Crossed product of Hopf algebras

Ana Agore (Free University of Brussels, Belgium) ana.agore@gmail.com

The main properties of the crossed product in the category of Hopf algebras are investigated. Let A and H be two Hopf algebras connected by two morphism of coalgebras $\triangleright : H \otimes A \to A$, $f : H \otimes H \to A$. The crossed product $A\#_f^{\triangleright} H$ is a new Hopf algebra containing A as a normal Hopf subalgebra. In fact, we prove that a Hopf algebra E is isomorphic as a Hopf algebra to a crossed product of Hopf algebras $A\#_f^{\triangleright} H$ if and only if E factorizes through a normal Hopf subalgebra Aand a subcoalgebra H such that $1_E \in H$. The universality of the construction, the existence of integrals, commutativity or involutivity of the crossed product are studied. The crossed product $A\#_f^{\triangleright} H$ is a semisimple Hopf algebra if and only if both Hopf algebras A and H are semisimple. Looking at the quantum side of the construction we shall give necessary and sufficient conditions for a crossed product to be a coquasitriangular (braided) Hopf algebra. In particular, all braided structures on the monoidal category of $A\#_f^{\triangleright} H$ -comodules are explicitly described in terms of their components.

Bibliography

[1] A.L. Agore, Crossed product of Hopf algebras. Preprint 2011.

Vrije Universiteit Brussel

Crossed product of Hopf algebras

Ana Agore

Free University of Brussels

Almeria, July 2011

The crossed product of Hopf algebras is a special case of the unified product by considering the right action $h \triangleleft a = \varepsilon_A(a)h$, for all $h \in H$ and $a \in A$

Let *H* be a Hopf algebra, *A* a *k*-algebra and two *k*-linear maps $\cdot : H \otimes A \rightarrow A$, $f : H \otimes H \rightarrow A$ such that:

$$h \cdot 1_{A} = \varepsilon_{H}(h)1_{A}$$

$$1_{H} \cdot a = a$$

$$h \cdot (ab) = (h_{(1)} \cdot a)(h_{(2)} \cdot b)$$

$$f(h, 1_{H}) = f(1_{H}, h) = \varepsilon_{H}(h)1_{A}$$
for all $h \in H$, $a, b \in A$.

Let *H* be a Hopf algebra, *A* a *k*-algebra and two *k*-linear maps $\cdot : H \otimes A \rightarrow A$, $f : H \otimes H \rightarrow A$ such that:

$$h \cdot 1_{A} = \varepsilon_{H}(h)1_{A}$$
$$1_{H} \cdot a = a$$
$$h \cdot (ab) = (h_{(1)} \cdot a)(h_{(2)} \cdot b)$$
$$f(h, 1_{H}) = f(1_{H}, h) = \varepsilon_{H}(h)1_{A}$$

for all $h \in H$, $a, b \in A$.

The crossed product $A \#_f H$ of A with H is the k-module $A \otimes H$ with the multiplication given by:

$$(a \otimes h) * (c \otimes g) := a(h_{(1)} \cdot c) f(h_{(2)}, g_{(1)}) \otimes h_{(3)}g_{(2)}$$
(1)

Blattner, Cohen, Montgomery - Doi, Takeuchi:

Theorem

f

 $(A\#_{f}^{\cdot}H,*)$ is an associative algebra with identity element $1_{A}\#1_{H}$ if and only if the following two compatibility conditions hold:

$$[g_{(1)} \cdot (h_{(1)} \cdot a)]f(g_{(2)}, h_{(2)}) = f(g_{(1)}, h_{(1)})((g_{(2)}h_{(2)}) \cdot a)$$
$$(g_{(1)} \cdot f(h_{(1)}, l_{(1)}))f(g_{(2)}, h_{(2)}l_{(2)}) = f(g_{(1)}, h_{(1)})f(g_{(2)}h_{(2)}, l)$$
or all $a \in A, g, h, l \in H$.

Blattner, Cohen, Montgomery - Doi, Takeuchi:

Theorem

 $(A\#_{f}^{\cdot}H,*)$ is an associative algebra with identity element $1_{A}\#1_{H}$ if and only if the following two compatibility conditions hold:

$$[g_{(1)} \cdot (h_{(1)} \cdot a)]f(g_{(2)}, h_{(2)}) = f(g_{(1)}, h_{(1)})((g_{(2)}h_{(2)}) \cdot a)$$

 $(g_{(1)} \cdot f(h_{(1)}, I_{(1)}))f(g_{(2)}, h_{(2)}I_{(2)}) = f(g_{(1)}, h_{(1)})f(g_{(2)}h_{(2)}, I)$ for all $a \in A$, g, h, $l \in H$. In this case $(A\#_{f}^{\cdot}H, *)$ is called the crossed product of H acting on A. Let A and H be two Hopf algebras and $\cdot : H \otimes A \rightarrow A$ and $f : H \otimes H \rightarrow A$ two coalgebra morphisms.

Proposition

Then the crossed product $A\#_f H$ has a Hopf algebra structure with the coalgebra structure given by the tensor product of coalgebras if and only if the following two compatibility conditions hold:

$$g_{(1)}\otimes g_{(2)}\cdot a=g_{(2)}\otimes g_{(1)}\cdot a$$

$$g_{(1)}h_{(1)}\otimes f(g_{(2)}, h_{(2)}) = g_{(2)}h_{(2)}\otimes f(g_{(1)}, h_{(1)})$$

for all g, $h \in H$ and a, $b \in A$

Remark

The antipode of the Hopf algebra $A\#_f^{\cdot}$ H is given by the formula:

$$S(a\#g) := \Big(S_A ig[fig(S_H(g_{(2)}), \, g_{(3)} ig) ig] \# S_H(g_{(1)}) \Big) \cdot ig(S_A(a) \# 1_H ig)$$

for all $a \in A$ and $g \in H$.

A quadruple (A, H, \cdot, f) , where A and H are Hopf algebras and $\cdot: H \otimes A \rightarrow A$, $f: H \otimes H \rightarrow A$ are two coalgebra maps such that $A\#_{f}^{*}H$ is a Hopf algebra with the coalgebra structure given by the tensor product of coalgebras is called *crossed system of Hopf algebras*. The corresponding Hopf algebra $A\#_{f}^{*}H$ will be called *crossed product of Hopf algebras*

A special case of the cocycle bicrossproduct bialgebra

A special case of the cocycle bicrossproduct bialgebra

1. Constructed for bialgebras by Majid and Soibelman (1994)

A special case of the cocycle bicrossproduct bialgebra

- 1. Constructed for bialgebras by Majid and Soibelman (1994)
- Constructed for Hopf algebras by Andruskiwitsch and Devoto (1995)

1) Let A, H be two Hopf algebras and \cdot , f be the trivial action respectively the trivial cocycle, that is: $a \cdot h = \varepsilon(a)h$ and $f(g, h) = \varepsilon(g)\varepsilon(h)$ for all $a \in A$ and $g, h \in H$. Then the associated crossed product is exactly the tensor product of Hopf algebras $A \otimes H$.

2) Let A, H be two Hopf algebras and f be the trivial cocycle, that is $f(g,h) = \varepsilon(g)\varepsilon(h)$ for all $g, h \in H$. If A is an H-module algebra via the coalgebra map \cdot and relation

$$g_{(1)}h_{(1)} \otimes f(g_{(2)}, h_{(2)}) = g_{(2)}h_{(2)} \otimes f(g_{(1)}, h_{(1)})$$

is fulfilled then the crossed product has the algebra structure given by the smash product (Molnar – cocommutative case) and it will be denoted by $A\#^{\cdot}H$.

3) (H, G, f, \cdot) be a normalized crossed system of groups then $(kH, kG, \tilde{f}, \tilde{\cdot})$ is a crossed system of Hopf algebras where \tilde{f} and $\tilde{\cdot}$ are obtained by linearizing the maps f and \cdot . Moreover, there exists an isomorphism of Hopf algebras

$$k[H imes_{f}^{\cdot} G] \cong kH \#_{\widetilde{f}}^{\widetilde{\cdot}} kG$$

and any crossed product of Hopf algebras between two group algebras arises in this way.

4) Let A and H be two Hopf algebras such that H is cocommutative and $\gamma: H \rightarrow A$ a unitary coalgebra map. Define:

$$\cdot := \cdot_{\gamma} : H \otimes A \to A, \qquad h \cdot a := \gamma(h_{(1)})a\gamma^{-1}(h_{(2)})$$

$$f:=f_{\gamma}:H\otimes H\to A,\qquad f(h,g)=\gamma(h_{(1)})\gamma(g_{(1)})\gamma^{-1}(h_{(2)}g_{(2)})$$

Then (A, H, \cdot, f) is a crossed system of Hopf algebras and, moreover, the map given by:

$$\varphi: A \#_f^{\cdot} H \to A \otimes H, \quad \varphi(a \otimes h) = a \gamma(h_{(1)}) \otimes h_{(2)}$$

for all $a \in A$ and $h \in H$ is an isomorphism of Hopf algebras

We say that a Hopf algebra E factorizes through a Hopf subalgebra A and a subcoalgebra H if the multiplication map $u: A \otimes H \to E$, $u(a \otimes h) = ah$, for all $a \in A$, $h \in H$ is bijective.

The main property of the crossed product of Hopf algebras is the following reconstruction type theorem:

We say that a Hopf algebra E factorizes through a Hopf subalgebra A and a subcoalgebra H if the multiplication map $u: A \otimes H \to E$, $u(a \otimes h) = ah$, for all $a \in A$, $h \in H$ is bijective.

The main property of the crossed product of Hopf algebras is the following reconstruction type theorem:

Theorem

A Hopf algebra E is isomorphic as a Hopf algebra to a crossed product $A\#_{f}^{\cdot}H$ of Hopf algebras if and only if E factorizes through a normal Hopf subalgebra A and a subcoalgebra H such that $1_{E} \in H$.

S. Burciu 2011:

Corollary

If a Hopf algebra E factorizes through two Hopf subalgebras A and H, with A normal in E, then E is isomorphic as a Hopf algebra to a smash product.

Universal properties: Let (A, H, \cdot, f) be a crossed system of Hopf algebras.

Proposition

(1) For any Hopf algebra X, any Hopf algebra map $u : A \to X$ and any coalgebra map $v : H \to X$ such that the following compatibilities hold for all $h, g \in H, b \in A$:

$$u(f(h_{(1)}, g_{(1))})v(h_{(2)}g_{(2)}) = v(h)v(g)$$

$$u(h_{(1)} \cdot b)v(h_{(2)}) = v(h)u(b)$$

there exists a unique Hopf algebra map $w : A \#_f^{\triangleright} H \to X$ such that the following diagram commutes:

Proposition

(2) For any Hopf algebra X, any Hopf algebra map v : X → H and any coalgebra map u : X → A such that the following compatibilities hold for all x, y ∈ X:

$$u(x_{(1)}) \otimes v(x_{(2)}) = u(x_{(2)}) \otimes v(x_{(1)})$$
$$u(xy) = u(x_{(1)}) [v(x_{(2)}) \cdot u(y_{(1)})] f(v(x_{(3)}), v(y_{(2)}))$$

there exists a unique Hopf algebra map $w : X \to A \#_f H$ such that the following diagram commutes:

Classification

Definition

Let A and H be two Hopf algebras, a coalgebra map $u : H \to A$ is called a coalgebra lazy 1-cocyle if $u(1_H) = 1_A$ and the following compatibility holds:

$$h_{(1)} \otimes u(h_{(2)}) = h_{(2)} \otimes u(h_{(1)})$$

for all $h \in H$.

Proposition

Let A, H be two Hopf algebras and $A\#_{f}^{\cdot}H$, $A\#_{f'}^{\prime}H$ be two crossed products of Hopf algebras. The following are equivalent: (1) $A\#_{f}^{\cdot}H \approx A\#_{f'}^{\cdot'}H$ (isomorphism of Hopf algebras, left A-modules and right H-comodules); (2) There exists a coalgebra lazy 1-cocyle $u : H \rightarrow A$ such that: (1) $h \cdot a = u^{-1}(h_{(1)})(h_{(2)} \cdot a)u(h_{(3)})$ (2) $f'(h, k) = u^{-1}(h_{(1)})(h_{(2)} \cdot u^{-1}(k_{(1)})f(h_{(3)}, k_{(2)}))u(h_{(4)}k_{(3)})$ for all $a \in A$ and $h, g \in H$.

Proposition

Let A, H be two Hopf algebras and $A\#_{f}^{:}H$, $A\#_{f'}^{:'}H$ be two crossed products of Hopf algebras. The following are equivalent: (1) $A\#_{f} H \approx A\#_{f'} H$ (isomorphism of Hopf algebras, left A-modules and right H-comodules); (2) There exists a coalgebra lazy 1-cocyle $u : H \rightarrow A$ such that: (1) $h \cdot a = u^{-1}(h_{(1)})(h_{(2)} \cdot a)u(h_{(3)})$ (2) $f'(h, k) = u^{-1}(h_{(1)})(h_{(2)} \cdot u^{-1}(k_{(1)})f(h_{(3)}, k_{(2)}))u(h_{(4)}k_{(3)})$ for all $a \in A$ and $h, g \in H$. In this case we shall say that the crossed systems (A, H, \cdot, f) and (A, H, \cdot', f') are cohomologous and we denote the equivalence classes of crossed systems modulo such transformations by $\mathcal{H}^2(H, A)$.

Remark

A crossed system of Hopf algebras which is equivalent to the trivial one is called a coboundary. An example of a coboundary is given in Example 4. The general problem that we are interested in related to the crossed product is the following:

The general problem that we are interested in related to the crossed product is the following:

Problem: Let "P" be an algebraic property. Give necessary and sufficient conditions for a crossed product of Hopf algebras $A\#_f^{\cdot}H$ to have the property "P" in terms of his components.

The general problem that we are interested in related to the crossed product is the following:

Problem: Let "P" be an algebraic property. Give necessary and sufficient conditions for a crossed product of Hopf algebras $A\#_f H$ to have the property "P" in terms of his components.

In what follows, we give complete answers for "P" equal to:

- Commutative
- Involutory
- Coquasitriangular

Proposition

Let $A\#_{f}^{*}H$ be a crossed product of Hopf algebras. Then $A\#_{f}^{*}H$ is commutative if and only if A and H are commutative, \cdot is trivial and f is symmetric (i.e. f(g, h) = f(h, g) for all $g, h \in H$).

Proposition

Let $A\#_{f}^{\cdot}H$ be a crossed product of Hopf algebras.

 If A#⁺_f H is involutory then both A and H are involutory Hopf algebras.

(2) Suppose that H is cocommutative. Then A#⁺_f H is involutory if and only if A is involutory and g₍₁₎ · f (S_H(g₍₂₎), g₍₃₎) = f (g₍₁₎, S_H(g₍₂₎)) for all g ∈ H.

Recall that if A and H are two Hopf algebras and $\alpha : A \otimes H \rightarrow k$ is a k-linear map which fulfills the compatibilities:

$$\begin{array}{l} (\mathsf{BR1}) \ \alpha(xy,z) = \alpha(x,z_{(1)})\alpha(y,z_{(2)}) \\ (\mathsf{BR2}) \ \alpha(1,x) = \varepsilon(x) \\ (\mathsf{BR3}) \ \alpha(x,yz) = p(x_{(1)},z)p(x_{(2)},y) \\ (\mathsf{BR4}) \ \alpha(y,1) = \varepsilon(y) \\ \text{for all } x, \ y \in A, \ z \in H, \ \text{then } \alpha \ \text{is called } skew \ pairing \ \text{on } (A,H) \end{array}$$

Recall that if A and H are two Hopf algebras and $\alpha : A \otimes H \rightarrow k$ is a k-linear map which fulfills the compatibilities:

(BR1)
$$\alpha(xy, z) = \alpha(x, z_{(1)})\alpha(y, z_{(2)})$$

(BR2) $\alpha(1, x) = \varepsilon(x)$
(BR3) $\alpha(x, yz) = p(x_{(1)}, z)p(x_{(2)}, y)$
(BR4) $\alpha(y, 1) = \varepsilon(y)$
for all $x, y \in A, z \in H$, then α is called *skew pairing* on (A, H)

Definition

A Hopf algebra H is called *coquasitriangular* if there exists a linear map $p: H \otimes H \rightarrow k$ such that relations (BR1) - (BR4) are fulfilled and

(BR5)
$$p(x_{(1)}, y_{(1)})x_{(2)}y_{(2)} = y_{(1)}x_{(1)}p(x_{(2)}, y_{(2)})$$

holds for all x, y, $z \in H$.

Let A, H be two Hopf algebras, $f : H \otimes H \to A$ a coalgebra map and $p : A \otimes A \to k$ a coquasitriangular structure on A. A linear map $u : A \otimes H \to k$ is called (p, f) - right skew pairing on (A, H) if the following compatibilities are fulfilled for any $a, b \in A, g, t \in H$:

(RS1)
$$u(ab, t) = u(a, t_{(1)})u(b, t_{(2)})$$

(RS2) $u(1, h) = \varepsilon(h)$
(RS3) $u(a_{(1)}, g_{(2)}t_{(2)})p(a_{(2)}, f(g_{(1)}, t_{(1)})) = u(a_{(1)}, t)u(a_{(2)}, g)$
(RS4) $u(a, 1) = \varepsilon(a)$

Let A, H be two Hopf algebras, $f : H \otimes H \to A$ a coalgebra map and $p : A \otimes A \to k$ a coquasitriangular structure on A. A linear map $v : H \otimes A \to k$ is called (p,f) - *left skew pairing on* (H, A) if the following compatibilities are fulfilled for any $b, c \in A, h, g \in H$:

(LS1)
$$p(f(h_{(1)}, g_{(1)}), c_{(1)})v(h_{(2)}g_{(2)}, c_{(2)}) = v(h, c_{(1)})v(g, c_{(2)})$$

(LS2) $v(1, a) = \varepsilon(a)$
(LS3) $v(h, bc) = v(h_{(1)}, c)v(h_{(2)}, b)$
(LS4) $v(h, 1) = \varepsilon(h)$

Let A, H be two Hopf algebras, $f : H \otimes H \to A$ a coalgebra map and $p : A \otimes A \to k$ a coquasitriangular structure on A. A linear map $v : H \otimes A \to k$ is called (p,f) - *left skew pairing on* (H, A) if the following compatibilities are fulfilled for any $b, c \in A, h, g \in H$:

$$(LS1) p(f(h_{(1)}, g_{(1)}), c_{(1)})v(h_{(2)}g_{(2)}, c_{(2)}) = v(h, c_{(1)})v(g, c_{(2)})$$

(LS2) $v(1, a) = \varepsilon(a)$
(LS3) $v(h, bc) = v(h_{(1)}, c)v(h_{(2)}, b)$
(LS4) $v(h, 1) = \varepsilon(h)$

Example

If $f = \varepsilon_H \otimes \varepsilon_H$ then the notions of (p,f) - right skew pairing and (p,f) - left skew pairing coincide with the notion of skew pairing on (A, H) respectively (H, A).

Let $L = \langle t | t^n = 1 \rangle$ and $G = \langle g | g^m = 1 \rangle$ be two cyclic groups of orders *n* respectively *m* and consider the group Hopf algebras A = k[L] and H = k[G].

Let
$$L = \langle t | t^n = 1 \rangle$$
 and $G = \langle g | g^m = 1 \rangle$ be two cyclic
groups of orders *n* respectively *m* and consider the group Hopf
algebras $A = k[L]$ and $H = k[G]$.
In this setting a coalgebra map $f : k[G] \otimes k[G] \rightarrow k[L]$ is
completely determined by a map
 $\alpha : \{0, 1, ..., m-1\} \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., n-1\}$ such that
 $f(g^i, g^j) = t^{\alpha(i, j)}$.

Let $L = \langle t | t^n = 1 \rangle$ and $G = \langle g | g^m = 1 \rangle$ be two cyclic groups of orders *n* respectively *m* and consider the group Hopf algebras A = k[L] and H = k[G]. In this setting a coalgebra map $f : k[G] \otimes k[G] \rightarrow k[L]$ is completely determined by a map $\alpha : \{0, 1, ..., m-1\} \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., n-1\}$ such that $f(g^i, g^j) = t^{\alpha(i, j)}$. The coquasitriangular structures on k[L] are given by:

$$p: k[L] \otimes k[L] \to k, \qquad p(t^a, t^b) = \xi^{ab}$$

where $a, b \in \overline{0, n-1}$ and $\xi \in k$ such that $\xi^n = 1$.

Then there exists $u: k[L] \otimes k[G] \to k$ a (p, f) - right skew pairing if and only if α is a symmetric map and there exists $v \in k$ such that $v^n = 1$ and $v^m = \xi^{\alpha(1, m-1)}$. In this case the (p, f) - right skew pairing $u: k[L] \otimes k[G] \to k$ is given by:

$$u(t^a, g^b) = v^{ab}\xi^{-\alpha(1, b-1)}, \qquad a \in \overline{0, n-1}, b \in \overline{0, m-1}$$

Definition

Let A and H be two Hopf algebras, $p : A \otimes A \rightarrow k$ a coquasitriangular structure on A, $u : A \otimes H \rightarrow k$ a (p, f) - right skew pairing on (A, H) and $v : H \otimes A \rightarrow k$ a (p, f) - left skew pairing on (H, A). A linear map $\tau : H \otimes H \rightarrow k$ is called (u, v) *skew coquasitriangular structure on* H if the following compatibilities are fulfilled for all h, g, $t \in H$:

 $(SB1) \ u(f(h_{(1)}, g_{(1)}), t_{(1)})\tau(h_{(2)}g_{(2)}, t_{(2)}) = \tau(h, t_{(1)})\tau(g, t_{(2)})$ $(SB2) \ \tau(1, h) = \varepsilon(h)$ $(SB3) \ \tau(h_{(1)}, g_{(2)}t_{(2)})v(h_{(2)}, f(g_{(1)}, t_{(1)})) = \tau(h_{(1)}, t)\tau(h_{(2)}, g)$ $(SB4) \ \tau(g, 1) = \varepsilon(g)$ $(SB5) \ \tau(h_{(1)}, g_{(1)})h_{(2)}g_{(2)} = g_{(1)}h_{(1)}\tau(h_{(2)}, g_{(2)})$

Definition

Let A and H be two Hopf algebras, $p : A \otimes A \rightarrow k$ a coquasitriangular structure on A, $u : A \otimes H \rightarrow k$ a (p, f) - right skew pairing on (A, H) and $v : H \otimes A \rightarrow k$ a (p, f) - left skew pairing on (H, A). A linear map $\tau : H \otimes H \rightarrow k$ is called (u, v) *skew coquasitriangular structure on* H if the following compatibilities are fulfilled for all $h, g, t \in H$:

 $(SB1) \ u(f(h_{(1)}, g_{(1)}), t_{(1)})\tau(h_{(2)}g_{(2)}, t_{(2)}) = \tau(h, t_{(1)})\tau(g, t_{(2)})$ $(SB2) \ \tau(1, h) = \varepsilon(h)$ $(SB3) \ \tau(h_{(1)}, g_{(2)}t_{(2)})v(h_{(2)}, f(g_{(1)}, t_{(1)})) = \tau(h_{(1)}, t)\tau(h_{(2)}, g)$ $(SB4) \ \tau(g, 1) = \varepsilon(g)$ $(SB5) \ \tau(h_{(1)}, g_{(1)})h_{(2)}g_{(2)} = g_{(1)}h_{(1)}\tau(h_{(2)}, g_{(2)})$

Remark

If $f = \varepsilon_H \otimes \varepsilon_H$ then the (u, v) - skew coquasitriangular structure τ is a coquasitriangular structure on H in the classical sense.

Theorem

Let (A, H, \cdot, f) be a crossed system of Hopf algebras. The following are equivalent:

- 1) $(A\#_{f}^{\cdot}H,\sigma)$ is a coquasitriangular Hopf algebra
- There exists four linear maps p: A ⊗ A → k, τ : H ⊗ H → k, u : A ⊗ H → k, v : H ⊗ A → k such that (A, p) is a coquasitrangular Hopf algebra, u is a (p, f) - right skew pairing on (A, H), v is a (p, f) - left skew pairing on (H, A), τ is a (u, v) - skew coquasitriangular structure on H and the following compatibilities are fulfilled:

Theorem

$$v(h_{(1)}, b_{(1)})(h_{(2)} \cdot b_{(2)}) \otimes h_{(3)} = b_{(1)} \otimes h_{(1)}v(h_{(2)}, b_{(2)})$$

$$(g_{(1)} \cdot a_{(1)}) \otimes g_{(2)}u(a_{(2)}, g_{(3)}) = u(a_{(1)}, g_{(1)})a_{(2)} \otimes g_{(2)}$$

$$\tau(h_{(1)}, g_{(1)})f(h_{(2)}, g_{(2)}) = f(g_{(1)}, h_{(1)})\tau(h_{(2)}, g_{(2)})$$

$$u(a_{(1)}, g_{(2)})p(a_{(2)}, g_{(1)} \cdot c) = p(a_{(1)}, c)u(a_{(2)}, g)$$

$$\tau(h_{(1)},g_{(2)})v(h_{(2)},g_{(1)}\cdot c) = v(h_{(1)},c)\tau(h_{(2)},g)$$

$$p(h_{(1)} \cdot b, c_{(1)})v(h_{(2)}, c_{(2)}) = v(h, c_{(1)})p(b, c_{(2)})$$

$$u(h_{(1)} \cdot b, t_{(1)})\tau(h_{(2)}, t_{(2)}) = \tau(h, t_{(1)})u(b, t_{(2)})$$

Theorem

and the coquasitriangular structure $\sigma : (A \#_f^{\cdot} H) \otimes (A \#_f^{\cdot} H) \rightarrow k$ is given by:

 $\sigma(a\#h,b\#g) = u(a_{(1)},g_{(1)})p(a_{(2)},b_{(1)})\tau(h_{(1)},g_{(2)})v(h_{(2)},b_{(2)})$

for all $a, b, c \in A$ and $h, g, t \in H$.

Corollary

Let (A, H, \cdot, f) be a crossed system of Hopf algebras with A a commutative Hopf algebra, \cdot the trivial action and (H, τ) a coquasitriangular Hopf algebra such that:

$$\tau(h_{(1)}, g_{(1)})f(h_{(2)}, g_{(2)}) = f(g_{(1)}, h_{(1)})\tau(h_{(2)}, g_{(2)})$$

for all $h, g \in H$. Then $A \#_f H$ is a coquasitriangular Hopf algebra with the coquasitriangular structure given by:

$$\sigma(a\#h,b\#g) = \varepsilon(a)\varepsilon(b)\tau(h,g)$$

for all $h, g \in H$.

Corollary

Let A and H be Hopf algebras. The following are equivalent:

- 1) $(A \otimes H, \sigma)$ is a coquasitriangular Hopf algebra
- There exists four linear maps p: A ⊗ A → k, τ : H ⊗ H → k, u : A ⊗ H → k, v : H ⊗ A → k such that (A, p) and (H, τ) are coquasitriangular Hopf algebras, u and v are skew pairings on (A, H) respectively (H, A) and the following compatibilities are fulfilled:

Corollary

$$v(h_{(1)}, b_{(1)})b_{(2)} \otimes h_{(2)} = b_{(1)}v(h_{(2)}, b_{(2)}) \otimes h_{(1)}$$

$$a_{(1)} \otimes g_{(1)}u(a_{(2)},g_{(2)}) = a_{(2)} \otimes u(a_{(1)},g_{(1)})g_{(2)}$$

$$u(a_{(1)},g)p(a_{(2)},c) = p(a_{(1)},c)u(a_{(2)},g)$$

$$\tau(h_{(1)},g)v(h_{(2)},c) = v(h_{(1)},c)\tau(h_{(2)},g)$$

$$p(b, c_{(1)})v(h, c_{(2)}) = v(h, c_{(1)})p(b, c_{(2)})$$

$$u(b, t_{(1)})\tau(h, t_{(2)}) = \tau(h, t_{(1)})u(b, t_{(2)})$$

A and H together with the maps $\cdot : H \otimes A \rightarrow A$ and

 $f: H \otimes H \rightarrow A$ defined below is a crossed system of Hopf algebras:

A and H together with the maps $\cdot : H \otimes A \to A$ and $f : H \otimes H \to A$ defined below is a crossed system of Hopf algebras:

$$f(a, a) = f(a^2, a^2) = g \text{ and } f(a^i, a^j) = 1 \text{ for } (i,j) \notin \{(1,1), (2,2)\}$$

A and H together with the maps $\cdot : H \otimes A \to A$ and $f : H \otimes H \to A$ defined below is a crossed system of Hopf algebras:

$$f(a, a) = f(a^2, a^2) = g \text{ and } f(a^i, a^j) = 1 \text{ for } (i, j) \notin \{(1, 1), (2, 2)\}$$

$$a \cdot g = a^2 \cdot g = g$$
, $a \cdot x = a^2 \cdot x = -x$, $a \cdot gx = a^2 \cdot gx = -gx$

For any $\alpha \in k$, (H_4, p) is a coquasitriangular Hopf algebra, where $p: H_4 \otimes H_4 \rightarrow k$ is given by:

р	1	g	X	gx
1	1	1	0	0
g	1	-1	0	0
X	0	0	α	α
gx	0	0	α	α

The linear map $u: H_4 \otimes k[C_3] \rightarrow k$ defined below is a (p, f) - right skew pairing on $(H_4, k[C_3])$:

$$u(g, a) = u(g, a^{2}) = -1$$
$$u(x, a) = u(x, a^{2}) = u(gx, a) = u(gx, a^{2}) = 0$$

The linear map $u: H_4 \otimes k[C_3] \rightarrow k$ defined below is a (p, f) - right skew pairing on $(H_4, k[C_3])$:

$$u(g, a) = u(g, a^{2}) = -1$$
$$u(x, a) = u(x, a^{2}) = u(gx, a) = u(gx, a^{2}) = 0$$

The linear map $v : k[C_3] \otimes H_4 \rightarrow k$ defined below is a (p, f) - left skew pairing on $(k[C_3], H_4)$:

$$v(a, g) = v(a^2, g) = -1$$
$$v(a, x) = v(a^2, x) = v(a, gx) = v(a^2, gx) = 0$$

For any $\gamma \in k$ such that $\gamma^3 = 1$, the linear map $\tau : k[C_3] \otimes k[C_3] \rightarrow k$ defined below is a (u, v) - skew coquasitriangular structure on $k[C_3]$:

Remark

The maps p, u, v and τ satisfy the seven conditions in our theorem. Thus, $\sigma : (H_4 \#_f k[C_3]) \otimes (H_4 \#_f k[C_3]) \rightarrow k$ is a coquasitriangular structure on the crossed product $H_4 \#_f k[C_3]$, where:

$$\sigma(b \otimes y, \ c \otimes z) = u(b_{(1)}, z_{(1)})p(b_{(2)}, c_{(1)})\tau(y_{(1)}, z_{(2)})v(y_{(2)}, c_{(2)})$$

is given by:

σ	1#1	1#a	$1 \# a^2$	g#1	g#a	$g \# a^2$
1#1	1	1	1	1	1	1
1#a	1	γ	$-\gamma^2$	-1	$-\gamma$	γ^2
$1\#a^2$	1	$-\gamma^2$	$-\gamma$	-1	γ^2	γ
g#1	1	-1	-1	-1	1	1
g#a	1	$-\gamma$	γ^2	1	$-\gamma$	γ^2
$g \# a^2$	1	γ^2	γ	1	γ^2	γ
x#1	0	0	0	0	0	0
x#a	0	0	0	0	0	0
$x \# a^2$	0	0	0	0	0	0
gx#1	0	0	0	0	0	0
gx#a	0	0	0	0	0	0
$gx \# a^2$	0	0	0	0	0	0

σ	x#1	x#a	$x \# a^2$	gx#1	gx#a	$gx \# a^2$
1#1	0	0	0	0	0	0
1#a	0	0	0	0	0	0
$1 \# a^2$	0	0	0	0	0	0
g#1	0	0	0	0	0	0
g#a	0	0	0	0	0	0
$g \# a^2$	0	0	0	0	0	0
x#1	α	$-\alpha$	$-\alpha$	$-\alpha$	α	α
x#a	α	$-\alpha\gamma$	$\alpha \gamma^2$	α	$-\alpha\gamma$	$\alpha \gamma^2$
$x \# a^2$	α	$\alpha \gamma^2$	$\alpha\gamma$	α	$\alpha \gamma^2$	$\alpha\gamma$
gx#1	α	α	α	α	α	α
gx#a	α	$\alpha\gamma$	$-\alpha\gamma^2$	$-\alpha$	$-\alpha\gamma$	$\alpha \gamma^2$
$gx \# a^2$	$ \alpha$	$-\alpha\gamma^2$	$-\alpha\gamma$	$-\alpha$	$\alpha \gamma^2$	$\alpha\gamma$

Introduction Basic properties of the crossed product Coquasitriangular structures on the crossed product of Hopf algebras Example

Thank You!