)$ is presented by generators $x_{1}, \ldots, x_{\theta}$ and relations:

•
$$x_{\beta}^{N_{\beta}} = 0, \qquad \beta \in \Delta_{+}^{V}, \ N_{\beta} < \infty,$$

• $[x_{\alpha}, x_{\beta}]_{c} = \sum_{\deg u = \alpha + \beta} c_{\alpha,\beta}^{u} u, \qquad \alpha < \beta, \longleftarrow$
u: elements of the PBW basis written in letters $x_{\gamma}, \alpha \leq \gamma \leq \beta.$

Generalization of quantum Serre relations:

$$0 = (\operatorname{ad}_c x_i)^{1-a_{ij}} x_j = [x_i, (\operatorname{ad}_c x_i)^{-a_{ij}} x_j]_c.$$

First result about a presentation Convex orders

$$w = \mathrm{id}_V s_{i_1} \cdots s_{i_k} \in \mathrm{Hom}(W, V) \text{ reduced expression:}$$

• $L_w = \{ \alpha \in \Delta^V_+ : w^{-1}(\alpha) \in \Delta^W_- \}.$

- $w = id_V s_{i_1} \cdots s_{i_k} \in Hom(W, V)$ reduced expression:
 - $L_w = \{ \alpha \in \Delta^V_+ : w^{-1}(\alpha) \in \Delta^W_- \}.$
 - order associated to $s_{i_1} \cdots s_{i_k}$:

$$\alpha_{i_1} < s_{i_1}(\alpha_{i_2}) < \ldots < s_{i_1} \cdots s_{i_{k-1}}(\alpha_{i_k}).$$

 $w = id_V s_{i_1} \cdots s_{i_k} \in Hom(W, V)$ reduced expression:

- $L_w = \{ \alpha \in \Delta^V_+ : w^{-1}(\alpha) \in \Delta^W_- \}.$
- order associated to $s_{i_1} \cdots s_{i_k}$:

$$\alpha_{i_1} < \mathbf{s}_{i_1}(\alpha_{i_2}) < \ldots < \mathbf{s}_{i_1} \cdots \mathbf{s}_{i_{k-1}}(\alpha_{i_k}).$$

Definition

A total order < en Δ_+^V is **convex** if for each $\alpha, \beta \in \Delta^+$, $\alpha < \beta$, $\alpha + \beta \in \Delta^+$, it holds $\alpha < \alpha + \beta < \beta$. It is **strongly convex** if for each $\beta = \sum \beta_j \in \Delta^+$, $\beta_1 \le \beta_2 \le \cdots \le \beta_n$, it holds $\beta_1 < \beta < \beta_n$.

Given < on $\Delta^V_+\text{, the following statements are equivalent:$

Given < on Δ^V_+ , the following statements are equivalent:

 the order is associated to an expression of the element of maximal length of Hom(W, V),

Given < on Δ^V_+ , the following statements are equivalent:

- the order is associated to an expression of the element of maximal length of Hom(W, V),
- the order is strongly convex,

Given < on Δ^V_+ , the following statements are equivalent:

- the order is associated to an expression of the element of maximal length of Hom(W, V),
- the order is strongly convex,
- the order is convex.

Given < on Δ^V_+ , the following statements are equivalent:

- the order is associated to an expression of the element of maximal length of Hom(W, V),
- the order is strongly convex,
- the order is convex.

Theorem

The order on Kharchenko's PBW generators is convex.

Given < on Δ^V_+ , the following statements are equivalent:

- the order is associated to an expression of the element of maximal length of Hom(W, V),
- the order is strongly convex,
- the order is convex.

Theorem

The order on Kharchenko's PBW generators is convex.

Proposition

The Kharchenko's PBW basis of $\mathfrak{B}(V)$ is orthogonal for $(\cdot|\cdot)$.

First result about a presentation Convex orders

Remark

Iván Angiono Presentation of Nichols algebras

• Fundamental step: clssification of coideal subalgebras of $\mathfrak{B}(V)$, with a bijection with the Weyl groupoid presenving orders (Heckenberger-Schneider).

- Fundamental step: clssification of coideal subalgebras of B(V), with a bijection with the Weyl groupoid presenving orders (Heckenberger-Schneider).
- Finitely generated ideal.

- Fundamental step: clssification of coideal subalgebras of B(V), with a bijection with the Weyl groupoid presenving orders (Heckenberger-Schneider).
- Finitely generated ideal.
- Proof does not involve Heckenberger's classification.

- Fundamental step: clssification of coideal subalgebras of $\mathfrak{B}(V)$, with a bijection with the Weyl groupoid presenving orders (Heckenberger-Schneider).
- Finitely generated ideal.
- Proof does not involve Heckenberger's classification.
- Key step to obtain a minimal presentation.

Theorem (Minimal presentation)

 $(q_{ii})_{1 \le i, i \le \theta}, \theta = \dim V, \Delta^V_{\perp} = \{\beta_1, \dots, \beta_M\}$ finite. $\mathfrak{B}(V)$ presented by generators x_1, \ldots, x_{θ} and relations:

> $x_{\alpha}^{N_{\alpha}}$. $\alpha \in \mathcal{O}(\chi)$: $a_{::}^{m_{ij}+1} \neq 1$: $(\operatorname{ad}_{c} x_{i})^{m_{ij}+1} x_{i}$ $x_{i}^{N_{i}}$. *i* a non Cartan vertex:

if $q_{ii} = q_{ij}q_{ji} = q_{ij} = -1$, $((ad_c x_i)x_i)^2$; if $q_{ii} = -1$, $q_{ik}q_{ki} = q_{ii}q_{ik}q_{ki} = 1$, $[(ad_c x_i)(ad_c x_i)x_k, x_i]_c$; if $q_{ii} = -1$, $q_{ii}q_{ii}q_{ii} \in \mathbb{G}_6$, and also $q_{ii} \in \mathbb{G}_3$ or $m_{ii} \geq 3$, $\left[(\operatorname{ad}_{c} x_{i})^{2} x_{i}, (\operatorname{ad}_{c} x_{i}) x_{i} \right]_{i};$

Main Theorem Consequences and details of proof Some explicit examples

Theorem (Minimal presentation)

if $q_{ii} = \pm q_{ij}q_{ji} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, and also $-q_{jj} = q_{ji}q_{ij}q_{jk}q_{kj} = 1$ or $q_{jj}^{-1} = q_{ji}q_{ij} = q_{jk}q_{kj} \neq -1$,

 $\left[(\mathsf{ad}_c x_i)^2(\mathsf{ad}_c x_j)x_k,(\mathsf{ad}_c x_i)x_j\right]_c;$

Main Theorem Consequences and details of proof Some explicit examples

Theorem (Minimal presentation)

if $q_{ii} = \pm q_{ij}q_{ji} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, and also $-q_{jj} = q_{ji}q_{ij}q_{jk}q_{kj} = 1$ or $q_{jj}^{-1} = q_{ji}q_{ij} = q_{jk}q_{kj} \neq -1$,

 $\left[(\mathsf{ad}_c x_i)^2(\mathsf{ad}_c x_j)x_k,(\mathsf{ad}_c x_i)x_j\right]_c;$

Main Theorem Consequences and details of proof Some explicit examples

Theorem (Minimal presentation)

if
$$q_{ii} = \pm q_{ij}q_{ji} \in \mathbb{G}_3$$
, $q_{ik}q_{ki} = 1$, and also $-q_{jj} = q_{ji}q_{ij}q_{jk}q_{kj} = 1$ or $q_{jj}^{-1} = q_{ji}q_{ij} = q_{jk}q_{kj} \neq -1$,

$$\left[(\mathrm{ad}_c x_i)^2(\mathrm{ad}_c x_j)x_k,(\mathrm{ad}_c x_i)x_j\right]_c;$$

 $\text{ if } q_{ik}q_{ki}, q_{ij}q_{ji}, q_{jk}q_{kj} \neq 1 \text{,} \\$

$$[x_{i},(ad_{c}x_{j})x_{k}]_{c}-\frac{1-q_{jk}q_{kj}}{q_{kj}(1-q_{ik}q_{ki})}[(ad_{c}x_{i})x_{k},x_{j}]_{c}-q_{ij}(1-q_{kj}q_{jk})x_{j}(ad_{c}x_{i})x_{k};$$

Main Theorem Consequences and details of proof Some explicit examples

Theorem (Minimal presentation)

if
$$q_{ii} = \pm q_{ij}q_{ji} \in \mathbb{G}_3$$
, $q_{ik}q_{ki} = 1$, and also $-q_{jj} = q_{ji}q_{ij}q_{jk}q_{kj} = 1$ or $q_{jj}^{-1} = q_{ji}q_{ij} = q_{jk}q_{kj} \neq -1$,

$$\left[(\mathrm{ad}_{c} x_{i})^{2}(\mathrm{ad}_{c} x_{j})x_{k},(\mathrm{ad}_{c} x_{i})x_{j}\right]_{c};$$

 $\text{ if } q_{ik}q_{ki}, q_{ij}q_{ji}, q_{jk}q_{kj} \neq 1, \\$

$$[x_{i},(\mathsf{ad}_{c}x_{j})x_{k}]_{c}-\frac{1-q_{jk}q_{kj}}{q_{kj}(1-q_{ik}q_{ki})}[(\mathsf{ad}_{c}x_{i})x_{k},x_{j}]_{c}-q_{ij}(1-q_{kj}q_{jk})x_{j}(\mathsf{ad}_{c}x_{i})x_{k};$$

if $i, j, k \in \{1, \dots, \theta\}$ are such that • $q_{ii} = q_{jj} = -1$, $(q_{ij}q_{ji})^2 = (q_{jk}q_{kj})^{-1}$, $q_{ik}q_{ki} = 1$, or

$$\left[\left[(\mathsf{ad}_c x_i)x_j, (\mathsf{ad}_c x_i)(\mathsf{ad}_c x_j)x_k\right]_c, x_j\right]_c;$$

Main Theorem Consequences and details of proof Some explicit examples

Theorem (Minimal presentation)

if $q_{ii} = \pm q_{ij}q_{ji} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, and also $-q_{jj} = q_{ji}q_{ij}q_{jk}q_{kj} = 1$ or $q_{jj}^{-1} = q_{ji}q_{ij}q_{jk}q_{kj} \neq -1$,

$$\left[(\mathrm{ad}_{c} x_{i})^{2}(\mathrm{ad}_{c} x_{j})x_{k},(\mathrm{ad}_{c} x_{i})x_{j}\right]_{c};$$

 $\text{ if } q_{ik}q_{ki}, q_{ij}q_{ji}, q_{jk}q_{kj} \neq 1, \\$

$$[x_{i},(\mathsf{ad}_{c}x_{j})x_{k}]_{c}-\frac{1-q_{jk}q_{kj}}{q_{kj}(1-q_{ik}q_{ki})}[(\mathsf{ad}_{c}x_{i})x_{k},x_{j}]_{c}-q_{ij}(1-q_{kj}q_{jk})x_{j}(\mathsf{ad}_{c}x_{i})x_{k};$$

if $i, j, k \in \{1, \dots, \theta\}$ are such that • $q_{ii} = q_{jj} = -1$, $(q_{ij}q_{ji})^2 = (q_{jk}q_{kj})^{-1}$, $q_{ik}q_{ki} = 1$, or • $q_{jj} = q_{kk} = q_{jk}q_{kj} = -1$, $q_{ii} = -q_{ij}q_{ji} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, or

 $\left[\left[(\mathsf{ad}_{c}x_{i})x_{j},(\mathsf{ad}_{c}x_{i})(\mathsf{ad}_{c}x_{j})x_{k}\right]_{c},x_{j}\right]_{c};$

Main Theorem Consequences and details of proof Some explicit examples

Theorem (Minimal presentation)

if $q_{ii} = \pm q_{ij}q_{ji} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, and also $-q_{jj} = q_{ji}q_{ij}q_{jk}q_{kj} = 1$ or $q_{jj}^{-1} = q_{ji}q_{ij} = q_{jk}q_{kj} \neq -1$,

$$\left[(\mathrm{ad}_{c} x_{i})^{2}(\mathrm{ad}_{c} x_{j})x_{k},(\mathrm{ad}_{c} x_{i})x_{j}\right]_{c};$$

 $\text{ if } q_{ik}q_{ki}, q_{ij}q_{ji}, q_{jk}q_{kj} \neq 1, \\$

$$[x_{i},(\mathsf{ad}_{c}x_{j})x_{k}]_{c}-\frac{1-q_{jk}q_{kj}}{q_{kj}(1-q_{ik}q_{ki})}[(\mathsf{ad}_{c}x_{i})x_{k},x_{j}]_{c}-q_{ij}(1-q_{kj}q_{jk})x_{j}(\mathsf{ad}_{c}x_{i})x_{k};$$

if $i, j, k \in \{1, \dots, \theta\}$ are such that • $q_{ii} = q_{jj} = -1$, $(q_{ij}q_{ji})^2 = (q_{jk}q_{kj})^{-1}$, $q_{ik}q_{ki} = 1$, or • $q_{jj} = q_{kk} = q_{jk}q_{kj} = -1$, $q_{ii} = -q_{ij}q_{ji} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, or • $q_{ii} = q_{jj} = q_{kk} = -1$, $q_{ij}q_{ji} = q_{kj}q_{jk} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, or

 $\left[\left[(\mathsf{ad}_{c}x_{i})x_{j},(\mathsf{ad}_{c}x_{i})(\mathsf{ad}_{c}x_{j})x_{k}\right]_{c},x_{j}\right]_{c};$

Main Theorem Consequences and details of proof Some explicit examples

Theorem (Minimal presentation)

if $q_{ii} = \pm q_{ij}q_{ji} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, and also $-q_{jj} = q_{ji}q_{ij}q_{jk}q_{kj} = 1$ or $q_{jj}^{-1} = q_{ji}q_{ij}q_{jk}q_{kj} \neq -1$,

$$\left[(\mathrm{ad}_{c} x_{i})^{2}(\mathrm{ad}_{c} x_{j})x_{k},(\mathrm{ad}_{c} x_{i})x_{j}\right]_{c};$$

 $\text{ if } q_{ik}q_{ki}, q_{ij}q_{ji}, q_{jk}q_{kj} \neq 1, \\$

$$[x_{i},(\mathsf{ad}_{c}x_{j})x_{k}]_{c}-\frac{1-q_{jk}q_{kj}}{q_{kj}(1-q_{ik}q_{ki})}[(\mathsf{ad}_{c}x_{i})x_{k},x_{j}]_{c}-q_{ij}(1-q_{kj}q_{jk})x_{j}(\mathsf{ad}_{c}x_{i})x_{k};$$

if
$$i, j, k \in \{1, ..., \theta\}$$
 are such that
• $q_{ii} = q_{jj} = -1$, $(q_{ij}q_{ji})^2 = (q_{jk}q_{kj})^{-1}$, $q_{ik}q_{ki} = 1$, or
• $q_{jj} = q_{kk} = q_{jk}q_{kj} = -1$, $q_{ii} = -q_{ij}q_{ji} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, or
• $q_{ii} = q_{jj} = q_{kk} = -1$, $q_{ij}q_{ji} = q_{kj}q_{jk} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, or
• $q_{ii} = q_{kk} = -1$, $q_{jj} = -q_{kj}q_{jk} = (q_{ij}q_{ji})^{\pm 1} \in \mathbb{G}_3$, $q_{ik}q_{ki} = 1$, or
[$[(ad_c x_i)x_j, (ad_c x_i)(ad_c x_j)x_k]_c, x_j]_c$;

Main Theorem Consequences and details of proof Some explicit examples

Theorem (Minimal presentation)

$$\begin{split} \text{if } q_{ji} &= q_{jj} = -1, \ (q_{ij}q_{ji})^3 = (q_{jk}q_{kj})^{-1}, \ q_{ik}q_{ki} = 1, \\ & \left[\left[(\mathsf{ad}_c x_i) x_j, [(\mathsf{ad}_c x_i) x_j, (\mathsf{ad}_c x_i) (\mathsf{ad}_c x_j) x_k]_c \right]_c, x_j \right]_c; \\ \text{if } q_{jj}q_{ij}q_{ji} &= q_{ji}q_{kj}q_{jk} = 1, \ (q_{kj}q_{jk})^2 = (q_{lk}q_{kl})^{-1} = q_{ll}, \ q_{kk} = -1, \\ q_{ik}q_{ki} &= q_{il}q_{li} = q_{jl}q_{lj} = 1, \\ & \left[\left[\left[(\mathsf{ad}_c x_i) (\mathsf{ad}_c x_j) (\mathsf{ad}_c x_k) x_l, x_k \right]_c, x_j \right]_c, x_k \right]_c; \\ \text{if } q_{jj} &= q_{ij}^{-1}q_{ji}^{-1} = q_{jk}q_{kj} \in \mathbb{G}_3, \\ & \left[\left[(\mathsf{ad}_c x_i) (\mathsf{ad}_c x_j) x_k, x_j \right]_c x_j \right]_c; \\ \text{if } q_{jj} &= q_{ij}^{-1}q_{ji}^{-1} = q_{jk}q_{kj} \in \mathbb{G}_4, \\ & \left[\left[\left[(\mathsf{ad}_c x_i) (\mathsf{ad}_c x_j) x_k, x_j \right]_c, x_j \right]_c, x_j \right]_c; \\ \end{split}$$

Main Theorem Consequences and details of proof Some explicit examples

Theorem (Minimal presentation)

Main Theorem Consequences and details of proof Some explicit examples

Theorem (Minimal presentation)

$$\begin{split} &\text{if } 4\alpha_i + 3\alpha_j \notin \Delta^{\chi}_+, \ q_{jj} = -1 \text{ or } m_{ji} \geq 2, \text{ and } m_{ij} \geq 3, \text{ or } m_{ij} = 2, \\ &q_{ii} \in \mathbb{G}_3, \\ & [x_{3\alpha_i + 2\alpha_j}, (\text{ad}_c x_i) x_j]_c; \\ &\text{if } 3\alpha_i + 2\alpha_j \in \Delta^{\chi}_+, \ 5\alpha_i + 3\alpha_j \notin \Delta^{\chi}_+, \text{ and } q_{ii}^3 q_{ij} q_{ji}, q_{ii}^4 q_{ij} q_{ji} \neq 1, \\ & [(\text{ad}_c x_i)^2 x_j, x_{3\alpha_i + 2\alpha_j}]_c; \\ &\text{if } 4\alpha_i + 3\alpha_j \in \Delta^{\chi}_+, \ 5\alpha_i + 4\alpha_j \notin \Delta^{\chi}_+, \\ & [x_{4\alpha_i + 3\alpha_j}, (\text{ad}_c x_i) x_j]_c; \\ &\text{if } q_{jj} = -1, \ 5\alpha_i + 4\alpha_j \in \Delta^{\chi}_+, \\ & [x_{2\alpha_i + \alpha_j}, x_{4\alpha_i + 3\alpha_j}]_c - \frac{b - (1 + q_{ii})(1 - q_{ii}\zeta)(1 + \zeta + q_{ii}\zeta^2)q_{ii}^6\zeta^4}{a \ q_{ii}^3 q_{ij}^2 q_{ji}^3} x_{3\alpha_i + 2\alpha_j}^2 \end{split}$$

Theorem

True when G(H) is abelian.

Theorem

True when G(H) is abelian.

That is, every f.d. pointed Hopf algebra over an abelian group is a deformation of some $\mathfrak{B}(V)\#k\Gamma$.

Theorem

True when G(H) is abelian.

Problem: Obtain all the deformations (*liftings*) of $H = \mathfrak{B}(V) \# k\Gamma$, Γ abelian, which are pointed Hopf algebras. Work in progress: Andruskiewitsch - A. - García Iglesias **About the proof:** use Lusztig's isomorphisms T_i moving through the Weyl groupoid (Heckenberger).
$U(\chi) = D(T(V,\chi) \# \mathbb{Z}^{\theta}), \ U(\chi) = D(\mathfrak{B}(V,\chi) \# \mathbb{Z}^{\theta}),$

 $\begin{array}{l} U(\chi) = D(T(V,\chi) \# \mathbb{Z}^{\theta}), \ \mathcal{U}(\chi) = D(\mathfrak{B}(V,\chi) \# \mathbb{Z}^{\theta}), \\ I_{i}(\chi) \text{ ideal generated by } (\operatorname{ad}_{c} E_{i})^{1-a_{ij}} E_{j}, \ (\operatorname{ad}_{c} F_{i})^{1-a_{ij}} F_{j} \text{ and/or } E_{i}^{N_{i}}, \\ f_{i}^{N_{i}}, \\ depending \text{ on } i, \end{array}$

 $\begin{array}{l} U(\chi) = D(T(V,\chi) \# \mathbb{Z}^{\theta}), \ \mathcal{U}(\chi) = D(\mathfrak{B}(V,\chi) \# \mathbb{Z}^{\theta}), \\ I_{i}(\chi) \text{ ideal generated by } (\mathsf{ad}_{c} E_{i})^{1-a_{ij}} E_{j}, \ (\mathsf{ad}_{c} F_{i})^{1-a_{ij}} F_{j} \text{ and/or } E_{i}^{N_{i}}, F_{i}^{N_{i}}, \\ \text{depending on } i, \end{array}$

 $\widetilde{\mathcal{U}}(\chi) = D(\widetilde{\mathfrak{B}}(V,\chi) \# \mathbb{Z}^{\theta}), \ \widetilde{\mathfrak{B}}(V,\chi) = T(V,\chi)/I(\chi),$

 $I(\chi)$: enough relations to ensure the existence of all the isomorphisms. Just does not contain the power root vectors.

Main Theorem Consequences and details of proof Some explicit examples

Generalized Dynkin diagrams (Heckenberger)

 $\left(egin{array}{cc} q_{ii} & q_{ij} \ q_{ji} & q_{jj} \end{array}
ight)$: $\circ^{q_{ii}}$ $\circ^{q_{jj}}$ $q_{ij}q_{ji}=1$

Main Theorem Consequences and details of proof Some explicit examples

Generalized Dynkin diagrams (Heckenberger)

 $\left(egin{array}{ccc} q_{ii} & q_{ij} \ q_{ji} & q_{jj} \end{array}
ight): \circ^{q_{ii}} \circ^{q_{ij}} q_{ji} = 1 \ \circ^{q_{ii}} rac{q_{ij}q_{ji}}{2} \circ^{q_{ij}} \circ^{q_{ij}} q_{ji} \neq 1.$

Example (Matrices 'super')

Type G(3): $q \in \mathsf{k}^{ imes}$, $q^3, q^2 \neq 1$,

Main Theorem Consequences and details of proof Some explicit examples

Generalized Dynkin diagrams (Heckenberger)

 $\left(egin{array}{ccc} q_{ii} & q_{ij} \ q_{ji} & q_{jj} \end{array}
ight): \circ^{q_{ii}} \circ^{q_{ij}} q_{ji} = 1 \ \circ^{q_{ii}} rac{q_{ij}q_{ji}}{2} \circ^{q_{ij}} \circ^{q_{ij}} q_{ji} \neq 1.$

Example (Matrices 'super')

Type G(3): $q \in \mathsf{k}^{ imes}$, $q^3, q^2 \neq 1$,

Main Theorem Consequences and details of proof Some explicit examples

Generalized Dynkin diagrams (Heckenberger)

 $\left(egin{array}{cc} q_{ii} & q_{ij} \ q_{ji} & q_{jj} \end{array}
ight): \circ^{q_{ii}} \circ^{q_{ij}} q_{ij} q_{ji} = 1 \ \circ^{q_{ii}} rac{q_{ij}q_{ji}}{2} \circ^{q_{ij}} \circ^{q_{ij}} q_{ji} \neq 1.$

Type G(3):
$$q \in k^{\times}$$
, $q^3, q^2 \neq 1$,
(a) $\circ^{-1} \frac{q^{-1}}{2} \circ^q \frac{q^{-3}}{2} \circ^{q^3}$,

Main Theorem Consequences and details of proof Some explicit examples

Generalized Dynkin diagrams (Heckenberger)

 $\left(egin{array}{cc} q_{ii} & q_{ij} \ q_{ji} & q_{jj} \end{array}
ight): \circ^{q_{ii}} \circ^{q_{ij}} q_{ij} q_{ji} = 1 \ \circ^{q_{ii}} rac{q_{ij}q_{ji}}{2} \circ^{q_{ij}} \circ^{q_{ij}} q_{ji} \neq 1.$

Type G(3):
$$q \in k^{\times}$$
, $q^3, q^2 \neq 1$,
(a) $\circ^{-1} \frac{q^{-1}}{2} \circ^q \frac{q^{-3}}{2} \circ^{q^3}$, (b) $\circ^{-1} \frac{q}{2} \circ^{-1} \frac{q^{-3}}{2} \circ^{q^3}$,

Main Theorem Consequences and details of proof Some explicit examples

Generalized Dynkin diagrams (Heckenberger)

 $\left(egin{array}{ccc} q_{ii} & q_{ij} \ q_{ji} & q_{jj} \end{array}
ight): \circ^{q_{ii}} \circ^{q_{ji}} q_{ij} q_{ji} = 1 \ \circ^{q_{ii}} rac{q_{ij}q_{ji}}{2} \circ^{q_{ij}} q_{ij} q_{ji}
eq 1.$

Main Theorem Consequences and details of proof Some explicit examples

Generalized Dynkin diagrams (Heckenberger)

 $\left(egin{array}{ccc} q_{ii} & q_{ij} \ q_{ji} & q_{jj} \end{array}
ight): \circ^{q_{ii}} \circ^{q_{ji}} q_{ij} q_{ji} = 1 \ \circ^{q_{ii}} rac{q_{ij}q_{ji}}{2} \circ^{q_{ij}} q_{ij} q_{ji}
eq 1.$

Main Theorem Consequences and details of proof Some explicit examples

Generalized Dynkin diagrams (Heckenberger)

 $\left(egin{array}{ccc} q_{ii} & q_{ij} \ q_{ji} & q_{jj} \end{array}
ight): \circ^{q_{ii}} \circ^{q_{ji}} q_{ij} q_{ji} = 1 \ \circ^{q_{ii}} rac{q_{ij}q_{ji}}{2} \circ^{q_{ij}} q_{ij} q_{ji}
eq 1.$

(a) Admits a presentation by generators x_1, x_2, x_3 and relations

$$\begin{split} x_1^2 &= x_{\alpha}^{N_{\alpha}} = 0, \qquad \alpha \in \Delta_+^{\chi}, N_{\alpha} \neq 2, \\ (\mathsf{ad}_c x_2)^2 x_1 &= (\mathsf{ad}_c x_1) x_3 = (\mathsf{ad}_c x_2)^4 x_3 = (\mathsf{ad}_c x_3)^2 x_2 = 0. \end{split}$$

(a) Admits a presentation by generators x_1, x_2, x_3 and relations

$$\begin{split} x_1^2 &= x_{\alpha}^{N_{\alpha}} = 0, \qquad \alpha \in \Delta_+^{\chi}, N_{\alpha} \neq 2, \\ (\mathsf{ad}_c x_2)^2 x_1 &= (\mathsf{ad}_c x_1) x_3 = (\mathsf{ad}_c x_2)^4 x_3 = (\mathsf{ad}_c x_3)^2 x_2 = 0. \end{split}$$

(a) Admits a presentation by generators x_1, x_2, x_3 and relations

$$\begin{aligned} x_1^2 &= x_{\alpha}^{N_{\alpha}} = 0, \qquad \alpha \in \Delta_+^{\chi}, N_{\alpha} \neq 2, \\ (\mathrm{ad}_c x_2)^2 x_1 &= (\mathrm{ad}_c x_1) x_3 = (\mathrm{ad}_c x_2)^4 x_3 = (\mathrm{ad}_c x_3)^2 x_2 = 0. \end{aligned}$$

Add too $\left[\left[\left[(\mathsf{ad}_{c}x_{i})(\mathsf{ad}_{c}x_{j})x_{k},x_{j}\right]_{c},x_{j}\right]_{c},x_{j}\right]_{c}$, if $q\in\mathbb{G}_{4}$.

(a) Admits a presentation by generators x_1, x_2, x_3 and relations

$$\begin{aligned} x_1^2 &= x_{\alpha}^{N_{\alpha}} = 0, \qquad \alpha \in \Delta_+^{\chi}, N_{\alpha} \neq 2, \\ (\mathrm{ad}_c x_2)^2 x_1 &= (\mathrm{ad}_c x_1) x_3 = (\mathrm{ad}_c x_2)^4 x_3 = (\mathrm{ad}_c x_3)^2 x_2 = 0. \end{aligned}$$

Add too $\left[\left[\left[(\mathsf{ad}_{c}x_{i})(\mathsf{ad}_{c}x_{j})x_{k},x_{j}\right]_{c},x_{j}\right]_{c},x_{j}\right]_{c}$, if $q\in\mathbb{G}_{4}$.

(b) Admits a presentation by generators x_1, x_2, x_3 and relations

$$\begin{aligned} x_1^2 &= x_2^2 = x_\alpha^{N_\alpha} = 0, \qquad \alpha \in \Delta_+^{\chi}, N_\alpha \neq 2, \\ \left[\left[(\mathsf{ad}_c x_1) x_2, \left[(\mathsf{ad}_c x_1) x_2, (\mathsf{ad}_c x_1) (\mathsf{ad}_c x_2) x_3 \right]_c \right]_c, x_2 \right]_c &= (\mathsf{ad}_c x_3)^2 x_2 = 0. \end{aligned}$$

Main Theorem Consequences and details of proof Some explicit examples

Example (Strange type)

Main Theorem Consequences and details of proof Some explicit examples

Example (Strange type)

Introduction Main Theorem General presentation by generators and relations Minimal presentation Some explicit e

Main Theorem Consequences and details of proof Some explicit examples

Example (Strange type)

(a)
$$\circ^{\zeta^8} - \circ^{\zeta^8}$$
,

Introduction Main Theorem
General presentation by generators and relations
Minimal presentation
Some explicit examples

Example (Strange type)

(a)
$$\circ^{\zeta^8} - \frac{\zeta}{2} \circ^{\zeta^8}$$
, (b) $\circ^{\zeta^8} - \frac{\zeta^3}{2} \circ^{-1}$,

Example (Strange type)

(a)
$$\circ^{\zeta^8} - \frac{\zeta}{\zeta^9} \circ^{\zeta^8}$$
, (b) $\circ^{\zeta^8} - \frac{\zeta^3}{\zeta^3} \circ^{-1}$,
(c) $\circ^{\zeta^5} - \frac{\zeta^9}{\zeta^9} \circ^{-1}$.

•
$$\Delta_{+}^{a} = \{\alpha_{1}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{1} + 2\alpha_{2}, \alpha_{2}\}.$$

Example (Strange type)

(a)
$$o^{\zeta^8} - \frac{\zeta}{c^9} o^{\zeta^8}$$
, (b) $o^{\zeta^8} - \frac{\zeta^3}{c^3} o^{-1}$,
(c) $o^{\zeta^5} - \frac{\zeta^9}{c^9} o^{-1}$.

•
$$\Delta_{+}^{a} = \{\alpha_{1}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{1} + 2\alpha_{2}, \alpha_{2}\}.$$

•
$$s_1(\alpha_1) = -\alpha_1$$
, $s_1(\alpha_2) = \alpha_2 + 2\alpha_1$: $s_1(\Delta^a) = \Delta^b$.

Example (Strange type)

(a)
$$o^{\zeta^8} - \frac{\zeta}{c^9} o^{\zeta^8}$$
, (b) $o^{\zeta^8} - \frac{\zeta^3}{c^3} o^{-1}$,
(c) $o^{\zeta^5} - \frac{\zeta^9}{c^9} o^{-1}$.

•
$$\Delta_{+}^{a} = \{\alpha_{1}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{1} + 2\alpha_{2}, \alpha_{2}\}.$$

•
$$s_1(\alpha_1) = -\alpha_1$$
, $s_1(\alpha_2) = \alpha_2 + 2\alpha_1$: $s_1(\Delta^a) = \Delta^b$.

•
$$\Delta^{b}_{+} = \{\alpha_{1}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{2}\}.$$

Example (Strange type)

- (a) $\circ^{\zeta^8} \frac{\zeta}{\zeta^9} \circ^{\zeta^8}$, (b) $\circ^{\zeta^8} \frac{\zeta^3}{\zeta^3} \circ^{-1}$, (c) $\circ^{\zeta^5} - \frac{\zeta^9}{\zeta^9} \circ^{-1}$.
 - $\Delta_{+}^{a} = \{\alpha_{1}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{1} + 2\alpha_{2}, \alpha_{2}\}.$
 - $s_1(\alpha_1) = -\alpha_1$, $s_1(\alpha_2) = \alpha_2 + 2\alpha_1$: $s_1(\Delta^a) = \Delta^b$.
 - Δ^b₊ = {α₁, 2α₁ + α₂, 3α₁ + 2α₂, α₁ + α₂, α₂}.
 s₂(α₁) = α₁ + α₂, s₂(α₂) = -α₂: s₂(Δ^b) = Δ^c.

Example (Strange type)

(a)
$$\circ^{\zeta^8} - \frac{\zeta}{\zeta^9} \circ^{\zeta^8}$$
, (b) $\circ^{\zeta^8} - \frac{\zeta^3}{\zeta^3} \circ^{-1}$,
(c) $\circ^{\zeta^5} - \frac{\zeta^9}{\zeta^9} \circ^{-1}$.

•
$$\Delta_{+}^{a} = \{\alpha_{1}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{1} + 2\alpha_{2}, \alpha_{2}\}.$$

•
$$s_1(\alpha_1) = -\alpha_1$$
, $s_1(\alpha_2) = \alpha_2 + 2\alpha_1$: $s_1(\Delta^a) = \Delta^b$.

•
$$\Delta^b_+ = \{ \alpha_1, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, \alpha_1 + \alpha_2, \alpha_2 \}.$$

• $s_2(\alpha_1) = \alpha_1 + \alpha_2, s_2(\alpha_2) = -\alpha_2: s_2(\Delta^b) = \Delta^c.$

•
$$\Delta_{+}^{c} = \{\alpha_{1}, 3\alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{2}\}.$$

Example (Strange type)

(a)
$$o^{\zeta^8} - \frac{\zeta}{c^9} o^{\zeta^8}$$
, (b) $o^{\zeta^8} - \frac{\zeta^3}{c^3} o^{-1}$,
(c) $o^{\zeta^5} - \frac{\zeta^9}{c^9} o^{-1}$.

•
$$\Delta^{a}_{+} = \{\alpha_{1}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{1} + 2\alpha_{2}, \alpha_{2}\}.$$

•
$$s_1(\alpha_1) = -\alpha_1$$
, $s_1(\alpha_2) = \alpha_2 + 2\alpha_1$: $s_1(\Delta^a) = \Delta^b$.

•
$$\Delta^b_+ = \{ \alpha_1, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, \alpha_1 + \alpha_2, \alpha_2 \}.$$

• $s_2(\alpha_1) = \alpha_1 + \alpha_2, s_2(\alpha_2) = -\alpha_2: s_2(\Delta^b) = \Delta^c.$

•
$$\Delta_{+}^{c} = \{\alpha_{1}, 3\alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{2}\}.$$

•
$$s_1(\alpha_1) = -\alpha_1$$
, $s_1(\alpha_2) = \alpha_2 + 3\alpha_1$: fixes Δ^c .

Example (Strange)

dim $\mathfrak{B}(V) = 432$. (a) Admits a presentation by generators x_1, x_2 and relations

$$x_1^3=x_2^3=x_{lpha_1+lpha_2}^{12}=[x_1,x_{lpha_1+2lpha_2}]_c+rac{(1+\zeta^8)(1-\zeta^7)q_{12}}{1-\zeta^9}x_{lpha_1+lpha_2}^2=0.$$

Example (Strange)

dim $\mathfrak{B}(V) = 432$. (a) Admits a presentation by generators x_1, x_2 and relations

$$x_1^3=x_2^3=x_{lpha_1+lpha_2}^{12}=[x_1,x_{lpha_1+2lpha_2}]_c+rac{(1+\zeta^8)(1-\zeta^7)q_{12}}{1-\zeta^9}x_{lpha_1+lpha_2}^2=0.$$

Example (Strange)

dim $\mathfrak{B}(V) = 432$. (a) Admits a presentation by generators x_1, x_2 and relations

$$x_1^3 = x_2^3 = x_{\alpha_1 + \alpha_2}^{12} = [x_1, x_{\alpha_1 + 2\alpha_2}]_c + \frac{(1 + \zeta^8)(1 - \zeta^7)q_{12}}{1 - \zeta^9}x_{\alpha_1 + \alpha_2}^2 = 0.$$

(b) Admits a presentation by generators x_1, x_2 and relations

$$x_1^3 = x_2^2 = x_{\alpha_1 + \alpha_2}^{12} = [x_{3\alpha_1 + 2\alpha_2}, x_{\alpha_1 + \alpha_2}]_c = 0.$$

Example (Strange)

dim $\mathfrak{B}(V) = 432$. (a) Admits a presentation by generators x_1, x_2 and relations

$$x_1^3 = x_2^3 = x_{\alpha_1 + \alpha_2}^{12} = [x_1, x_{\alpha_1 + 2\alpha_2}]_c + \frac{(1 + \zeta^8)(1 - \zeta^7)q_{12}}{1 - \zeta^9}x_{\alpha_1 + \alpha_2}^2 = 0.$$

(b) Admits a presentation by generators x_1, x_2 and relations

$$x_1^3 = x_2^2 = x_{\alpha_1 + \alpha_2}^{12} = [x_{3\alpha_1 + 2\alpha_2}, x_{\alpha_1 + \alpha_2}]_c = 0.$$

(c) Admits a presentation by generators x_1, x_2 and relations

$$x_1^{12} = x_2^2 = (\operatorname{ad}_c x_1)^4 x_2 = [x_{2\alpha_1 + \alpha_2}, x_{\alpha_1 + \alpha_2}]_c = 0.$$