Determination of certain Quadrature Rules on the Unit Circle and the Frequency Analysis Problem ${ }^{1}$

Cleonice Fátima Bracciali, A. Sri Ranga
DCCE - IBILCE - UNESP - Universidade Estadual Paulista
São José do Rio Preto, SP, Brazil

Abstract

Let ν be a positive measure on the unit circle, \mathcal{C}, such that $d \nu(1 / z)=-d \nu(z)$. Thus, the moments $\mu_{n}=\int_{\mathcal{C}} z^{n} d \nu(z), n=0,1,2, \ldots$, are all real, the associated monic Szegő polynomials, $S_{n}, n \geq 0$, are real and that the associated reflection coefficients, $\delta_{n}=S_{n}(0)$, satisfy $-1<\delta_{n}<1$, for $n \geq 1$.

We consider the reciprocal polynomials $S_{n}^{*}(z)=z^{n} \bar{S}_{n}(1 / z)$ and the n-point the quadrature rule $$
\int_{\mathcal{C}} f(z) d \nu(z)=\sum_{k=1}^{n} \lambda_{n, k} f\left(z_{n, k}\right)
$$ based on the zeros $z_{n, k}, k=1,2, \ldots, n$ of the para-orthogonal polynomials $S_{n}(z)+S_{n}^{*}(z)$, which holds for $f(z) \in \operatorname{Span}\left\{z^{-n+1}, z^{-n+2}, \ldots, z^{n-2}, z^{n-1}\right\}$.

We study some techniques for determining the nodes $z_{n, k}$ and weights $\lambda_{n, k}$ of this quadrature rule. As an application, we consider the frequency analysis problem.

[^0]
[^0]: ${ }^{1}$ Research supported by grants from CAPES, CNPq and FAPESP of Brazil.

