Determination of certain Quadrature Rules on the Unit Circle and the Frequency Analysis Problem¹

Cleonice Fátima Bracciali, A. Sri Ranga

DCCE - IBILCE - UNESP - Universidade Estadual Paulista São José do Rio Preto, SP, Brazil

Abstract

Let ν be a positive measure on the unit circle, \mathcal{C} , such that $d\nu(1/z) = -d\nu(z)$. Thus, the moments $\mu_n = \int_{\mathcal{C}} z^n d\nu(z)$, $n = 0, 1, 2, \ldots$, are all real, the associated monic Szegő polynomials, S_n , $n \ge 0$, are real and that the associated reflection coefficients, $\delta_n = S_n(0)$, satisfy $-1 < \delta_n < 1$, for $n \ge 1$.

We consider the reciprocal polynomials $S_n^*(z) = z^n \overline{S}_n(1/z)$ and the *n*-point the quadrature rule

$$\int_{\mathcal{C}} f(z) d\nu(z) = \sum_{k=1}^{n} \lambda_{n,k} f(z_{n,k}),$$

based on the zeros $z_{n,k}$, k = 1, 2, ..., n of the para-orthogonal polynomials $S_n(z) + S_n^*(z)$, which holds for $f(z) \in \text{Span} \{z^{-n+1}, z^{-n+2}, ..., z^{n-2}, z^{n-1}\}$.

We study some techniques for determining the nodes $z_{n,k}$ and weights $\lambda_{n,k}$ of this quadrature rule. As an application, we consider the frequency analysis problem.