Numerical Generation of the Nodes and Weights of a Gaussian Type Quadrature Rule

Heron M. Felix,
Pós-Graduação em Matemática Aplicada, IMECC, UNICAMP, 13084-012, Campinas, SP
E-mail: almacinza@gmail.com,

A. Sri Ranga

Depto de Ciências de Computação e Estatística, IBILCE, UNESP, 15054-000, São José do Rio Preto, SP

E-mail: ranga@ibilce.unesp.br,

Summary: A positive measure ψ defined on $[a, b]$ such that its moments $\mu_{n}=\int_{a}^{b} t^{n} d \psi(t)$ exist for $n=0, \pm 1, \pm 2, \ldots$, can be called a strong positive measure on $[a, b]$. If $0 \leq a<b \leq \infty$ then the sequence of (monic) polynomials $\left\{Q_{n}\right\}$, defined by $\int_{a}^{b} t^{-n+s} Q_{n}(t) d \psi(t)=0, s=0,1, \ldots, n-1$, is known to exists. We refer to these polynomials as the L-orthogonal polynomials with respect to the strong positive measure ψ. The purpose of this exposition is to consider an interpolatory quadrature rule on the nodes of the polynomials $G_{n+1}(z ; w)=Q_{n}(w) Q_{n+1}(z)-Q_{n+1}(w) Q_{n}(z)$ and provide the numerical tecniques for the generation of the nodes and weights of these quadrature rules, based on a eigenvalue problem.

Key-words: Gaussian Type Quadrature, L-Orthogonal Polynomials, Eigenvalue Problems

References

[1] Zeros of polynomials which satisfy a certain three term recurrence relation, Communications in the Analytic Theory Continued Fractions, 1 (1992), 61-65.
[2] W. Gautschi, Construction of Gauss-Christoffel quadrature formulas, Math. Comp., 22 (1968), 251-270
[3] W.B. Jones, O. Njåstad and W.J. Thron, Two point Padé expansions for a family of analytic functions, J. Comput. Appl. Math., 9 (1983), 105-123.
[4] W.B. Jones and A. Magnus, Computation of poles of two-point Padé approximants and their limits, J. Comput. Appl. Math., 6 (1980), 105-119.
[5] W.B. Jones, W.J. Thron and H. Waadeland, A strong Stieltjes moment problem, Trans. Amer. Math. Soc., 261 (1980), 503-528.
[6] A.P. da Silva and A. Sri Ranga, Polynomials generated by a three term recurrence relation: bounds for complex zeros, Linear Algebra Appl., 397 (2005), 299-324.
[7] A. Sri Ranga, Another quadrature rule of highest algebraic degree of precision, Numerische Math. 68 (1994), 283-294.
[8] A. Sri Ranga and W. Van Assche, Blumenthal's Theorem for Laurent orthogonal polynomials, J. Approx. Theory, 117 (2002), 255-278.

