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Summary: A positive measure ψ defined on [a, b] such that its moments µn =
∫ b
a t

ndψ(t) exist
for n = 0,±1,±2, . . ., can be called a strong positive measure on [a, b]. If 0 ≤ a < b ≤ ∞ then the

sequence of (monic) polynomials {Qn}, defined by
∫ b
a t

−n+sQn(t)dψ(t) = 0, s = 0, 1, . . . , n − 1,
is known to exists. We refer to these polynomials as the L-orthogonal polynomials with respect
to the strong positive measure ψ. The purpose of this exposition is to consider an interpolatory
quadrature rule on the nodes of the polynomials Gn+1(z;w) = Qn(w)Qn+1(z) − Qn+1(w)Qn(z)
and provide the numerical tecniques for the generation of the nodes and weights of these quadra-
ture rules, based on a eigenvalue problem.
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