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The Lifting Method of Andruskiewitsch and Schneider is the leading method to
classify pointed Hopf algebras [AS]. It involves as an inicial step to know for which
braided vector spaces their associated Nichols algebra is finite-dimensional; such
braided vector spaces were classified by Heckenberger [H].

A second step is the following one: for each of these Nichols algebras, give a nice
presentation by generators a relations. In the present talk we give an answer to this
question, following [A]. We characterize convex orders on root systems associated to
finite Weyl groupoids and use a description of coideal subalgebras of Nichols algebras
[HS]. We describe then a set of relations using the PBW bases of [Kh].

We use such presentation to prove that every finite-dimensional pointed Hopf
algebra over C, whose group of group-like elements is abelian, is generated by its
group-like and skew-primitive elements, a conjecture due to Andruskiewitsch and
Schneider.
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Introduction
General presentation by generators and relations

Minimal presentation

Nichols algebras of diagonal type
Our problem
Weyl groupoid

Fix the following setting

V vector space, dimV = θ <∞, X = {x1, . . . , xθ} a basis,

(qij) ∈ (k×)θ×θ,

α1, . . . , αθ the canonical basis of Zθ:

χ : Zθ × Zθ → k× Z-bilinear, χ(αi , αj) = qij .

X = set of words with letters in X (a basis of T (V )).

T (V ) = ⊕α∈ZθTα(V ), with Zθ-graduation deg(xi ) = αi .

Product in T (V )⊗ T (V ): a, b, c , d ∈ T (V ),
β = deg(b), γ = deg(c),

(a⊗ b)(c ⊗ d) = χ(β, γ)ac ⊗ bd .

∆ : T (V )→ T (V )⊗ T (V ) morfism of algebras defined by
∆(xi ) = xi ⊗ 1 + 1⊗ xi .
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Introduction
General presentation by generators and relations

Minimal presentation

Nichols algebras of diagonal type
Our problem
Weyl groupoid

Proposition (Lusztig, Andruskiewitsch-Schneider)

∃ a unique bilinear form in T (V ) such that

(x |yy ′) = (∆(x)|y ⊗ y ′),

(xx ′|y) = (x ′ ⊗ x |∆(y)),

(xi |xj) = δij ,

(Tα(V )|Tβ(V )) = 0,

∀x , x ′, y , y ′ ∈ T (V ), 1 ≤ i , j ≤ θ, α 6= β ∈ Zθ.

Definition

I(V ) radical of ( | ), an ideal of T (V ). B(V ) := T (V )/I(V ) is the
Nichols algebra asociated to the matrix (qij).
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General presentation by generators and relations

Minimal presentation

Nichols algebras of diagonal type
Our problem
Weyl groupoid

Problem

Classify all the matrices (qij)1≤i,j≤θ such that
dimB(V ) <∞.
For each one of these Nichols algebras, give a minimal presentation by
generators and relations, and its dimension. a

aN. Andruskiewitsch, Contemp. Math. 294, 1–57 (2002).

Answer to the first question: I. Heckenberger, Classification of arithmetic

root systems, Adv. Math. 220 (2009) 59–124.
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General presentation by generators and relations

Minimal presentation

Nichols algebras of diagonal type
Our problem
Weyl groupoid

B(V ) Zθ-graded: Hilbert series

HB(V ) :=
∑
α∈Nθ

0

(dimB(V )α)xα ∈ Z[[x1, . . . , xθ]], xα = xa1
1 · · · x

aθ
θ .

Kharchenko: ∃ a basis PBW of B(V ), whose generators are
Zθ-homogeneous, h : T → N ∪ {∞}:
B(T , <, h) := {te1

1 ...t
er
r : t1 > ... > tr , ti ∈ T , 0 < ei < h(ti )} .

deg ti = α ∈ Zθ, h(ti ) <∞, ⇒ h(ti ) = ord(χ(α, α)) =: Nα.

∆V
+ := {degrees of generators of a PBW basis of B(V )}: it does

not depend on the PBW basis.

∆V
+ root system:

HB(V ) =
∏
α∈∆V

+

(1 + xα + x2α + · · ·+ xα(Nα−1)).
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General presentation by generators and relations

Minimal presentation

Nichols algebras of diagonal type
Our problem
Weyl groupoid

−aij := max {n : (adcxi )
nxj 6= 0} = max

{
n : αj + nαi ∈ ∆V

+

}
,

si ∈ Aut(Zθ), si (αj) = αj − aijαi (aii := 2).

Proposition (Heckenberger)

dimVi = θ, q̃kj = χ(si (αk), si (αj)),

∆Vi
+ = si

(
∆V

+ \ {αi}
)
∪ {αi} .

 Weyl groupoid: in some cases, si (∆V ) = ∆Vi 6= ∆V .
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Introduction
General presentation by generators and relations

Minimal presentation

Nichols algebras of diagonal type
Our problem
Weyl groupoid

Definition

Weyl Groupoid and generalized root system (Heckenberger-Yamane):
set of objects X (for us, a certain family of matrices (qij)),

∆X = ∆X
+ ∪ −∆X

+, ∆+ ⊂ Nθ0 (X ∈ X ),

symmetries sXi , 1 ≤ i ≤ θ,

sXi (αj) = αj − aXij αi , a
X
ii = 2, aXij ∈ −N0 if i 6= j ;

sXi (∆X
+ − {αi}) = ∆Y

+ − {αi}, if sXi goes to Y .

If X = {X}  classic root system + Weyl group.
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General presentation by generators and relations

Minimal presentation

Nichols algebras of diagonal type
Our problem
Weyl groupoid

Finite root system: ∆X finite for some (all) X ∈ X , i.e. the groupoid is
finite ([HY]).

`(w) = min{k ∈ N : ∃i1, ..., ik ∈ I such that w = si1 · · · sik}.

Proposition (Cuntz and Heckenberger)

If w = idX si1 · · · sim is such that `(w) = m (reduced expression), then
βj = si1 · · · sij−1 (αij ) ∈ ∆X are positive and all different.

There exists a unique wX
0 of maximal length por any X ∈ X , and so

{βj} = ∆X
+: all the roots are real and of multiplicity one.
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Introduction
General presentation by generators and relations

Minimal presentation

First result about a presentation
Convex orders

k an algebraically closed field, char k = 0. GN group of roots of unity
such that qN = 1.

Theorem (General presentation)

dimV = θ, (qij) ∈ (k×)θ×θ such that |∆V
+| <∞. B(V ) is presented by

generators x1, . . . , xθ and relations:

1 x
Nβ

β = 0, β ∈ ∆V
+, Nβ <∞,

2 [xα, xβ]c =
∑

deg u=α+β c
u
α,β u, α < β,

←−←−

u: elements of the PBW basis written in letters xγ , α ≤ γ ≤ β.

Explicit formula for the coefficients cuα,β .

Generalization of quantum Serre relations:

0 = (adcxi )
1−aij xj = [xi , (adcxi )

−aij xj ]c .
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Introduction
General presentation by generators and relations

Minimal presentation

First result about a presentation
Convex orders

w = idV si1 · · · sik ∈ Hom(W ,V ) reduced expression:

Lw = {α ∈ ∆V
+ : w−1(α) ∈ ∆W

− }.

order associated to si1 · · · sik :

αi1 < si1 (αi2 ) < . . . < si1 · · · sik−1
(αik ).

Definition

A total order < en ∆V
+ is convex if for each α, β ∈ ∆+, α < β ,

α + β ∈ ∆+, it holds α < α + β < β.
It is strongly convex if for each β =

∑
βj ∈ ∆+, β1 ≤ β2 ≤ · · · ≤ βn, it

holds β1 < β < βn.
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Introduction
General presentation by generators and relations

Minimal presentation

First result about a presentation
Convex orders

Theorem

Given < on ∆V
+, the following statements are equivalent:

1 the order is associated to an expression of the element of maximal
length of Hom(W,V ),

2 the order is strongly convex,

3 the order is convex.

Theorem

The order on Kharchenko’s PBW generators is convex.

Proposition

The Kharchenko’s PBW basis of B(V ) is orthogonal for (·|·).
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Introduction
General presentation by generators and relations

Minimal presentation

First result about a presentation
Convex orders

Remark

Fundamental step: clssification of coideal subalgebras of B(V ), with
a bijection with the Weyl groupoid presenving orders
(Heckenberger-Schneider).

Finitely generated ideal.

Proof does not involve Heckenberger’s classification.

Key step to obtain a minimal presentation.
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Introduction
General presentation by generators and relations

Minimal presentation

Main Theorem
Consequences and details of proof
Some explicit examples

Theorem (Minimal presentation)

(qij)1≤i,j≤θ, θ = dimV , ∆V
+ = {β1, . . . , βM} finite. B(V ) presented by

generators x1, . . . , xθ and relations:

xNα
α , α ∈ O(χ);

(adcxi )
mij+1xj , q

mij+1
ii 6= 1;

xNi

i , i a non Cartan vertex;

if qii = qijqji = qjj = −1, ((adcxi )xj)
2 ;

if qjj = −1, qikqki = qijqjiqjkqkj = 1, [(adcxi )(adcxj)xk , xj ]c ;

if qjj = −1, qiiqijqji ∈ G6, and also qii ∈ G3 or mij ≥ 3,[
(adcxi )

2xj , (adcxi )xj
]
c

;
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General presentation by generators and relations

Minimal presentation

Main Theorem
Consequences and details of proof
Some explicit examples

Theorem (Minimal presentation)

if qii = ±qijqji ∈ G3, qikqki = 1, and also −qjj = qjiqijqjkqkj = 1 or
q−1
jj = qjiqij = qjkqkj 6= −1,[

(adcxi )
2(adcxj)xk , (adcxi )xj

]
c

;

if qikqki , qijqji , qjkqkj 6= 1,

[xi , (adcxj)xk ]c−
1− qjkqkj

qkj(1− qikqki )
[(adcxi )xk , xj ]c−qij(1−qkjqjk)xj(adcxi )xk ;

if i , j , k ∈ {1, . . . , θ} are such that

qii = qjj = −1, (qijqji )
2 = (qjkqkj)

−1, qikqki = 1, or

qjj = qkk = qjkqkj = −1, qii = −qijqji ∈ G3, qikqki = 1, or

qii = qjj = qkk = −1, qijqji = qkjqjk ∈ G3, qikqki = 1, or

qii = qkk = −1, qjj = −qkjqjk = (qijqji )
±1 ∈ G3, qikqki = 1,

[
[(adcxi )xj , (adcxi )(adcxj)xk ]c , xj

]
c

;
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if qii = qjj = −1, (qijqji )
3 = (qjkqkj)

−1, qikqki = 1,[[
(adcxi )xj , [(adcxi )xj , (adcxi )(adcxj)xk ]c

]
c
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]
c

;
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]
c
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c
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ij q−1
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c

;
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c
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c
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[(adcxi )xj , (adcxi )(adcxj)xk ]c ;
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ii ,[

(adcxi )
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2xk
]
c

;
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2 ;

if qjj = −1, qiiqijqji /∈ G6, and also mij ∈ {4, 5}, or mij = 3, qii ∈ G4,

[
xi ,
[
(adcxi )

2xj , (adcxi )xj
]
c

]
c
−

1− qiiqjiqij − q2
iiq

2
jiq

2
ijqjj

(1− qiiqijqji )qji

(
(adcxi )

2xj
)2

;

Iván Angiono Presentation of Nichols algebras



Introduction
General presentation by generators and relations

Minimal presentation

Main Theorem
Consequences and details of proof
Some explicit examples

Theorem (Minimal presentation)

if 4αi + 3αj /∈ ∆χ
+, qjj = −1 or mji ≥ 2, and mij ≥ 3, or mij = 2,

qii ∈ G3,
[x3αi+2αj , (adcxi )xj ]c ;

if 3αi + 2αj ∈ ∆χ
+, 5αi + 3αj /∈ ∆χ

+, and q3
iiqijqji , q

4
iiqijqji 6= 1,

[(adcxi )
2xj , x3αi+2αj ]c ;

if 4αi + 3αj ∈ ∆χ
+, 5αi + 4αj /∈ ∆χ

+,

[x4αi+3αj , (adcxi )xj ]c ;

if qjj = −1, 5αi + 4αj ∈ ∆χ
+,

[x2αi+αj , x4αi+3αj ]c −
b − (1 + qii )(1− qiiζ)(1 + ζ + qiiζ

2)q6
iiζ

4

a q3
iiq

2
ijq

3
ji

x2
3αi+2αj

.
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Andruskiewitsch-Schneider Conjecture: Any finite-dimensional
pointed Hopf algebra is generated by group-like and skew-primitive
elements.

Theorem

True when G (H) is abelian.

That is, every f.d. pointed Hopf algebra over an abelian group is a
deformation of some B(V )#kΓ.
Problem: Obtain all the deformations (liftings) of H = B(V )#kΓ, Γ
abelian, which are pointed Hopf algebras.
Work in progress: Andruskiewitsch - A. - Garćıa Iglesias

Iván Angiono Presentation of Nichols algebras



Introduction
General presentation by generators and relations

Minimal presentation

Main Theorem
Consequences and details of proof
Some explicit examples

Andruskiewitsch-Schneider Conjecture: Any finite-dimensional
pointed Hopf algebra is generated by group-like and skew-primitive
elements.

Theorem

True when G (H) is abelian.

That is, every f.d. pointed Hopf algebra over an abelian group is a
deformation of some B(V )#kΓ.
Problem: Obtain all the deformations (liftings) of H = B(V )#kΓ, Γ
abelian, which are pointed Hopf algebras.
Work in progress: Andruskiewitsch - A. - Garćıa Iglesias
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About the proof: use Lusztig’s isomorphisms Ti moving through the
Weyl groupoid (Heckenberger).

U(χ) = D(T (V , χ)#Zθ), U(χ) = D(B(V , χ)#Zθ),
Ii (χ) ideal generated by (adcEi )

1−aijEj , (adcFi )
1−aijFj and/or ENi

i ,FNi

i ,
depending on i ,

U(χ)/Ii (χ) // //

Ti

��

U(χ)

Ti

��
U(s∗i χ)/Ii (s

∗
i χ) // // U(s∗i χ)

.
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About the proof: use Lusztig’s isomorphisms Ti moving through the
Weyl groupoid (Heckenberger).

Ũ(χ) = D(B̃(V , χ)#Zθ), B̃(V , χ) = T (V , χ)/I (χ),
I (χ): enough relations to ensure the existence of all the isomorphisms.
Just does not contain the power root vectors.

U(χ)/Ii (χ) // //

Ti

��

Ũ(χ) // //

Ti

��

U(χ)

Ti

��
U(s∗i χ)/Ii (s

∗
i χ) // // Ũ(s∗i χ) // // U(s∗i χ)
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Generalized Dynkin diagrams (Heckenberger)(
qii qij
qji qjj

)
: ◦qii ◦qjj qijqji = 1

◦qii
qijqji ◦qjj qijqji 6= 1.

Example (Matrices ’super’)

Type G (3): q ∈ k×, q3, q2 6= 1,

(a) ◦−1 q−1

◦q
q−3

◦q3

, (b) ◦−1 q
◦−1 q−3

◦q3

,

(c) ◦−1

q3

◦q

q−1

q−2

◦−1

, (d) ◦−q−1 q2

◦−1 q−3

◦q3

.

∆a
+ 6= ∆b

+ 6= ∆c
+ 6= ∆d

+
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Example (Super G (3))

(a) Admits a presentation by generators x1, x2, x3 and relations

x2
1 = xNα

α = 0, α ∈ ∆χ
+,Nα 6= 2,

(adcx2)2x1 = (adcx1)x3 = (adcx2)4x3 = (adcx3)2x2 = 0.

Add too
[[

[(adcxi )(adcxj)xk , xj ]c , xj
]
c
, xj
]
c
, if q ∈ G4.

(b) Admits a presentation by generators x1, x2, x3 and relations

x2
1 = x2

2 = xNα
α = 0, α ∈ ∆χ

+,Nα 6= 2,[
[(adcx1)x2, [(adcx1)x2, (adcx1)(adcx2)x3]c ]c , x2

]
c

= (adcx3)2x2 = 0.
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Example (Strange type)

ζ root of unity of order 12.

(a) ◦ζ8 ζ
◦ζ8

, (b) ◦ζ8 ζ3

◦−1 ,

(c) ◦ζ5 ζ9

◦−1 .

∆a
+ = {α1, 2α1 + α2, α1 + α2, α1 + 2α2, α2}.

s1(α1) = −α1, s1(α2) = α2 + 2α1: s1(∆a) = ∆b.

∆b
+ = {α1, 2α1 + α2, 3α1 + 2α2, α1 + α2, α2}.

s2(α1) = α1 + α2, s2(α2) = −α2: s2(∆b) = ∆c .

∆c
+ = {α1, 3α1 + α2, 2α1 + α2, α1 + α2, α2}.

s1(α1) = −α1, s1(α2) = α2 + 3α1: fixes ∆c .
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Example (Strange)

dimB(V ) = 432.
(a) Admits a presentation by generators x1, x2 and relations

x3
1 = x3

2 = x12
α1+α2

= [x1, xα1+2α2 ]c +
(1 + ζ8)(1− ζ7)q12

1− ζ9
x2
α1+α2

= 0.

(b) Admits a presentation by generators x1, x2 and relations

x3
1 = x2

2 = x12
α1+α2

= [x3α1+2α2 , xα1+α2 ]c = 0.

(c) Admits a presentation by generators x1, x2 and relations

x12
1 = x2

2 = (adcx1)4x2 = [x2α1+α2 , xα1+α2 ]c = 0.
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