Crossed product of Hopf algebras
 Ana Agore (Free University of Brussels, Belgium) ana.agore@gmail.com

The main properties of the crossed product in the category of Hopf algebras are investigated. Let A and H be two Hopf algebras connected by two morphism of coalgebras $\triangleright: H \otimes A \rightarrow A, f: H \otimes H \rightarrow A$. The crossed product $A \#_{f}^{\triangleright} H$ is a new Hopf algebra containing A as a normal Hopf subalgebra. In fact, we prove that a Hopf algebra E is isomorphic as a Hopf algebra to a crossed product of Hopf algebras $A \#_{f}^{\triangleright} H$ if and only if E factorizes through a normal Hopf subalgebra A and a subcoalgebra H such that $1_{E} \in H$. The universality of the construction, the existence of integrals, commutativity or involutivity of the crossed product are studied. The crossed product $A \#_{f}^{\triangleright} H$ is a semisimple Hopf algebra if and only if both Hopf algebras A and H are semisimple. Looking at the quantum side of the construction we shall give necessary and sufficient conditions for a crossed product to be a coquasitriangular (braided) Hopf algebra. In particular, all braided structures on the monoidal category of $A \#_{f}^{\triangleright} H$-comodules are explicitly described in terms of their components.

Bibliography

[1] A.L. Agore, Crossed product of Hopf algebras. Preprint 2011.

Crossed product of Hopf algebras

Ana Agore

Free University of Brussels

Almeria, July 2011

The crossed product of Hopf algebras is a special case of the unified product by considering the right action $h \triangleleft a=\varepsilon_{A}(a) h$, for all $h \in H$ and $a \in A$

Let H be a Hopf algebra, A a k-algebra and two k-linear maps $\cdot: H \otimes A \rightarrow A, f: H \otimes H \rightarrow A$ such that:

$$
\begin{gathered}
h \cdot 1_{A}=\varepsilon_{H}(h) 1_{A} \\
1_{H} \cdot a=a \\
h \cdot(a b)=\left(h_{(1)} \cdot a\right)\left(h_{(2)} \cdot b\right) \\
f\left(h, 1_{H}\right)=f\left(1_{H}, h\right)=\varepsilon_{H}(h) 1_{A}
\end{gathered}
$$

for all $h \in H, a, b \in A$.

Let H be a Hopf algebra, A a k-algebra and two k-linear maps $\cdot: H \otimes A \rightarrow A, f: H \otimes H \rightarrow A$ such that:

$$
\begin{gathered}
h \cdot 1_{A}=\varepsilon_{H}(h) 1_{A} \\
1_{H} \cdot a=a \\
h \cdot(a b)=\left(h_{(1)} \cdot a\right)\left(h_{(2)} \cdot b\right) \\
f\left(h, 1_{H}\right)=f\left(1_{H}, h\right)=\varepsilon_{H}(h) 1_{A}
\end{gathered}
$$

for all $h \in H, a, b \in A$.
The crossed product $A \#_{f} H$ of A with H is the k-module $A \otimes H$ with the multiplication given by:

$$
\begin{equation*}
(a \otimes h) *(c \otimes g):=a\left(h_{(1)} \cdot c\right) f\left(h_{(2)}, g_{(1)}\right) \otimes h_{(3)} g_{(2)} \tag{1}
\end{equation*}
$$

Blattner, Cohen, Montgomery - Doi, Takeuchi:

Theorem

$\left(A \#_{f} H, *\right)$ is an associative algebra with identity element $1_{A} \# 1_{H}$ if and only if the following two compatibility conditions hold:

$$
\begin{aligned}
& \quad\left[g_{(1)} \cdot\left(h_{(1)} \cdot a\right)\right] f\left(g_{(2)}, h_{(2)}\right)=f\left(g_{(1)}, h_{(1)}\right)\left(\left(g_{(2)} h_{(2)}\right) \cdot a\right) \\
& \left(g_{(1)} \cdot f\left(h_{(1)}, l_{(1)}\right)\right) f\left(g_{(2)}, h_{(2)} /(2)\right)=f\left(g_{(1)}, h_{(1)}\right) f\left(g_{(2)} h_{(2)}, l\right) \\
& \text { for all } a \in A, g, h, l \in H .
\end{aligned}
$$

Blattner, Cohen, Montgomery - Doi, Takeuchi:

Theorem

$\left(A \#_{f} H, *\right)$ is an associative algebra with identity element $1_{A} \# 1_{H}$ if and only if the following two compatibility conditions hold:

$$
\begin{gathered}
{\left[g_{(1)} \cdot\left(h_{(1)} \cdot a\right)\right] f\left(g_{(2)}, h_{(2)}\right)=f\left(g_{(1)}, h_{(1)}\right)\left(\left(g_{(2)} h_{(2)}\right) \cdot a\right)} \\
\left(g_{(1)} \cdot f\left(h_{(1)}, l_{(1)}\right)\right) f\left(g_{(2)}, h_{(2)} l_{(2)}\right)=f\left(g_{(1)}, h_{(1)}\right) f\left(g_{(2)} h_{(2)}, l\right)
\end{gathered}
$$

for all $a \in A, g, h, l \in H$. In this case $\left(A \#_{f} H, *\right)$ is called the crossed product of H acting on A.

Let A and H be two Hopf algebras and $\cdot: H \otimes A \rightarrow A$ and $f: H \otimes H \rightarrow A$ two coalgebra morphisms.

Proposition

Then the crossed product $A \#_{f} H$ has a Hopf algebra structure with the coalgebra structure given by the tensor product of coalgebras if and only if the following two compatibility conditions hold:

$$
\begin{aligned}
g_{(1)} \otimes g_{(2)} \cdot a & =g_{(2)} \otimes g_{(1)} \cdot a \\
g_{(1)} h_{(1)} \otimes f\left(g_{(2)}, h_{(2)}\right) & =g_{(2)} h_{(2)} \otimes f\left(g_{(1)}, h_{(1)}\right)
\end{aligned}
$$

for all $g, h \in H$ and $a, b \in A$

Remark

The antipode of the Hopf algebra $A \#_{f} H$ is given by the formula:

$$
S(a \# g):=\left(S_{A}\left[f\left(S_{H}\left(g_{(2)}\right), g_{(3)}\right)\right] \# S_{H}\left(g_{(1)}\right)\right) \cdot\left(S_{A}(a) \# 1_{H}\right)
$$

for all $a \in A$ and $g \in H$.

Definition

A quadruple (A, H, \cdot, f), where A and H are Hopf algebras and $\cdot: H \otimes A \rightarrow A, f: H \otimes H \rightarrow A$ are two coalgebra maps such that $A \#_{f} H$ is a Hopf algebra with the coalgebra structure given by the tensor product of coalgebras is called crossed system of Hopf algebras. The corresponding Hopf algebra $A \#_{f}{ }^{H}$ will be called crossed product of Hopf algebras

A special case of the cocycle bicrossproduct bialgebra

A special case of the cocycle bicrossproduct bialgebra

1. Constructed for bialgebras by Majid and Soibelman (1994)

A special case of the cocycle bicrossproduct bialgebra

1. Constructed for bialgebras by Majid and Soibelman (1994)
2. Constructed for Hopf algebras by Andruskiwitsch and Devoto (1995)

Examples

1) Let A, H be two Hopf algebras and \cdot, f be the trivial action respectively the trivial cocycle, that is: $a \cdot h=\varepsilon(a) h$ and $f(g, h)=\varepsilon(g) \varepsilon(h)$ for all $a \in A$ and $g, h \in H$. Then the associated crossed product is exactly the tensor product of Hopf algebras $A \otimes H$.

Examples

2) Let A, H be two Hopf algebras and f be the trivial cocycle, that is $f(g, h)=\varepsilon(g) \varepsilon(h)$ for all $g, h \in H$. If A is an H-module algebra via the coalgebra map and relation

$$
g_{(1)} h_{(1)} \otimes f\left(g_{(2)}, h_{(2)}\right)=g_{(2)} h_{(2)} \otimes f\left(g_{(1)}, h_{(1)}\right)
$$

is fulfilled then the crossed product has the algebra structure given by the smash product (Molnar - cocommutative case) and it will be denoted by $A \# H$.

Examples

3) (H, G, f, \cdot) be a normalized crossed system of groups then ($k H, k G, \widetilde{f}, \widetilde{\cdot}$) is a crossed system of Hopf algebras where \widetilde{f} and $\widetilde{\text {. }}$ are obtained by linearizing the maps f and \cdot. Moreover, there exists an isomorphism of Hopf algebras

$$
k\left[H \times_{f}^{\dot{f}} G\right] \cong k H \#_{\tilde{\tilde{f}}} k G
$$

and any crossed product of Hopf algebras between two group algebras arises in this way.

Examples

4) Let A and H be two Hopf algebras such that H is cocommutative and $\gamma: H \rightarrow A$ a unitary coalgebra map. Define:

$$
\begin{gathered}
\cdot:=\gamma_{\gamma}: H \otimes A \rightarrow A, \quad h \cdot a:=\gamma\left(h_{(1)}\right) a \gamma^{-1}\left(h_{(2)}\right) \\
f:=f_{\gamma}: H \otimes H \rightarrow A, \quad f(h, g)=\gamma\left(h_{(1)}\right) \gamma\left(g_{(1)}\right) \gamma^{-1}\left(h_{(2)} g_{(2)}\right)
\end{gathered}
$$

Then (A, H, \cdot, f) is a crossed system of Hopf algebras and, moreover, the map given by:

$$
\varphi: A \#_{f} H \rightarrow A \otimes H, \quad \varphi(a \otimes h)=a \gamma\left(h_{(1)}\right) \otimes h_{(2)}
$$

for all $a \in A$ and $h \in H$ is an isomorphism of Hopf algebras

Definition

We say that a Hopf algebra E factorizes through a Hopf subalgebra A and a subcoalgebra H if the multiplication map $u: A \otimes H \rightarrow E, u(a \otimes h)=a h$, for all $a \in A, h \in H$ is bijective.

The main property of the crossed product of Hopf algebras is the following reconstruction type theorem:

Definition

We say that a Hopf algebra E factorizes through a Hopf subalgebra A and a subcoalgebra H if the multiplication map $u: A \otimes H \rightarrow E, u(a \otimes h)=a h$, for all $a \in A, h \in H$ is bijective.

The main property of the crossed product of Hopf algebras is the following reconstruction type theorem:

Theorem

A Hopf algebra E is isomorphic as a Hopf algebra to a crossed product $A \#_{f} H$ of Hopf algebras if and only if E factorizes through a normal Hopf subalgebra A and a subcoalgebra H such that $1_{E} \in H$.

S. Burciu 2011:

Corollary

If a Hopf algebra E factorizes through two Hopf subalgebras A and H, with A normal in E, then E is isomorphic as a Hopf algebra to a smash product.

Universal properties: Let (A, H, \cdot, f) be a crossed system of Hopf algebras.

Proposition

(1) For any Hopf algebra X, any Hopf algebra map $u: A \rightarrow X$ and any coalgebra map $v: H \rightarrow X$ such that the following compatibilities hold for all $h, g \in H, b \in A$:

$$
\begin{aligned}
u\left(f\left(h_{(1)}, g_{(1))}\right) v\left(h_{(2)} g_{(2)}\right)\right. & =v(h) v(g) \\
u\left(h_{(1)} \cdot b\right) v\left(h_{(2)}\right) & =v(h) u(b)
\end{aligned}
$$

there exists a unique Hopf algebra map $w: A \#_{f}^{\triangleright} H \rightarrow X$ such that the following diagram commutes:

Proposition

(2) For any Hopf algebra X, any Hopf algebra map $v: X \rightarrow H$ and any coalgebra map $u: X \rightarrow A$ such that the following compatibilities hold for all $x, y \in X$:

$$
\begin{array}{r}
u\left(x_{(1)}\right) \otimes v\left(x_{(2)}\right)=u\left(x_{(2)}\right) \otimes v\left(x_{(1)}\right) \\
u(x y)=u\left(x_{(1)}\right)\left[v\left(x_{(2)}\right) \cdot u\left(y_{(1)}\right)\right] f\left(v\left(x_{(3)}\right), v\left(y_{(2)}\right)\right)
\end{array}
$$

there exists a unique Hopf algebra map w : X $\rightarrow A \#_{f} H$ such that the following diagram commutes:

Classification

Definition

Let A and H be two Hopf algebras, a coalgebra map $u: H \rightarrow A$ is called a coalgebra lazy 1 -cocyle if $u\left(1_{H}\right)=1_{A}$ and the following compatibility holds:

$$
h_{(1)} \otimes u\left(h_{(2)}\right)=h_{(2)} \otimes u\left(h_{(1)}\right)
$$

for all $h \in H$.

Proposition

Let A, H be two Hopf algebras and $A \#_{f}^{\prime} H, A \#_{f^{\prime}}^{\prime} H$ be two crossed products of Hopf algebras. The following are equivalent: (1) $A \#_{f}{ }_{f} H \approx A \#_{f^{\prime}}^{\prime} H$ (isomorphism of Hopf algebras, left A-modules and right H -comodules);
(2) There exists a coalgebra lazy 1-cocyle $u: H \rightarrow A$ such that:
(1) $h \cdot^{\prime} a=u^{-1}\left(h_{(1)}\right)\left(h_{(2)} \cdot a\right) u\left(h_{(3)}\right)$
(2) $f^{\prime}(h, k)=u^{-1}\left(h_{(1)}\right)\left(h_{(2)} \cdot u^{-1}\left(k_{(1)}\right) f\left(h_{(3)}, k_{(2)}\right)\right) u\left(h_{(4)} k_{(3)}\right)$
for all $a \in A$ and $h, g \in H$.

Proposition

Let A, H be two Hopf algebras and $A \#_{f}^{\prime} H, A \#_{f^{\prime}}^{\prime} H$ be two crossed products of Hopf algebras. The following are equivalent:
(1) $A \#_{f}{ }_{f} H \approx A \#_{f^{\prime}}^{\prime} H$ (isomorphism of Hopf algebras, left A-modules and right H-comodules);
(2) There exists a coalgebra lazy 1-cocyle $u: H \rightarrow A$ such that:
(1) $h \cdot^{\prime} a=u^{-1}\left(h_{(1)}\right)\left(h_{(2)} \cdot a\right) u\left(h_{(3)}\right)$
(2) $f^{\prime}(h, k)=u^{-1}\left(h_{(1)}\right)\left(h_{(2)} \cdot u^{-1}\left(k_{(1)}\right) f\left(h_{(3)}, k_{(2)}\right)\right) u\left(h_{(4)} k_{(3)}\right)$
for all $a \in A$ and $h, g \in H$. In this case we shall say that the crossed systems (A, H, \cdot, f) and $\left(A, H, .^{\prime}, f^{\prime}\right)$ are cohomologous and we denote the equivalence classes of crossed systems modulo such transformations by $\mathcal{H}^{2}(H, A)$.

Remark

A crossed system of Hopf algebras which is equivalent to the trivial one is called a coboundary. An example of a coboundary is given in Example 4.

The general problem that we are interested in related to the crossed product is the following:

The general problem that we are interested in related to the crossed product is the following:

Problem: Let "P" be an algebraic property. Give necessary and sufficient conditions for a crossed product of Hopf algebras $A \#_{f} H$ to have the property " P " in terms of his components.

The general problem that we are interested in related to the crossed product is the following:

Problem: Let "P" be an algebraic property. Give necessary and sufficient conditions for a crossed product of Hopf algebras $A_{f} H$ to have the property " P " in terms of his components.

In what follows, we give complete answers for " P " equal to:

- Commutative
- Involutory
- Coquasitriangular

Proposition

Let $A \#_{f} H$ be a crossed product of Hopf algebras. Then $A \#_{f} H$ is commutative if and only if A and H are commutative, • is trivial and f is symmetric (i.e. $f(g, h)=f(h, g)$ for all $g, h \in H$).

Proposition

Let $A \#_{f} H$ be a crossed product of Hopf algebras.
(1) If $A \#_{f} H$ is involutory then both A and H are involutory Hopf algebras.
(2) Suppose that H is cocommutative. Then $A \#_{f} H$ is involutory if and only if A is involutory and $g_{(1)} \cdot f\left(S_{H}\left(g_{(2)}\right), g_{(3)}\right)=f\left(g_{(1)}, S_{H}\left(g_{(2)}\right)\right)$ for all $g \in H$.

Definition

Recall that if A and H are two Hopf algebras and $\alpha: A \otimes H \rightarrow k$ is a k-linear map which fulfills the compatibilities:
(BR1) $\alpha(x y, z)=\alpha\left(x, z_{(1)}\right) \alpha\left(y, z_{(2)}\right)$
(BR2) $\alpha(1, x)=\varepsilon(x)$
(BR3) $\alpha(x, y z)=p\left(x_{(1)}, z\right) p\left(x_{(2)}, y\right)$
(BR4) $\alpha(y, 1)=\varepsilon(y)$
for all $x, y \in A, z \in H$, then α is called skew pairing on (A, H)

Definition

Recall that if A and H are two Hopf algebras and $\alpha: A \otimes H \rightarrow k$ is a k-linear map which fulfills the compatibilities:
(BR1) $\alpha(x y, z)=\alpha\left(x, z_{(1)}\right) \alpha\left(y, z_{(2)}\right)$
(BR2) $\alpha(1, x)=\varepsilon(x)$
(BR3) $\alpha(x, y z)=p\left(x_{(1)}, z\right) p\left(x_{(2)}, y\right)$
(BR4) $\alpha(y, 1)=\varepsilon(y)$ for all $x, y \in A, z \in H$, then α is called skew pairing on (A, H)

Definition

A Hopf algebra H is called coquasitriangular if there exists a linear map $p: H \otimes H \rightarrow k$ such that relations $(B R 1)-(B R 4)$ are fulfilled and
(BR5) $p\left(x_{(1)}, y_{(1)}\right) x_{(2)} y_{(2)}=y_{(1)} x_{(1)} p\left(x_{(2)}, y_{(2)}\right)$
holds for all $x, y, z \in H$.

Definition

Let A, H be two Hopf algebras, $f: H \otimes H \rightarrow A$ a coalgebra map and $p: A \otimes A \rightarrow k$ a coquasitriangular structure on A. A linear map $u: A \otimes H \rightarrow k$ is called (p, f) - right skew pairing on (A, H) if the following compatibilities are fulfilled for any $a, b \in A, g$, $t \in H$:
$(\mathrm{RS} 1) u(a b, t)=u\left(a, t_{(1)}\right) u\left(b, t_{(2)}\right)$
(RS2) $u(1, h)=\varepsilon(h)$
$(\mathrm{RS} 3) u\left(a_{(1)}, g_{(2)} t_{(2)}\right) p\left(a_{(2)}, f\left(g_{(1)}, t_{(1)}\right)\right)=u\left(a_{(1)}, t\right) u\left(a_{(2)}, g\right)$
$(\mathrm{RS} 4) u(a, 1)=\varepsilon(a)$

Definition

Let A, H be two Hopf algebras, $f: H \otimes H \rightarrow A$ a coalgebra map and $p: A \otimes A \rightarrow k$ a coquasitriangular structure on A. A linear map $v: H \otimes A \rightarrow k$ is called (p, f) - left skew pairing on (H, A) if the following compatibilities are fulfilled for any $b, c \in A, h$, $g \in H$:
(LS1) $p\left(f\left(h_{(1)}, g_{(1)}\right), c_{(1)}\right) v\left(h_{(2)} g_{(2)}, c_{(2)}\right)=v\left(h, c_{(1)}\right) v\left(g, c_{(2)}\right)$
(LS2) $v(1, a)=\varepsilon(a)$
(LS3) $v(h, b c)=v\left(h_{(1)}, c\right) v\left(h_{(2)}, b\right)$
$(\mathrm{LS} 4) \quad v(h, 1)=\varepsilon(h)$

Definition

Let A, H be two Hopf algebras, $f: H \otimes H \rightarrow A$ a coalgebra map and $p: A \otimes A \rightarrow k$ a coquasitriangular structure on A. A linear map $v: H \otimes A \rightarrow k$ is called (p, f) - left skew pairing on (H, A) if the following compatibilities are fulfilled for any $b, c \in A, h$, $g \in H$:
(LS1) $p\left(f\left(h_{(1)}, g_{(1)}\right), c_{(1)}\right) v\left(h_{(2)} g_{(2)}, c_{(2)}\right)=v\left(h, c_{(1)}\right) v\left(g, c_{(2)}\right)$
(LS2) $v(1, a)=\varepsilon(a)$
(LS3) $v(h, b c)=v\left(h_{(1)}, c\right) v\left(h_{(2)}, b\right)$
$(\mathrm{LS} 4) \quad v(h, 1)=\varepsilon(h)$

Example

If $f=\varepsilon_{H} \otimes \varepsilon_{H}$ then the notions of (p, f) - right skew pairing and (p, f) - left skew pairing coincide with the notion of skew pairing on (A, H) respectively (H, A).

Example

Let $L=<t \mid t^{n}=1>$ and $G=<g \mid g^{m}=1>$ be two cyclic groups of orders n respectively m and consider the group Hopf algebras $A=k[L]$ and $H=k[G]$.

Example

Let $L=<t \mid t^{n}=1>$ and $G=<g \mid g^{m}=1>$ be two cyclic groups of orders n respectively m and consider the group Hopf algebras $A=k[L]$ and $H=k[G]$.
In this setting a coalgebra map $f: k[G] \otimes k[G] \rightarrow k[L]$ is completely determined by a map
$\alpha:\{0,1, \ldots, m-1\} \times\{0,1, \ldots, m-1\} \rightarrow\{0,1, \ldots, n-1\}$ such that $f\left(g^{i}, g^{j}\right)=t^{\alpha(i, j)}$.

Example

Let $L=<t \mid t^{n}=1>$ and $G=<g \mid g^{m}=1>$ be two cyclic groups of orders n respectively m and consider the group Hopf algebras $A=k[L]$ and $H=k[G]$.
In this setting a coalgebra map $f: k[G] \otimes k[G] \rightarrow k[L]$ is completely determined by a map
$\alpha:\{0,1, \ldots, m-1\} \times\{0,1, \ldots, m-1\} \rightarrow\{0,1, \ldots, n-1\}$ such that $f\left(g^{i}, g^{j}\right)=t^{\alpha(i, j)}$.
The coquasitriangular structures on $k[L]$ are given by:

$$
p: k[L] \otimes k[L] \rightarrow k, \quad p\left(t^{a}, t^{b}\right)=\xi^{a b}
$$

where $a, b \in \overline{0, n-1}$ and $\xi \in k$ such that $\xi^{n}=1$.

Example

Then there exists $u: k[L] \otimes k[G] \rightarrow k$ a (p, f) - right skew pairing if and only if α is a symmetric map and there exists $v \in k$ such that $v^{n}=1$ and $v^{m}=\xi^{\alpha(1, m-1)}$. In this case the (p, f) - right skew pairing $u: k[L] \otimes k[G] \rightarrow k$ is given by:

$$
u\left(t^{a}, g^{b}\right)=v^{a b} \xi^{-\alpha(1, b-1)}, \quad a \in \overline{0, n-1}, b \in \overline{0, m-1} .
$$

Definition

Let A and H be two Hopf algebras, $p: A \otimes A \rightarrow k$ a coquasitriangular structure on $A, u: A \otimes H \rightarrow k$ a (p, f) - right skew pairing on (A, H) and $v: H \otimes A \rightarrow k$ a (p, f) - left skew pairing on (H, A). A linear map $\tau: H \otimes H \rightarrow k$ is called (u, v) skew coquasitriangular structure on H if the following compatibilities are fulfilled for all $h, g, t \in H$:
(SB1) $u\left(f\left(h_{(1)}, g_{(1)}\right), t_{(1)}\right) \tau\left(h_{(2)} g_{(2)}, t_{(2)}\right)=\tau\left(h, t_{(1)}\right) \tau\left(g, t_{(2)}\right)$
(SB2) $\tau(1, h)=\varepsilon(h)$
(SB3) $\tau\left(h_{(1)}, g_{(2)} t_{(2)}\right) v\left(h_{(2)}, f\left(g_{(1)}, t_{(1)}\right)\right)=\tau\left(h_{(1)}, t\right) \tau\left(h_{(2)}, g\right)$
(SB4) $\tau(g, 1)=\varepsilon(g)$
(SB5) $\tau\left(h_{(1)}, g_{(1)}\right) h_{(2)} g_{(2)}=g_{(1)} h_{(1)} \tau\left(h_{(2)}, g_{(2)}\right)$

Definition

Let A and H be two Hopf algebras, $p: A \otimes A \rightarrow k$ a coquasitriangular structure on $A, u: A \otimes H \rightarrow k$ a (p, f) - right skew pairing on (A, H) and $v: H \otimes A \rightarrow k$ a (p, f) - left skew pairing on (H, A). A linear map $\tau: H \otimes H \rightarrow k$ is called (u, v) skew coquasitriangular structure on H if the following compatibilities are fulfilled for all $h, g, t \in H$:
(SB1) $u\left(f\left(h_{(1)}, g_{(1)}\right), t_{(1)}\right) \tau\left(h_{(2)} g_{(2)}, t_{(2)}\right)=\tau\left(h, t_{(1)}\right) \tau\left(g, t_{(2)}\right)$
(SB2) $\tau(1, h)=\varepsilon(h)$
(SB3) $\tau\left(h_{(1)}, g_{(2)} t_{(2)}\right) v\left(h_{(2)}, f\left(g_{(1)}, t_{(1)}\right)\right)=\tau\left(h_{(1)}, t\right) \tau\left(h_{(2)}, g\right)$
(SB4) $\tau(g, 1)=\varepsilon(g)$
(SB5) $\tau\left(h_{(1)}, g_{(1)}\right) h_{(2)} g_{(2)}=g_{(1)} h_{(1)} \tau\left(h_{(2)}, g_{(2)}\right)$

Remark

If $f=\varepsilon_{H} \otimes \varepsilon_{H}$ then the (u, v) - skew coquasitriangular structure τ is a coquasitriangular structure on H in the classical sense.

Theorem

Let (A, H, \cdot, f) be a crossed system of Hopf algebras. The following are equivalent:

1) $\left(A \#_{f} H, \sigma\right)$ is a coquasitriangular Hopf algebra
2) There exists four linear maps $p: A \otimes A \rightarrow k, \tau: H \otimes H \rightarrow k$, $u: A \otimes H \rightarrow k, v: H \otimes A \rightarrow k$ such that (A, p) is a coquasitrangular Hopf algebra, u is a (p, f) - right skew pairing on $(A, H), v$ is a (p, f) - left skew pairing on $(H, A), \tau$ is a (u, v)-skew coquasitriangular structure on H and the following compatibilities are fulfilled:

Theorem

$$
\begin{gathered}
v\left(h_{(1)}, b_{(1)}\right)\left(h_{(2)} \cdot b_{(2)}\right) \otimes h_{(3)}=b_{(1)} \otimes h_{(1)} v\left(h_{(2)}, b_{(2)}\right) \\
\left(g_{(1)} \cdot a_{(1)}\right) \otimes g_{(2)} u\left(a_{(2)}, g_{(3)}\right)=u\left(a_{(1)}, g_{(1)}\right) a_{(2)} \otimes g_{(2)} \\
\tau\left(h_{(1)}, g_{(1)}\right) f\left(h_{(2)}, g_{(2)}\right)=f\left(g_{(1)}, h_{(1)}\right) \tau\left(h_{(2)}, g_{(2)}\right) \\
u\left(a_{(1)}, g_{(2)}\right) p\left(a_{(2)}, g_{(1)} \cdot c\right)=p\left(a_{(1)}, c\right) u\left(a_{(2)}, g\right) \\
\tau\left(h_{(1)}, g_{(2)}\right) v\left(h_{(2)}, g_{(1)} \cdot c\right)=v\left(h_{(1)}, c\right) \tau\left(h_{(2)}, g\right) \\
p\left(h_{(1)} \cdot b, c_{(1)}\right) v\left(h_{(2)}, c_{(2)}\right)=v\left(h, c_{(1)}\right) p\left(b, c_{(2)}\right) \\
u\left(h_{(1)} \cdot b, t_{(1)}\right) \tau\left(h_{(2)}, t_{(2)}\right)=\tau\left(h, t_{(1)}\right) u\left(b, t_{(2)}\right)
\end{gathered}
$$

Theorem

and the coquasitriangular structure $\sigma:\left(A \#_{f} H\right) \otimes\left(A \#_{f} H\right) \rightarrow k$ is given by:

$$
\sigma(a \# h, b \# g)=u\left(a_{(1)}, g_{(1)}\right) p\left(a_{(2)}, b_{(1)}\right) \tau\left(h_{(1)}, g_{(2)}\right) v\left(h_{(2)}, b_{(2)}\right)
$$

for all $a, b, c \in A$ and $h, g, t \in H$.

Corollary

Let (A, H, \cdot, f) be a crossed system of Hopf algebras with A a commutative Hopf algebra, • the trivial action and (H, τ) a coquasitriangular Hopf algebra such that:

$$
\tau\left(h_{(1)}, g_{(1)}\right) f\left(h_{(2)}, g_{(2)}\right)=f\left(g_{(1)}, h_{(1)}\right) \tau\left(h_{(2)}, g_{(2)}\right)
$$

for all $h, g \in H$. Then $A \#_{f} H$ is a coquasitriangular Hopf algebra with the coquasitriangular structure given by:

$$
\sigma(a \# h, b \# g)=\varepsilon(a) \varepsilon(b) \tau(h, g)
$$

for all $h, g \in H$.

Corollary

Let A and H be Hopf algebras. The following are equivalent:

1) $(A \otimes H, \sigma)$ is a coquasitriangular Hopf algebra
2) There exists four linear maps $p: A \otimes A \rightarrow k, \tau: H \otimes H \rightarrow k$, $u: A \otimes H \rightarrow k, v: H \otimes A \rightarrow k$ such that (A, p) and (H, τ) are coquasitriangular Hopf algebras, u and v are skew pairings on (A, H) respectively (H, A) and the following compatibilities are fulfilled:

Corollary

$$
\begin{aligned}
v\left(h_{(1)}, b_{(1)}\right) b_{(2)} \otimes h_{(2)} & =b_{(1)} v\left(h_{(2)}, b_{(2)}\right) \otimes h_{(1)} \\
a_{(1)} \otimes g_{(1)} u\left(a_{(2)}, g_{(2)}\right) & =a_{(2)} \otimes u\left(a_{(1)}, g_{(1)}\right) g_{(2)} \\
u\left(a_{(1)}, g\right) p\left(a_{(2)}, c\right) & =p\left(a_{(1)}, c\right) u\left(a_{(2)}, g\right) \\
\tau\left(h_{(1)}, g\right) v\left(h_{(2)}, c\right) & =v\left(h_{(1)}, c\right) \tau\left(h_{(2)}, g\right) \\
p\left(b, c_{(1)}\right) v\left(h, c_{(2)}\right) & =v\left(h, c_{(1)}\right) p\left(b, c_{(2)}\right) \\
u\left(b, t_{(1)}\right) \tau\left(h, t_{(2)}\right) & =\tau\left(h, t_{(1)}\right) u\left(b, t_{(2)}\right)
\end{aligned}
$$

In what follows k is a field such that 2 is invertible in k. Let $H=k\left[C_{3}\right]=k<a \mid a^{3}=1>$ be the group Hopf algebra and $A=H_{4}=<g, x \mid g^{2}=1, x^{2}=0, x g=-g x>$ be Sweedler's Hopf algebra.

In what follows k is a field such that 2 is invertible in k. Let
$H=k\left[C_{3}\right]=k<a \mid a^{3}=1>$ be the group Hopf algebra and $A=H_{4}=<g, x \mid g^{2}=1, x^{2}=0, x g=-g x>$ be Sweedler's Hopf algebra.
A and H together with the maps $\cdot: H \otimes A \rightarrow A$ and $f: H \otimes H \rightarrow A$ defined below is a crossed system of Hopf algebras:

In what follows k is a field such that 2 is invertible in k. Let
$H=k\left[C_{3}\right]=k<a \mid a^{3}=1>$ be the group Hopf algebra and $A=H_{4}=<g, x \mid g^{2}=1, x^{2}=0, x g=-g x>$ be Sweedler's Hopf algebra.
A and H together with the maps $\cdot: H \otimes A \rightarrow A$ and $f: H \otimes H \rightarrow A$ defined below is a crossed system of Hopf algebras:
$f(a, a)=f\left(a^{2}, a^{2}\right)=g$ and $f\left(a^{i}, a^{j}\right)=1$ for $(i, j) \notin\{(1,1),(2,2)\}$

In what follows k is a field such that 2 is invertible in k. Let
$H=k\left[C_{3}\right]=k<a \mid a^{3}=1>$ be the group Hopf algebra and $A=H_{4}=<g, x \mid g^{2}=1, x^{2}=0, x g=-g x>$ be Sweedler's Hopf algebra.
A and H together with the maps $\cdot: H \otimes A \rightarrow A$ and
$f: H \otimes H \rightarrow A$ defined below is a crossed system of Hopf algebras:

$$
f(a, a)=f\left(a^{2}, a^{2}\right)=g \text { and } f\left(a^{i}, a^{j}\right)=1 \text { for }(i, j) \notin\{(1,1),(2,2)\}
$$

$$
a \cdot g=a^{2} \cdot g=g, a \cdot x=a^{2} \cdot x=-x, a \cdot g x=a^{2} \cdot g x=-g x
$$

For any $\alpha \in k,\left(H_{4}, p\right)$ is a coquasitriangular Hopf algebra, where $p: H_{4} \otimes H_{4} \rightarrow k$ is given by:

p	1	g	x	$g x$
1	1	1	0	0
g	1	-1	0	0
x	0	0	α	α
$g x$	0	0	α	α

The linear map $u: H_{4} \otimes k\left[C_{3}\right] \rightarrow k$ defined below is a (p, f) - right skew pairing on ($H_{4}, k\left[C_{3}\right]$):

$$
\begin{gathered}
u(g, a)=u\left(g, a^{2}\right)=-1 \\
u(x, a)=u\left(x, a^{2}\right)=u(g x, a)=u\left(g x, a^{2}\right)=0
\end{gathered}
$$

The linear map $u: H_{4} \otimes k\left[C_{3}\right] \rightarrow k$ defined below is a (p, f) - right skew pairing on ($H_{4}, k\left[C_{3}\right]$):

$$
\begin{gathered}
u(g, a)=u\left(g, a^{2}\right)=-1 \\
u(x, a)=u\left(x, a^{2}\right)=u(g x, a)=u\left(g x, a^{2}\right)=0
\end{gathered}
$$

The linear map $v: k\left[C_{3}\right] \otimes H_{4} \rightarrow k$ defined below is a (p, f) - left skew pairing on ($k\left[C_{3}\right], H_{4}$):

$$
\begin{aligned}
& v(a, g)=v\left(a^{2}, g\right) \\
& v(a, x)=-1 \\
& v\left(a^{2}, x\right)=v(a, g x)=v\left(a^{2}, g x\right)=0
\end{aligned}
$$

For any $\gamma \in k$ such that $\gamma^{3}=1$, the linear map $\tau: k\left[C_{3}\right] \otimes k\left[C_{3}\right] \rightarrow k$ defined below is a (u, v) - skew coquasitriangular structure on $k\left[C_{3}\right]$:

τ	1	a	a^{2}
1	1	1	1
a	1	γ	$-\gamma^{2}$
a^{2}	1	$-\gamma^{2}$	$-\gamma$

Remark

The maps p, u, v and τ satisfy the seven conditions in our theorem. Thus, $\sigma:\left(H_{4} \#_{f} k\left[C_{3}\right]\right) \otimes\left(H_{4} \#_{f} k\left[C_{3}\right]\right) \rightarrow k$ is a coquasitriangular structure on the crossed product $H_{4} \#_{f} k\left[C_{3}\right]$, where:

$$
\sigma(b \otimes y, c \otimes z)=u\left(b_{(1)}, z_{(1)}\right) p\left(b_{(2)}, c_{(1)}\right) \tau\left(y_{(1)}, z_{(2)}\right) v\left(y_{(2)}, c_{(2)}\right)
$$

is given by:

σ	$1 \# 1$	$1 \# a$	$1 \# a^{2}$	$g \# 1$	$g \# a$	$g \# a^{2}$
$1 \# 1$	1	1	1	1	1	1
$1 \# a$	1	γ	$-\gamma^{2}$	-1	$-\gamma$	γ^{2}
$1 \# a^{2}$	1	$-\gamma^{2}$	$-\gamma$	-1	γ^{2}	γ
$g \# 1$	1	-1	-1	-1	1	1
$g \# a$	1	$-\gamma$	γ^{2}	1	$-\gamma$	γ^{2}
$g \# a^{2}$	1	γ^{2}	γ	1	γ^{2}	γ
$x \# 1$	0	0	0	0	0	0
$x \# a$	0	0	0	0	0	0
$x \# a^{2}$	0	0	0	0	0	0
$g x \# 1$	0	0	0	0	0	0
$g x \# a$	0	0	0	0	0	0
$g x \# a^{2}$	0	0	0	0	0	0

σ	$x \# 1$	$x \# a$	$x \# a^{2}$	$g x \# 1$	$g x \# a$	$g x \# a^{2}$
$1 \# 1$	0	0	0	0	0	0
$1 \# a$	0	0	0	0	0	0
$1 \# a^{2}$	0	0	0	0	0	0
$g \# 1$	0	0	0	0	0	0
$g \# a$	0	0	0	0	0	0
$g \# a^{2}$	0	0	0	0	0	0
$x \# 1$	α	$-\alpha$	$-\alpha$	$-\alpha$	α	α
$x \# a$	α	$-\alpha \gamma$	$\alpha \gamma^{2}$	α	$-\alpha \gamma$	$\alpha \gamma^{2}$
$x \# a^{2}$	α	$\alpha \gamma^{2}$	$\alpha \gamma$	α	$\alpha \gamma^{2}$	$\alpha \gamma$
$g x \# 1$	α	α	α	α	α	α
$g x \# a$	α	$\alpha \gamma$	$-\alpha \gamma^{2}$	$-\alpha$	$-\alpha \gamma$	$\alpha \gamma^{2}$
$g x \# a^{2}$	α	$-\alpha \gamma^{2}$	$-\alpha \gamma$	$-\alpha$	$\alpha \gamma^{2}$	$\alpha \gamma$

Thank You!

