S-curves and (non-hermitian) orthogonal polynomials

Guilherme L. F. Silva
KULeuven, Belgium, guilherme.silva@wis.kuleuven.be

Consider a sequence of polynomials $\left(P_{n}\right)$ satisfying the (non-hermitian) complex orthogonality

$$
\int_{\Gamma} z^{j} P_{n}(z) e^{-n V(z)} d z=0, j=0, \ldots, n-1
$$

where V is a fixed polynomial and the integration is on an unbounded simple contour Γ in \mathbb{C} ending up at ∞ in both directions and such that $\operatorname{Re} V(z) \rightarrow+\infty$, as $z \rightarrow \infty$ in Γ.
If the polynomial V is real and $\Gamma=\mathbb{R}$, the zeroes of the P_{n} 's are also real and their limiting distribution can be characterized in terms of an equilibrium problem with external field on the real line. In contrast, if V is no longer real we have a lot of freedom in choosing the contour Γ, and this freedom is reflected in the behavior of the zeroes of the polynomials P_{n} 's.
Gonchar and Rakhmanov [1] characterized the limiting distribution of these zeroes, conditioned to the existence of a curve Γ with a certain symmetry property - the so called S-property - over which we can compute the integrals above.

Based on recent works [2,3], we will discuss the existence of this curve Γ and its characterization.
This is a joint work with Arno Kuijlaars.

References

[1] A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and the rate of rational approximation of analytic functions, Mat. Sb. (N.S.) 134(176) (1987), no. 3, 306-352, 447.
[2] A. Martínez-Finkelshtein and E. A. Rakhmanov, Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials, Comm. Math. Phys. 302 (2011), no. 1, 53-111.
[3] E. A. Rakhmanov, Orthogonal polynomials and S-curves, Contemp. Math., vol. 578, Amer. Math. Soc., Providence, RI, 2012.

