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INTRODUCTION 

General background 

The coastal fringe constitutes the most changing and dynamic natural 

environment (Woodroffe 2002) and, therefore, it is one of the most fragile and 

valuable natural habitats according to the environmental equilibrium. Moreover, it 

comprises the most pressured area due to human activities such as the excess of 

urbanizations and the establishment of means of communication, ports and 

different industrial infrastructures. More than half of the total world population is 

settled on the first 60 km from the coastline, so those areas support a high 

economic development, mainly derived from tourist activities (Sua rez de  ivero, 

 odr  guez Mateos 200  . With three-quarters of the world population expected to 

reside in the coastal zone by 2025, human activities originating from this small 

land area will keep representing a disproportionate amount of pressures on the 

global system. 

Focusing in Spain, and mainly in the Andalusia region (where is placed the 

study site of this Thesis), the development of the coastal areas regarding 

investments, urbanization and economic dynamization can be considered as quite 

intense along the second half of the twentieth century. According to the report of 

the regional administration in charge of environmental affairs (Junta de Andalucía, 

Consejería de Medio Ambiente), the increase in the population living in coastal 

areas between 1991 and 2009 took a value of 34.06%. Notice that this littoral zone 

bears up to 40% of the Andalusia population which offers a clear view about the 

environmental pressure suffered by coastal areas. Furthermore, and turning to a 

country scale, it should be highlighted the Strategy for Coastal Sustainability 

(Estrategia para la Sostenibilidad de la Costa) driven by the Environment Ministry 

(MMA 2007) which indicated that the 44% of Spanish population live in coastal 

municipalities representing only the 7% of the territory. This document also 

reports that around 48 million of tourists are visiting our coastal areas every year. 

That situation has led to a gradual and steady degradation of our coastal natural 

resources since about the 75% of the nearest Sea terrain has been urbanized or 

targeted as suitable for urbanization and the 25% of the coastal areas have been 

already artificially developed. Finally, the 32% of the coastline is estimated as 

requiring environmental restoration (MMA 2007). 

Vulnerability of coasts 

Generally, the main threats in relation to the coastal zone are the coastal 

dynamic alteration due to human infrastructures, the natural habitats modification 

and transformation, the high level of pressure on the natural resources, the 

residues discharges, the degradation of the beaches, and the loss of water quality. 
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In Spain, although some regions might be considered vulnerable to both flooding 

and erosion, water stress poses the greatest threat (European-Commission 2009). 

An additional factor that should be taken into account for coastal management is 

the climate change phenomenon which could lead to a probable sea level rise 

(SLR) close to 0.5 m (reasonable scenario) by 2100 and the corresponding change 

of coastal dynamic owing to the alteration of control factors such as the wave 

height or the currents direction (Uceda, Sánchez-Arcilla & Cardeña 2005). In the 

same way, Rahmstorf (2006) used a simple regression model to suggest that SLR 

could reach 0.5 to 1.4 m above 1990 levels by 2100, but this work did not consider 

individual processes like dynamic ice sheet changes, being only based on how 

global sea level has been linked to global warming over the past 120 years. As it is 

discussed in that paper, any non-linear or threshold behaviour of ice sheets could 

lead to sea level rising faster than this estimate. Furthermore, climate change may 

aggravate the problem of water scarcity and therefore the sediment supply. In fact, 

south-east regions of Spain (included the study site of this Thesis) have been 

recognized as “particularly vulnerable to water shortages due to the hot weather 

and intensive urbanization of the coastline by the tourism industry and holiday 

homes” (European Commission 2009). 

The erosion problem 

One of the main indicators of coastal degradation is the shoreline erosion 

which is mainly occurring in sand beach areas because of their higher erodibility. 

In fact, shoreline erosion constitutes an important environmental and 

socioeconomic risk. Moreover, it increases the risk of flooding since the surface 

which protects the urbanized area may be reduced or removed for the most 

extreme cases. According to the European Commission, one fifth of the UE littoral 

has been eroded between 0.5 and 2.0 meters (European Commission 2005). For 

instance, in Spain the 11.5% of the coastline is subject to significant erosion, being 

more intense along the Mediterranean coast. Thus, it estimated that nearly 41% of 

the Andalusia Mediterranean coast is currently undergoing erosive processes 

(European Commission 2009). This erosion has rapidly increased because of the 

drastic reduction of solid sediment supply due to both the regulation and 

reforestation carried out on fluvial basins as well as the dam constructions (Uceda, 

Sánchez-Arcilla & Cardeña 2005). 

The external factors which usually produce coastal erosion are the swell, the 

ocean currents, the tidal regime, and also the storm events. However, an additional 

issue has to be taken into account since it plays a key role especially for 

Mediterranean areas: the lack of sedimentary supply from the hydrologic basins, 

rivers, ravines, and so on, since anthropogenic interventions has led to changes in 

land-cover and land-use, besides the fact that the construction of dams has 

critically affected the final sediment supply to the coastal system (Uceda, Sánchez-

Arcilla & Cardeña 2005). Furthermore, a probable SLR scenario provoked by the 

climate change would contribute with an added risk that should clearly justify a 
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comprehensive and rigorous study to achieve an appropriate and efficient coastal 

areas monitoring and management. 

Coastal monitoring 

The conservation actions are marked by the Integrated Coastal Zone 

Management (ICZM) regarding protection, restoration, control, and vigilance, apart 

from the management of the coastal environment. 

The previously presented situation implies that the potential vulnerability of 

the coastal areas should be evaluated and monitored since the coastal dynamic 

characterizes the ‘state of health’ of coastal areas by indicating if the dynamic is 

balanced or what kind of processes, erosion or accretion, are gaining prevalence. 

This indicator will play a key role for general land-use management. Coastal 

dynamic can be quantitatively estimated by means of the evolution of the shoreline 

position through time, understanding the shoreline as the interface between the 

Sea water and the inner land. Monitoring of shoreline will enable to obtain the 

linear shoreline evolution (erosion or accretion), and so the estimation of eroded 

material volume, loss of beaches areas and so on. 

According to some authors, coastal monitoring has to be combined with the 

space and time scales in which morphodynamic processes occur (Uceda, Sánchez-

Arcilla & Cardeña 2005, Brommer, Bochev-Van Der Burgh 2009). For instance, 

while swell processes can be estimated in one-day changes, evolution produced by 

SLR needs a long-term study. Furthermore, an episodic scale is associated with 

extreme events with a return period of decades and they can modify the coast 

severely. In the Mediterranean areas, those episodes are the storms associated 

with meteorological high tides and highly energetic waves, and also the extreme 

floods related to a high and fast sediment supply. Furthermore, Mediterranean 

sandy coasts are usually controlled by the sediment supply in closed cells such as 

estuarine environments or deltas. Therefore, sediment budget assessment of the 

specific area may have a special importance (Rosati 2005). 

Shoreline for coastal management 

Shorelines, other than be essential for coastal evolution monitoring, 

constitutes a key element of information in geographical datasets (Consejería de 

Medio Ambiente de la Junta de Andalucía 2009), being a reference line for 

physiographic units representation, marine and terrestrial public domain 

management, flooding episodes simulation, and so on.  

The position of the shoreline along ocean coasts varies over a broad spectrum 

of time scales in response to shoreline erosion (retreat) or accretion (advance), 

changes in water level, and land uplift or subsidence. Long-term trends in 
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shoreline position may be masked in the short term by variations over periods of 

0.1-10 years or more, related, for example, to individual storms, changes in 

storminess, etc. Shoreline position reflects the coastal sediment budget, and 

changes may indicate natural or human-induced effects alongshore or in nearby 

river catchments. The detailed shape and sedimentary character of a beach (e.g. 

beach slope, cusp dimensions, bar position and morphology, barrier crest and 

berm elevation, sediment size and shape) are highly sensitive to oceanographic 

forcing, including deep-water wave energy, nearshore wave transformation, wave 

setup, storm surge, tides, and nearshore circulation: morphodynamic adjustments 

and feedbacks are common. Qualitative assessments of shoreline morphology can 

be used as a proxy for shore-zone processes, partially substituting for more 

quantitative measures of shoreline change where these are not available. 

Historically, the shoreline has been used as the main indicator of the coastal 

dynamic (Moore 2000). Hence the geomatics techniques utilized for its extraction 

have been extended to a wide set of fields such as researching, engineering, 

management, land-use planning, or environmental issues. In fact, long coastlines 

and dynamic processes make the application of traditional surveying difficult, but 

recent advances made in the geomatics discipline allow for more effective 

methodologies to be investigated.  

Among the coastal environments, the sandy beaches constitute the most 

dynamic natural system as well as the most exposed to morphological variations. 

Furthermore, they are usually under a large anthropic influence. Sandy beaches 

behave differently regarding the spatial and temporal scales. On one hand, 

seasonal changes in the way of the profile can be observed from winter to summer 

and for the different influence of atmospheric events (Ojeda 2000, Hernández et al. 

2007). On the other hand, the general trend of coastal evolution can be assessed by 

means of a long-term evolution study (Douglas, Crowell 2000). 

As previously indicated, the shoreline could be defined as the interaction 

between the Sea water and the inner land (Dolan, Fenster & Holme 1991). 

However, this interface does not correspond, obviously, with an invariant feature 

but with an instantaneous position depending on the tidal regime state and the 

meteorological conditions. Some researchers have preferred to define the 

shoreline in a more functional and practical way (Boak, Turner 2005) from which 

the shoreline can be established in a much more objective way. Moreover, the 

shoreline definition should be established in order to enable a proper extraction 

by means of the geomatics techniques for its integration in the long-term evolution 

studies. According to some authors, the best shoreline is that results less 

susceptible to the real physical changes of the own shoreline (Parker 2003). In that 

way, the most suitable technique to determine the shoreline will be that which can 

generate unbiased data that unambiguously define the shoreline, namely, an 

approach less sensitive to non-related variables regarding the phenomenon to 

measure. 
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At this point, the shoreline indicator concept emerges. That concept refers to 

any feature used as an approximation of the true shoreline (Gens 2010). That 

indicator will be utilized for all the shorelines included in the same evolution 

study. Historically, the most employed indicator has been the High Water Line 

(HWL), which is defined as the landward line in which recent position of water can 

be observed (border between dry and wet sand). So this indicator depends on the 

highest tidal and the runup (Pajak, Leatherman 2002). HWL indicator has been 

widely used since it results easy to interpret by means of aerial photographs or 

satellite imagery. However, the new data acquisition techniques have allowed the 

use of altimetric and tidal datums reducing the dependence on the interpretation. 

This kind of indicator has been established along the past decade. For instance, the 

Mean High Water (MHW) has been widely used in US, being estimated by means of 

a minimum of 19 years of tidal gauge measures. Some research has been done 

trying to relate both types of indicators (physical-based and tidal-based) in order 

to use old datasets together with contemporary tidal-based shorelines through 

observing the differences between both indicators and compensate them (Moore, 

Ruggiero & List 2006). 

Shoreline evolution 

As previously mentioned, shoreline is the main geo-indicator used in the 

coastal evolution monitoring. That is usually carried out by the erosion or 

accretion rates estimation, i.e. the shoreline change velocity in a historical way 

which is measured by the distance that is moved per year from a determined 

position (Ojeda 2000). Thus, large erosive rates areas can be identified in which 

the vulnerability of the coastal area is increased and future shoreline position can 

be estimated. Several approaches have been used for rate of change estimation 

(Douglas, Crowell 2000, Genz et al. 2007) taking into account a set of time spanned 

shorelines, probable errors or inaccuracies on them, acceleration of the rates, 

short-term variations, etc. Generally, those approaches try to quantify the long-

term evolution so that the stationary variations keep out from the analysis. 

Therefore, the more accurate shoreline extraction as well as the use of more 

robust rate of change estimations would be the basic tools for an appropriate 

coastal evolution study that, in the same way, would be the basis for the planning 

and monitoring activities in coastal areas. 

Geomatics techniques on coastal areas 

One of the main advantages of the tidal-based shoreline indicators is the 

possibility of being extracted by suitable data and methods. Here, geomatics 

techniques play a key role for the shoreline extraction. Historically, shoreline has 

been delimited in topographic maps and nautical charts by referring to a tidal 
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datum. Furthermore, physical indicators have been visually recognized by aerial 

images regardless they were previously orthorectified or not. Nowadays, and 

thanks to the spatial information technology development, the quasi-automatic 

shoreline extraction is a real possibility by using photogrammetric techniques 

(Ojeda et al. 2007), digital image processing (Li, Di & Ma 2003, Liu, Sherman & Gu 

2007), and Airborne Laser Scanning based methods (Brock et al. 2002, Stockdon et 

al. 2002, Sallenger Jr. et al. 2003).  

Airborne Laser Scanning (ALS) 

ALS technique, developed mainly in the last decade, has opened a wide range 

of studies about shoreline detection since digital elevation models (DEMs) are able 

to be collected in a rapid, efficient, and accurate way (Sallenger Jr. et al. 2003, 

Brock, Purkis 2009). ALS, also called LiDAR (Light detection and ranging), enables 

the shoreline extraction by using tidal-based indicators which allowed the 

scientific community to adopt those indicators instead of physical ones. Several 

techniques have been developed by the researchers, e.g. the direct contour 

extraction of a determined elevation (Robertson V et al. 2004), the shoreline 

estimation by cross shore profile regression (Stockdon et al. 2002), or the 

altimetric datums transformation (White 2007). 

Digital Photogrammetry for archival images 

As previously mentioned, the new techniques such as ALS constitute an 

excellent data source for shoreline extraction. However, any evolutionary study of 

such shoreline along time requires for previous data that enable the extraction of 

the same type of shoreline. In this case, photogrammetry constitutes the set of 

techniques that have been more widely used for geographical information 

acquisition (Mills et al. 2005). From the first complete photogrammetric flight in 

Spain (carried out during the years 1956 and 1957), numerous image acquisitions 

have been done from which a valuable geographical information can be extracted. 

For instance, historical orthoimages and DEMs can be produced from historical 

photogrammetric flights by means of a proper methodology (Aguilar, Aguilar & 

Negreiros 2010). 

However, the management and exploitation of those archival images can have 

some drawbacks, such as the lack of information about the employed cameras or 

their calibration certificates and the difficulty of obtaining an enough number of 

ground control points (GCPs) for the correct processing (Walstra, Dixon & 

Chandler 2007). Thus, when camera parameters are not completely known, self-

calibration bundle adjustment techniques can be applied in order to mitigate the 

systematic errors produced by the lack of previous internal orientation 

parameters. Several bundle-adjustment methods have been developed such as the 

lens distortion model, the Bauer’s simple model (Bauer, Müller 1972), the 

Jacobsen’s simple model, the Ebner’s orthogonal model (Ebner 1976), or the 
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Brown’s physical model. Many of those methods have been widely tested in 

previous works (Grün 1978, Klein 1979, Ackermann 1981, Aguilar, Aguilar & 

Negreiros 2010). 

Nevertheless, a need of a wide framework of GCPs constitutes a key 

disadvantage for the systematic application of self-calibration bundle adjustment 

techniques for historical flights since the land-use change may difficult the 

interpretation of those points nowadays. It is still challenging for the scientific 

community the search for more automatic and equally accurate techniques for the 

DEMs extraction from photogrammetric images. Hence, some proposals have been 

turned up such us GCPs extraction from LiDAR data (James et al. 2006) or DEMs 

coregistration by means of surface matching and image matching (Mills, Buckley & 

Mitchell 2003, Mills et al. 2005, Miller et al. 2008). 

Robust matching techniques for DEM georeferencing 

Coregistration-based techniques, in which one DEM is oriented or 

georeferenced by using another more accurate DEM, are particularly interesting. 

This kind of approaches seem to be truly suitable for DEMs change evolution 

studies since very high accurate DEM can be produced by the current techniques 

such as LiDAR. Thus, since grid DEMs can be treated as a raster images by means 

of, for instance, shaded-relief representation, an automatic approach for DEMs 

coregistration can be undertaken through image matching techniques (Aguilar et 

al. 2010). Other promising techniques are those based on surface matching 

coregistration. Those approaches are based on tridimensional transformation by 

using the elevation differences between both DEMs. An iterative weighting process 

is carried out by means of M-estimators such as Tukey’s Biweight (Goodall 1983) 

to find an optimal solution. It is important to highlight that the real changes on 

terrain and the height differences regarding the misallocation between DEMs 

should be previously separated by means of techniques such as clustering analysis 

(Spath 1985). 

Remote sensing and image classification 

Additionally to shoreline extraction and shoreline evolution estimation, the 

assessing of other factors that might affect coastal evolution turn out to be highly 

relevant for a better understanding of all the processes which take place in the 

coastal area. In this sense, one of the most important factors affecting coastal 

evolution would be the percentage of impervious surface land cover along the 

coastal fringe. The impervious surface areas (ISAs) distribution provides a general 

vision of the land-use historical changes, affects the direct sediment exchanges 

between the sand beaches and landward areas, and may be a good indicator of the 

potential risk of flooding (Weng 2012). Historically, ISAs has been mapped by 

visual interpretation on orthoimages. However, the low effectiveness and 

efficiency of that approach have boosted the research and application of automatic 
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image classification methods for ISAs classification. Concretely, remote sensing 

have been playing a key role since very high resolution (VHR) satellite such as 

IKONOS (Hu, Weng 2011), Quickbird (Lu, Hetrick & Moran 2011), or more recently 

WorldView-2 and GeoEye-1, have been launched (Weng 2012). 

VHR satellite images are not easy to analyse since the usual pixel-based 

classification methods usually lead to a salt-and-pepper effect which does not 

correspond with the reality. As a result, object-based image analysis (OBIA) -which 

uses homogeneous segments as a minimum classification unit instead of pixels- 

has been developed and widely used since it is able to remove or mitigate the 

spectral variability of the VHR image classification (Blaschke 2010). 

For ISAs classification, the spectral resolution (the number of bands provided 

by satellite platforms) constitutes a basic parameter. Whereas most of the 

available VHR satellites offer four spectral bands (RGB visible spectrum plus near 

infrared band), some of the newest ones provide a higher spectral resolution. For 

instance, WorldView-2 satellite images include four additional bands (8 bands in 

total) and, consequently, the possibilities for the classification approaches are 

multiplied. However, if ISAs evolution along time is required, archival aerial 

images should be taken into account as a VHR historic data source. Unfortunately, 

this sort of images is available in colour (RGB visible spectrum) or, most of times, 

even only in panchromatic mode (PAN or black and white (B&W) images). 

Therefore, the ISAs classification from archival images keeps being a challenging 

issue to undertake. 

Finally, estimating the performance of the most common classification 

methods in relation to ISAs classification will be crucial (Lu, Weng 2007). 

Generally, those classifiers can be labelled as parametric (e.g. maximum likelihood) 

or non-parametric. The latter kind of methods has been highly developed recently 

and, for instance, classification and regression trees (CART), neural networks, 

nearest neighbour (NN), or support vector machines (SVM) have been widely 

applied for image classification (Xu et al. 2005, Mas, Flores 2008, Samaniego, 

Bárdossy & Schulz 2008, Mountrakis, Im & Ogole 2011). Additionally, the most 

appropriate features (features vector) for ISAs classification should be explored. 

Thus, different ratios between bands, contextual information, or textural patterns 

could be tested (Agüera, Aguilar & Aguilar 2008). 
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JUSTIFICATION 

The huge degradation of coastal areas as well as the high stress they bear 

makes this zones one of the most vulnerable environments. Determining the 

historical and contemporary shorelines as well as assessing the shoreline trend 

evolution over the years constitutes essential elements to evaluate the coastal area 

fragility. In this way, the development of suitable techniques for shoreline 

extraction and rate change estimation make up an indispensable tool for an 

efficient coastal areas monitoring. 

Other important issue that may play a key role for coastal evolution 

management are the human interventions on the natural terrain of the coastal 

fringe since they alter the physic and chemist features of the land cover. Thus, the 

urbanization process entails an increase of runoff because of the sealing effect or 

imperviousness, provoking a lack of natural sedimentary processes of exchange 

between coastal areas and the inner land and the exclusive dependence of river 

sediment supply or alongshore sediment transport. 

Taking into account the aforementioned considerations, the need of 

implementing efficient monitoring systems is greatly justified. The emerging and 

numerous multi-temporal data fusion and analysis techniques which geomatics 

engineering can provide (e.g. digital photogrammetry, high resolution satellite 

imagery, airborne laser scanning, automatic segmentation and classification of 

digital images, automatic DEM coregistration, and so on) enables the compilation 

of accurate and efficient geographically-oriented products such as DEMs or 

orthoimages. Those products can be properly utilized for shoreline extraction, 

change rate estimation or land-cover change assessment in the context of coastal 

monitoring and management research. 

In short, efficient approaches should be established in order to evaluate what 

is the general trend in a specific coastal area as well as to determine what can be 

the causes of that trend in order to support the coastal policy and strategies 

followed by the decision makers in that area. The use of widespread geomatics 

techniques developed within the field of the scientific community, somehow 

adapted to the local conditions of a specific coastal area, should make possible to 

largely improve the monitoring and management of this kind of very sensitive and 

vulnerable coastal systems.  
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GOALS 

The general purpose of this Thesis is the study and implementation of suitable 

geomatic techniques for coastal monitoring on a pilot area. Thus, a varied number 

of techniques such as photogrammetry, remote sensing, image classification, 

accurate coregistration of DEMs, shoreline extraction and shoreline evolution 

estimation are explored in this Thesis in order to provide a set of valuable tools for 

the coastal areas management and monitoring. Those different geomatics 

techniques have been tested and integrated on a coastal area located at the 

southeast of Spain, in the Almeria province. However, they have been developed to 

be easily extrapolated to any other coastal areas, mainly those situated in the 

Mediterranean Basin and so presenting a microtidal regime. 

Therefore, the goals of this Thesis are numbered as follows: 

1. On one hand, historical spatial data are extremely important for coastal 

evolution studies and aerial photography constitutes the main source of both 

historical orthoimages and DEMs. On the other hand, some of the older 

photogrammetric databases do not include specific essential information such 

as the camera calibration certificate. Therefore, self-calibrating bundle 

adjustment methods have to be explored in order to test which of them can 

improve the accuracy of the final triangulation. Additionally, the number of 

GCPs used for that adjustment could play an important role that should be 

examined. Thus, determining the most suitable combination of bundle 

adjustment method and the required number and distribution of GCPs for 

achieving the best possible exterior orientation of archival aerial images will 

be the first goal of this Thesis.  

2. One of the main geomatics data source would be constituted by the DEMs. 

Those DEMs can be derived from old historical photogrammetric flights by 

means of a few number of GCPs. Therefore, the orientation of the resulting 

stereomatching-derived DEM may not be as suitable as required. Accurate 

archival DEM coregistration by means of a reference and more accurate DEM 

can become a valuable technique to take into account for historical-DEM 

georeferencing and terrain changes quantification. In this Thesis, shaded-relief 

DEMs image matching and surface matching by means of an approach based 

on a robust estimator will be explored in order to determine the accuracy of 

the final georeferentiation obtained. Both approaches will be tested both 

separately and jointly to refine the final DEM georeferencing. 

3. The definition and delimitation of historical and contemporary shoreline 

constitutes the main data source for shoreline trend evolution analysis. 

Therefore, shoreline extraction from spatial data is one of the most important 

issues that a coastal evolution study should face. The typical shortcomings of 

the microtidal coastal areas and the geodetic and tidal gauges elevation origins 

largely limit the application of other pre-existing methods available in 
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literature to extract the shoreline in the study area of this Thesis. Therefore, a 

new approach to extract a tide-coordinated shoreline from very accurate 

LiDAR-derived DEM will be developed in order to establish a suitable and 

robust method especially thought to be applied in microtidal Mediterranean 

areas. 

4. Once the definition and extraction of the shoreline for this kind of coastal 

areas have been established, the shoreline trend evolution will be estimated 

and erosion or accretion areas will be extracted according to the relative 

position of the different multitemporal shorelines. Here, all the historical and 

the contemporary data will be used to estimate long-term shoreline evolution. 

Some conclusions will be made in order to enable both suitable monitoring 

and management processes in the specific coastal area. Finally, the proposed 

approach is expected to serve as a reference for similar studies mainly along 

the Mediterranean coastal areas. 

5. The impervious surface areas (ISAs) may constitute a key role for explaining 

coastal evolution. Furthermore, land cover data are essential for coastal 

monitoring in order to check the influence of the human intervention through 

coastal areas urbanization. Thus, remote sensing techniques and object-based 

image classification methods will be utilized to classify the corresponding 

ISAs. The aim of this work will be focused on the development of a routine to 

classify different data image sources ranging from colour archival orthoimage 

to multispectral very high resolution satellite imagery. 
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HYPOTHESES 

The main hypotheses supporting this work highly rely on the aforementioned 

goals to achieve. Regarding the self-calibration bundle adjustment techniques 

applied to archival aerial images, it is expected that a high number of GCPs will be 

required, with no wide knowledge existing about what self-calibrating approach 

could be the most appropriate. Additionally, the developing of a new 

georeferentiation approach based on surface matching (i.e. coregistration between 

archival and reference DEMs) is expected to be more efficient, less time-consuming 

and more automatic than the traditional photogrammetric process. However, the 

final accuracy of the automatic surface matching technique is not supposed to be 

as fine as the one coming from the application of photogrammetric self-calibration 

method, although the efficiency of both approaches will have to be under 

consideration. 

Regarding the shoreline extraction approach, it is expected that the most 

widespread method to extract the tide-derived shoreline from DEM, mostly used in 

other kind of coastal environments, will not suit well Mediterranean beaches since 

the tidal regime is quite different. Therefore, it is hypothesized that the developed 

technique could yield better results for shoreline extraction in the case of 

microtidal areas. Additionally, and with regard to the erosion and accretion rates 

estimation, a difficulty is expected since the time span used in this Thesis is not as 

large as that used in other similar studies, mainly due to the lack of historical data 

(in Spain 1956-57 is usually the oldest dataset while coastal charts dating from the 

nineteenth century are available in US, for instance). The main sources of the 

erosion process affecting this coastal area will be probably difficult to be 

established since a large number of sources should be taken into account (e.g., the 

lack of sediment, the sand mining, the human interaction, the sea level rise, some 

historical storm events, and so on). However, a suitable technique to control the 

process is expected to be achieved since different rate estimation methods will be 

tested. 

Finally, and concerning the ISAs classification process, the use of object-based 

image analysis together with a proper sampling method and some non-parametric 

classification methods (e.g. nearest neighbour –NN- or support vector machine -

SVM) is expected to yield accurate results after determining the most appropriate 

features vector to apply. It is also hypothesized that invariable feature sets, such as 

texture information, will play a key role on the classification accuracy. 

Additionally, VHR satellite imagery is expected to lead to more accurate results 

than those achieved from the archival aerial orthoimages since more spectral 

bands and better radiometric characteristics are contributed by the former. 
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STUDY SITE 

The study site is located at the East of the Almeria province, south of Spain 

(Figure 0.1), between the localities of Villaricos (belonging to Cuevas de Almanzora 

township) and Garrucha, in North and South respectively (Figure 0.1). It comprises 

a coastal fringe approximately 11 km long and 770 m wide centred on WGS84 

geographic coordinates of 37.2109° North and 1.8027° West. This area was chosen 

since a huge coastal erosion process have been carrying on throughout the 

twentieth century, especially in the so-called Quitapellejos beach and in areas close 

to the mouth of the Almanzora River, located just to the north of that beach. For 

instance, about 200 m of cross-shore beach erosion can be easily observed from 

1957 to nowadays by having a quick look at the corresponding orthoimages (this 

means an estimated erosion rate close to 3.5 m/year). On the other hand, a steep 

front of erosion can be currently seen in Punta de Hornicos (just located south of 

the Almanzora river mouth) instead of the natural beach that was observed in the 

corresponding 1957 archival orthoimage (Figure 0.2). 

At the North of the study site can be found the Almagreda coastal mountain 

chain (up to 368 m in the Tenerife peak), while at the South is situated the Cabrera 

mountain chain (almost 1.000 m in its maximum altitude). Therefore, non-

sedimentary coastal environments are located outside this study site and natural 

or artificial embayed beaches and cliffs appear instead. Meanwhile, the study site 

can be considered entirely as a sandy coastal environment, mainly from the 

Almanzora River mouth to the Garrucha’s Harbour. 

 

Figure 0.1. General location of the study site. 
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The study site contains two river mouths corresponding to the rivers 

Almanzora and Antas, situated in North and South respectively (Figure 0.1). Those 

drainage basins control the main sediment supply in that area although the 

Almanzora River can be considered as the main supplier since it is the largest river 

in the Almeria province. Furthermore, the Almanzora River can be classified as a 

non-permanent course while the Antas River can be considered as a dry-ravine or 

highly seasonal regime since its flow is mainly controlled by the rainfall. The 

construction of the ‘Cuevas de Almanzora’ dam (about 15.5 km upstream from the 

mouth) and the artificial canalization of the river channel from the dam to the 

mouth implied the reduction of the sediment catchment and transport, affecting 

the supply of these materials into the surrounding beaches (Viciana 2007). In this 

area can be found two Sites of Community Importance (SCI) such as the Antas 

channel and the marshes located at the Antas’ mouth, so the environmental 

importance of the area is also crucial. The Antas’ mouth is additionally considered 

as in a ‘very serious flood risk’ and, in fact, a really harmful flood happened on 28th 

September 2012, affecting some of the newest areas of urbanization and brutally 

modifying the temporal shoreline geometry (Figure 0.3). 

 

Figure 0.2. Front of erosion in Quitapellejos beach. May 2011. 
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Figure 0.3. Mouth of the Antas River. This picture was taken from one margin of the Antas’ 

mouth towards the other one. Normally, this mouth is completely full of sand and the beach is 

continued between both margins of the river. The storm episode happened on September 28th, 

2012 removed the entire sand bank. Picture taken in October 2012. 

Regarding hydrologic and oceanographic features of this area, it should be 

indicated that the main drift of the ocean currents come from the North to the 

South, according to the official data (Puertos del Estado 2013). That means that the 

original sediment supply, mainly from the Almanzora River mouth, is expected to 

move towards the South being settled along the traversed beaches. Furthermore, 

the submerged relief has to be taken into account. According to the official 

bathymetric charts, a deep canyon is placed northern the Garrucha’s harbour, just 

at the end of the beaches system placed southern the Almanzora River. It means a 

great channel through which a large quantity of sediments is removed from the 

local coastal physiographic unit following the general oceanographic currents and 

without any possibility of recovery.  

It is also important to highlight the high level of human intervention on this 

area. The level of urban development has been increased from the 50s to 

nowadays so that only two little urban sites existed in 1957 (Villaricos and 

Garrucha), whereas a large and wide fringe of urbanization areas can be seen 

today occupying a high percentage of the study site. Thus, a high increase of the 

impervious surface has been registered which could play an important role 

regarding the local coastal evolution. For instance, the direct sediment supply from 
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the nearest inland areas towards the beaches can be actually considered as close to 

zero or negligible. Additionally, some specific anthropic actions, very concerning 

for the coastal management, have taken place in the area. In fact, the building of 

many coastal infrastructures such as harbours rebuilding, jetties or breakwaters, 

as well as sand mining from the delta of the Almanzora River and other beaches, 

and the beaches nourishments over the years, play a key role in the coastal 

evolution of the study site. 

Therefore, the environmental importance, the flood mitigation and 

management, the evolution of the impervious areas (soil sealing effect), and other 

human interactions affecting this coastal area make the geomatics techniques 

extremely useful and important to monitor its evolution,  constituting a valuable 

natural laboratory where testing and validating the different approaches proposed 

in this Thesis. 

DATASETS 

The datasets listed and described in this section have been used in the 

chapters which make up this Thesis. Since those datasets were employed for 

multitemporal analysis, some of them can be considered as ‘historical’ and they 

perfectly represent the evolution of geomatics techniques during the twentieth 

and the beginning of the twenty first century. Thus, the datasets used in this Thesis 

can be classified as photogrammetric flights (historical or recent), airborne laser 

scanner (ALS or airborne LiDAR), high resolution satellite imagery, and ancillary 

data (which include those data used to support the exploitation of the raw data 

and pre-existing official data to test and validate some approaches tested in this 

Thesis). The differences among the circumstances and technological level of the 

employed datasets implied a special treatment and management in many cases. 

For instance, two historical photogrammetric flights did not include suitable 

information about the utilized camera. Therefore, self-calibration techniques were 

explored in order to obtain the most accurate absolute orientation of photographs 

and stereo models to ensure the derivation of a good georeferenced DSM (Digital 

Surface Model) from which extracting high quality shorelines (Chapters 1 and 3). 

Two main kind of derived data have been extracted from the original datasets: 

orthoimages and DEMs. Latter ones could have been extracted by means of stereo 

matching and edition (historical flights), or ALS data processing (LiDAR). 

Photogrammetric flights 

The photogrammetry has been the most widely utilized technology 

throughout the twentieth century to obtain cartographic data and products. 

Historically, this technique has been based on conical images taken from airborne 

platforms which are used to extract 3D information based on the bundles 
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intersection and the stereovision from, at least, two different points of view. This 

process has undergone a huge enlargement during the last century and it has been 

the main source of cartographic data of any country. Launched by the explosion of 

the computer technology, the different stages of photogrammetry have reached the 

current step: the digital photogrammetry. It has enabled an increase in the use of 

this technique by means of reducing the needs of special hardware such as 

analogical or analytical restitutors, providing a much more efficient method to 

produce orthorectified images. Therefore, a new way to extract information from 

old photogrammetric projects has been reached since high resolution 

photogrammetric scanners are able to properly digitize old photographs in such a 

way that digital photogrammetric can be applied and orthoimages and DEMs can 

be more easily derived. 

The photogrammetric flights used in this Thesis can be classified as historical 

or digital. The main difference relies on whether previous digitization is needed or 

not. Thus, the analogical flights from 1956 to 2001 used in this work can be 

considered as historical flights, whilst the two latest flights would be classified as 

digital flights. A large effort to get a wide and time spanned representation of the 

main photogrammetric flights taken on the study site was carried out. In the case 

of Spain, the first historical and systematic flight was taken in 1945-46 (Fernández, 

Quirós 1997) at a scale of 1:45.000, but it did not cover the entire country and, 

moreover, the first flight undertaken in Almeria would have to wait till the arrival 

of the 1956-57 series. The details of every photogrammetric dataset are listed 

below and summarized in Table 0.1. 

American Flight (1956-57) 

Undertaken by the United States government, it is often referred to in Spain as 

the ‘American flight’ and it marks the start of metric aerial photography in most of 

the Spanish regions. Therefore, it constitutes a valuable national information 

source for photo interpretation and land use evolution, among other possibilities. 

However, problems with the metric capabilities of this flight exist since a proper 

conservation of the prints is not guaranteed and there is an important lack of data 

with respect to the cameras employed (Cardenal et al 2006). 

These photographs belonged to panchromatic photogrammetric flights at an 

approximate scale of 1:33 000, acquired using a ‘standard’ metric film camera of 

230 x 230 mm with 60% forward overlap and 30% lateral overlap, providing a 

base to height (B/H) ratio of approximately 0.60. The original negatives were 

scanned using a photogrammetric scanner with a geometric resolution of 21 µm 

and a radiometric resolution of 8 bits; they were stored in TIFF format with a 

ground sample distance (GSD) of approximately 0.70 m. The digitized photographs 

were provided by the Network of Environmental Information of Andalusia (known 

as REDIAM). 
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The study site is covered by two stereo pairs (4 images in total) flown in 

different dates and had some different features since they belong to different strips 

of the flight plan. The southern stereo pair was captured on 30th October 1956, 

using a photogrammetric camera for which the principal distance (153.01 mm) 

appeared as marginal data in the photograph. The northern stereo pair was taken 

on 3rd September 1956 by using a different camera with an indicated principal 

distance of 154.19 mm. Full camera calibration details of these cameras were 

unknown. Moreover, these old cameras had no corner fiducial marks, as more 

recent cameras do. Instead they relied on only four marks in the middle of the 

edges of the photo frames to allow for interior orientation in the plate carriers of 

analogue stereoplotters of the time. 

Agriculture or Interministerial flight (1977-1983) 

This flight consisted of a panchromatic analogue photogrammetric flight 

carried out by some of the Spanish government ministries between 1977 and 

1983. The photographs used in this research were taken on 15th July 1977 and 

they are composed by four stereo pairs with a B/H ratio of 0.55, presenting a 60% 

forward overlap and a 30% lateral overlap respectively. This flight presents an 

approximate scale of 1:18.000 and a principal distance, printed as a marginal data 

in the photographs, of 152.77m. The camera calibration certificate was 

unavailable. The eight photographs were scanned into a TIFF format from the 

original negatives using a photogrammetric scanner with a geometric resolution of 

15 µm and a radiometric resolution of 8 bits, thus presenting a GSD of 

approximately 0.27 m. The photography from this flight had four fiducial marks in 

the corners of the frame. 

Coastal Flight I (1989-1990) 

This flight was carried out by the General Coastal Management (Dirección 

General de Costas, DGC, in Spanish) depending on the Spanish Ministry of 

Environment. This was one of the first colour flights taken over Spain. The date of 

the 13 original photograms used to cover the whole working area was the 15th 

September 1989, presenting a scale of 1:10.000 approximately. The final GSD was 

0.16 m since the images were scanned at 16 µm spatial resolution. The 

conservation of these photographs was really poor as it can be appreciated in 

Figure 0.4. 

Coastal Flight II (2001) 

This flight was undertaken by the same administration of the Coastal Flight I. 

For this study site, 26 colour photographs were needed since the scale was larger 

in this case (1:5.000). The date of this flight was the 9th April 2001, being taken by 

means of a RC30 (focal distance = 152.92 mm) analogical camera. The relatively 

poorly-preserved positives which had poor radiometry and many artefacts 
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(scratches, fingerprints, etc.) were digitized by a photogrammetric scanner 

resulting in a GSD close to 0.10 m., with a resolution of 20 µm in the RGB channels. 

 

Figure 0.4. Example of the scratches existing in the original images of the Coastal Flight I. 

Table 0.1. Summary of the main characteristics for four historical photogrammetric flights 

used along this Thesis. 

Flight No. photos Scale 
Scanned 

resolution 
GSD 

Camera 
certificate 

Colour 

1956 4 1:33.000 21 µm 0.70 m 
No 

available 
PAN 

1977 8 1:18.000 15 µm 0.30 m 
No 

available 
PAN 

1989 13 1:10.000 16 µm 0.16 m 
No 

available 
RGB 

2001 26 1:5.000 20 µm 0.10 m Available RGB 

First digital flight (2009) 

This digital dataset was specifically acquired for this research project covering 

the whole study site and being carried out on 28th August 2009. This flight was 

coupled with ALS data at a flying height of approximately 1000 m. Digital images 

were obtained using an Intergraph Digital Mapping Camera (DMC) and counting 

on the support of a ground GPS reference station. 86 high-resolution panchromatic 

images were captured simultaneously with multispectral images in 4 bands (red, 

green, blue and near infrared), presenting a composite GSD of approximately 0.10 
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m. Image orientation was directly measured using a GPS/INS (inertial navigation 

system) on board the aircraft which was used to aid in the calculation of the 

corresponding photogrammetric block triangulation. The images were only used 

for obtaining the orthoimages while the DEM was extracted from the ALS raw data 

(see below). 

Second digital flight (2011) 

This flight was undertaken by means of a helicopter-mounted LiDAR and 

camera integration system. The flying height was close to 350 m, employing a 

digital camera Hasselblad H3D-22. RGB visible images and Nir images were 

provided. The photogrammetric and orthorectification processes were carried out 

by the provider company (Aerolaser®) so no additional GCPs were surveyed. 

LiDAR data 

First digital flight (2009) 

The Leica ALS60 system was utilized to acquire the LiDAR data of the study 

site in this flight. 4 strips were needed to cover the entire area using a FOV (field of 

view) of 35°. The average point density was close to 1.61 points/m2, capturing 

more than 36 million points. The DEM extraction was derived from the original 

data by means of TerraScan® software. The DEM compilation was based on an 

automatic classification and a later manual editing process. Additionally, the good 

matching between the strips in the overlap areas indicated that no significant 

differences existed. However, an overall altimetric disagreement was estimated by 

comparing the extracted DEM with 62 ground-surveyed Differential Global 

Positioning System (DGPS) high accuracy check points. That offset reached -0.165 

m, meaning that the LiDAR data were slightly below the reference coordinate 

system. This offset was easily corrected by adding that difference and no other 

systematic or planimetric inaccuracies were detected. The final vertical accuracy of 

the LiDAR-derived DEM took a value of ±0.089 m, estimated as the standard 

deviation of the final vertical differences between the LiDAR-derived DEM and the 

same set of ground check points. 

Second digital flight (2011) 

The LiDAR data from this flight were captured by the AeroLaser System 

airborne laser scanning platform (see www.aerolaser.es/), based on a Q240i Riegl 

LMS laser scanner with a FOV of 30º. It was mounted on helicopter at a flying 

height above ground around 350 m, which yielded an average point density close 

to 2 points/m2, although the final LiDAR-derived DEM was resampled to 1 

point/m2 (extracted by the provider company). A systematic error of -0.08 m was 

found and corrected by means of an appropriate set of GCPs. The vertical accuracy, 

http://www.aerolaser.es/
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given by the standard deviation estimated from the vertical differences between 

the LiDAR-derived DEM and the GCPs, took a value of ±0.066 m. 

Satellite imagery 

Two satellite images from GeoEye-1 and WorldView-2 VHR satellites were 

used in this Thesis to classify impervious surface areas (ISAs) by means of an 

object-based image analysis (OBIA) approach. The purpose was to compare the 

accuracy classification results from satellite imagery against those previously 

obtained through a similar approach applied on the ‘Coastal Flight II (2001 ’ 

archival orthoimages. These satellite images were previously oriented and 

orthorectified (see Aguilar, Saldaña & Aguilar 2013) so they were used only as an 

input data for this work. Both images were collected with a narrow time span so 

they were able to be compared with no significant land use changes being 

expected. 

GeoEye-1 

This image was taken on 27th August 2011 as a part of a stereo pair product 

(GeoStereo product of GeoEye Company), although it was used as a single image in 

this work. This satellite is characterized by having one VHR panchromatic band 

(PAN) and four multispectral bands (MS) which include Blue (450-510 nm), Green 

(510-580 nm), Red (655-690 nm), and Near-infrared (Nir, 780-920 nm) bands. 

The original spatial resolution is 0.41 and 1.65 m for PAN and MS bands 

respectively, although they are resampled to 0.50 and 2.00 m because of a USA 

government restriction. It was ordered with a dynamic range of 11 bits per pixel 

and without any adjustment (i.e. maintaining absolute radiometric accuracy and 

full dynamic range for scientific applications). 

The GeoEye-1 image used in this work was captured with a sensor elevation 

of 81.5° which implied an off-nadir angle of 8.5°. The PAN image orientation was 

carried out by means of the rational polynomial coefficients (RPCs) refined 

through zero-order transformation in image space with the support of 7 GCPs. The 

image orthorectification was undertaken by using as ancillary data the LiDAR-

derived DEM of the ‘First digital flight (2009 ’. The corresponding pan-sharpened 

image, with 0.5 m GSD and containing the spectral information gathered from the 

MS image (four bands), was attained by using the PANSHARP module included in 

Geomatica v. 12 (PCI Geomatics, Richmond Hill, ON, Canada). 

WorldView-2 

In this case, a basic image of a stereo pair taken on 18th August 2011 by 

DigitalGlobe© Company was used in this Thesis. Again, the coupled image was not 

taken into account in this work, and the image which had the larger sensor 

elevation was chosen (80.0° that implied an off-nadir angle of 10.0°). Similar 
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characteristics than those described for the case of GeoEye-1 can be found, sharing 

the same radiometric resolution (11 bits/pixel), whereas the original spatial 

resolution for WorldView-2 imagery is 0.46 and 1.84 m for PAN and MS bands 

respectively, although the final resolution is again 0.50 and 2.00 m because of the 

same aforementioned official restriction. 

The main difference between both satellites relies on the spectral resolution, 

since four additional bands are included in WorldView-2 such as Coastal Blue 

(400-450 nm), Yellow (585-625 nm), Red Edge (705-745 nm), and second Near-

infrared (860-1040 nm). Finally, the methodology to produce the final orthoimage 

was the same than that used for GeoEye-1. 

Ancillary data 

Field data 

Several surveying campaigns were perform in order to collect a total amount 

of 150 ground surveyed points to be used both as GCPs or check points (CPs). 

Ground points were obtained by DGPS using a Topcon HiPer PRO GOS receiver 

working in real time kinematic (RTK) mode. The reference system was the 

European Terrestrial Reference System 1989 (ETRS89), while the chosen 

projection was the Universal Transverse Mercator (UTM) in the zone 30. 

Moreover, the vertical datum was based on the geoid as the reference surface, 

adopting the mean sea level in the calm seas of Alicante, Spain, as the null 

orthometric height datum (official Spanish height origin). The DGPS observations 

were supported by eleven survey points: four belonging to the national geodetic 

network, one obtained from using high precision GPS techniques (Spanish 

REGENTE network), and six survey points provided by REDIAM. The resulting root 

mean square errors (RMSE) took values of 56 mm, 33 mm and 76 mm in the X, Y 

and Z axes respectively. 

Those points were collected in order to carry out the orientations of the 

photogrammetric projects and the satellite imagery, and also to compute the 

corresponding LiDAR data correction. Furthermore, independent CPs were used to 

check the previously mentioned orientations, the orthoimagery derived (whether 

airborne or satellite captured imagery), and the accuracy of the derived DEMs or 

DEMs. In order to identify GCPs for historical flights, man-made and natural points 

located within the study site were unambiguously identified, which made much 

more difficult the data collection. 

Additionally, a specific surveying campaign was designed in order to check the 

shoreline position derived from the digital flight of 2011, which consisted in a 

systematic beach profiling in some sample areas of the coastal zone. 6 different 

beach areas with a number of profiles from 10 to 21 were surveyed. The 

coordinate system and measuring method of this set of ground points was the 



Study Site and Data Sets 

43 
 

same as the previous ones, but they were collected in a different way. Since a 

datum-referred shoreline was extracted (see Chapter 3 of this Thesis), a 

subsequent interpolation process was carried out. Thus, a ground truth shoreline 

was available to be compared against the tested shoreline extraction methods and 

enough points could be used for LiDAR-derived DEM in the beach zone. 

Pre-existing DEM 

In order to validate a developed approach to automatically orientate 

stereomatching-derived DEMs, a pre-existing DEM was used (see Chapter 2). This 

DEM was obtained by a LiDAR dataset taken during August and September 2004 

by the Cartographic Institute of Catalonia (Spain) in the area of the Antas ravine. 

An Optech ALTM 3025 LiDAR sensor was utilized on a flight height of 2300 m, 

yielding a point density of around 1 point/m2 and an estimated vertical accuracy 

between 6 and 15 cm depending on the land cover. 
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ABSTRACT 

The use of archival or historical photography for photogrammetric purposes 

often involves a lack of data concerning the aerial cameras employed, difficulties in 

identifying control points on the photos and inappropriate conservation of the 

photography. When camera calibration parameters are unknown, they should be 

estimated by means of a self-calibrating bundle adjustment. Several calibration 

models available in the Leica Photogrammetry Suite software have been tested on 

two archival datasets, captured in 1956 and 1977, covering the same working area. 

The accuracy of the dataset triangulation was found to depend significantly on the 

self-calibration method and the number of ground control points used; when the 

latter ranged from six to nine per stereo pair, self-calibrating bundle adjustment 

techniques were found to slightly, but not always significantly, improve the 

photogrammetric capability of archival aerial photography. Thus the adoption of 

self-calibration cannot guarantee the improvement of results when working on 

poorly-conserved imagery. Results from such datasets are very dependent on 

numerous local variables which cannot be extrapolated to other areas for the same 

camera since each dataset is unique and may present systematic errors of a 

different nature. 

 

Keywords: self-calibration, bundle adjustment, mapping, triangulation, accuracy, 

archival photography 
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INTRODUCTION 

Archived aerial photography is currently receiving the attention of many 

earth scientists, with such datasets representing a very important information 

source in order to evaluate the temporal spatial evolution of zones of interest. 

Aerial photographs are the earliest remote sensing data source, having being 

collected since the early 20th century, and photogrammetric and digital image 

processing techniques are now being extensively used to extract both qualitative 

and quantitative information from such datasets. Appropriate comparison of 

photogrammetric surveys of an area conducted in different years allows the 

identification of accurate geometric change over time. Such techniques have been 

successfully applied to detect changes in glaciated areas (Schiefer, Gilbert 2007), 

river bank erosion (Lane 2000), coastal evolution (Mills et al. 2005), gully erosion 

(Marzolff, Poesen 2009), forest canopy cover (Véga, St-Onge 2008) and landslides 

(Chadwick et al. 200 , Prokešová, Kardoš   Medveďová 2010 . 

Metric aerial photography has been routinely collected in North America and 

Europe for land surveying and topographic purposes over the past 50 years or so. 

However, significant problems can present themselves when attempting to make 

metrical use of archival aerial photography. For example, the proper conservation 

of the original film, derived diapositives or prints is not readily guaranteed, and 

there is often a critical lack of information with respect to the cameras employed, 

in particular the regular absence of a geometric calibration certificate. Another 

general problem when utilising archival photography for metric purposes is the 

difficulty in locating sufficient ground control points (GCPs), both in terms of 

quantity and quality, because often the suitable potential points that can be 

identified in the archival images can no longer be located on the ground at the 

present time (Zanutta et al. 2006, Walstra, Dixon & Chandler 2007). 

When camera calibration parameters are unknown (the most usual case when 

working with archival photography), then they should be estimated using a self-

calibrating bundle adjustment (Chandler, Cooper 1989, Kraus 1997). Self-

calibration is a well-known method which has long been successfully and routinely 

applied in close range photogrammetric applications utilising non-metric cameras 

(Fraser 1997). In recent years self-calibration has also been increasingly applied in 

aerial photogrammetry. In fact, most current digital photogrammetric 

workstations incorporate triangulation software which offers self-calibration 

options. Among them are the self-calibration routines which use additional 

parameters (APs) in the triangulation process, as available in the advanced options 

within the aerial triangulation module of the Leica Photogrammetry Suite (LPS) 

software. Self-calibration methods were intensively researched and developed in 

the 1970s and 1980s, where it was confirmed that systematic image errors can be 

completely or partially compensated by additional parameters (Bauer, Müller 

1972, Ebner 1976, Grün 1978, Klein 1979, Ackermann 1981). Nowadays, such 
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approaches are routinely used for improving the triangulation process with 

modern airborne digital sensors such as the ADS40/80 by Leica Geosystems, DMC 

by Z/I Imaging, or UltraCAM by Microsoft/Vexcel Imaging (Cramer 2009). 

Moreover, other applications are arising using these methods such as the 

calibration of panoramic cameras and laser scanners (Amiri Parian, Gruen 2010, 

Lichti 2010). The successful application of self-calibration depends on many 

factors which include: the strength of the block (fore-and-aft overlap, cross-strips); 

the number and distribution of GCPs and tie points; the magnitude of any 

systematic errors present; and the significance of, and correlation between, the 

additional parameters used. In order to extract high quality data from archival 

aerial photography, where there may be only a small number of images available 

and the redundancy may be low, GCPs should be of high quality and well 

distributed in the block. This is especially important if camera calibration 

information is incomplete or unavailable. However, the identification and quality 

of ground control in archival photography is often problematic. As a result, much 

research has been carried out in order to reduce the need for these costly and 

difficult to measure GCPs by means of surface matching (Li et al. 2001, Mills, 

Buckley & Mitchell 2003, Mills et al. 2005, Miller et al. 2008, Akca 2010, Aguilar et 

al. 2012), or extracting GCPs from LiDAR-derived digital elevation models (DEMs) 

(James et al. 2006). 

Nowadays the results regarding the application of self-calibration to archival 

photography are extremely variable. Firstly, it cannot be assumed that systematic 

image errors are constant for the entire archive of photographs; every archival 

flight will present its own systematic errors depending on the camera used, the 

image scale, and so on. Secondly, due to a usual lack of existing ground points, 

accuracy reports are usually based on an insufficient number of independent check 

points (CPs), producing low reliability for the accuracy assessment. Finally, 

replication of the experiments (repetition of the experimental conditions so that 

the variability associated with the phenomenon can be estimated) is hardly ever 

undertaken. 

The main objective of the work reported in this chapter was therefore to 

investigate the use of self-calibration models to try to improve the 

photogrammetric capabilities of two archival aerial flights captured in 1956 

(1:33 000 scale) and 1977 (1:18 000) over our specific pilot coastal area. The 

underlying hypothesis supposes that self-calibrating bundle adjustment 

techniques will correct the difference between the mathematical model of 

perspective geometry and the true image geometry for archival aerial photography 

and so remove, at least partially, any systematic errors present. By using a large 

number of ground points, a statistical analysis to determine the influence of 

various factors on the accuracy of triangulating these specific archival 

photographic datasets was performed. The factors considered and reported herein 

were: (i) the different models utilised in self-calibrating bundle adjustment 
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available in the LPS 9.1® software (models of Bauer, Jacobsen, Ebner, Brown and 

lens distortion), and (ii) the number of GCPs used in the triangulation process. 

DATASETS AND METHODOLOGY 

For this study, the used dataset were: 1956 photographs, 1977 photographs, 

2009 digital image survey, and the GCPs set as an auxiliary data. The reader is 

referred to the Datasets section of this Thesis to obtain additional information. 

Table 1.1 shows a summary of the main features of both flights. 

1956 photogrammetric flight was the first of the two archival datasets; both 

acquired using a “standard” metric film camera format of 230 mm x 230 mm, used 

in this study. From a historic perspective, although the systematic flights from 

1945-46 were apparently the first photogrammetric project covering most of 

Spanish territory (Fernández and Quirós, 1977), the 1956 dataset is probably the 

oldest covering Almeria. Undertaken by the United States government, it is often 

referred to in Spain as the “American flight” and in most regions of the country 

marks the start of the archival record of metric aerial photography. It is therefore 

regarded as a valuable national information source for photo interpretation and 

land use evolution. As shown in Figure 1.1, four photographs from this dataset 

were required to cover the entire study area. 

As indicated in Datasets section, full camera calibration details of these 

cameras were unknown. Moreover, these old cameras had no corner fiducial 

marks, as more recent cameras do. Instead they relied on only four marks in the 

middle of the edges of the photo frames to allow for interior orientation in the 

plate carriers of analogue stereoplotters of the time. 

The 1977 dataset consisted of a panchromatic analogue photogrammetric 

flight that is commonly referred to in Spain as the “agriculture photogrammetric 

flight”. Four stereo pairs from this survey, with a B/H ratio of 0.55, were used to 

cover the study area (Figure 1.1). The camera calibration certificate was 

unavailable. The eight photographs were scanned into a TIFF format from the 

original negatives using a photogrammetric scanner with a geometric resolution of 

15 µm and 8 bit radiometric resolution, presenting a GSD of approximately 0.27 m. 

The photography from this flight had four fiducial marks in the corners of the 

frame. 

For the 2009 dataset, image orientation was directly measured using a 

GPS/INS system on board the aircraft which was used to aid the photogrammetric 

block triangulation. This flight was used to photogrammetrically generate new 3D 

ground points to be subsequently transferred to the older datasets. 
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Table 1.5. Main characteristics of the analyzed archival photogrammetric datasets. GSD: 

ground sample distance; DGPS: differential Global Positioning System; SP: 

stereophotogrammetry. Ground points: horizontal (h) and vertical (v). 

Date 
No. of 

images 
Scale 

Flying 

height 

(m) 

Principal 

distance 

(mm) 

Scan 

resolution 

(µm) 

GSD 

(m) 

Image 

Type 

DGPS/SP 

ground 

points 

measured 

1956 4 
1/ 

33 000 
5650 

154.19/ 

153.01 
21 0.70 B/W 86 h/ 84 v 

1977 8 
1/ 

18 000 
2980 152.77 15 0.27 B/W 89 h/ 77 v 

 

 

  

Figure 1.5. Configuration scheme for photography, ground points, and shoreline in the two 

archival datasets tested: 1956 (left) and 1977 (right). Note that the coastline position limits 

the collection or an optimal distribution of GCPs. 

In conventional aerial surveys, the coordinates of ground points (both GCPs 

and CPs) are collected at the same time as the photogrammetric survey using 

topographic surveying techniques. In this case, due to the lack of any such data, 

man-made and natural points located inside the study area were unambiguously 

identified in the two archival datasets being assessed. Most ground points were 

obtained by a differential global positioning system (DGPS) using a Topcon HiPer 

PRO GOS receiver working in real time kinematic (RTK) mode. The coordinates of 

150 ground points, located on well-defined features, were measured with 

reference to the European Terrestrial Reference System 1989 (ETRS89) and UTM 

projection. The vertical datum took the geoid as the reference surface, adopting the 

mean sea level in the calm seas of Alicante, Spain, as the null orthometric height 

datum. The DGPS observations were supported by eleven survey points: four 
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belonging to the national geodetic network, one obtained using high precision GPS 

techniques (Spanish REGENTE network), and six survey points provided by 

REDIAM (Red de Información Ambiental de Andalucía). The root mean square 

errors (RMSE) obtained were 56 mm, 33 mm and 76 mm in the X, Y and Z axes 

respectively. 

The task of identifying ground points for the archival datasets was very 

difficult due to the significant changes in the coastal fringe during the last five 

decades. It proved especially difficult in the case of the 1956 dataset because of 

several reasons: it was the oldest photography, the original film was not well 

preserved, and the photographic scale was relatively small. These factors are 

exemplified in Figure 1.2 and Figure 1.3. As a result of this, of the original 150 

survey points, only 47 and 51 DGPS ground points could be used for 1956 and 

1977 flights respectively. Furthermore, because of the coastal scenes and 

significant changes in its landscape, the spatial distribution of these ground points 

was poor. To improve this situation, 45 additional ground points, for which direct 

access with GPS was very difficult, were observed from the aforementioned 2009 

photogrammetric dataset using a SOCET SET® v.5.3 digital photogrammetric 

workstation by BAE Systems. 39 and 38 of these points were finally used in the 

1956 and 1977 triangulation projects, respectively. For a number of these points, 

typically corners of buildings where there was an apparent height change over 

time, only horizontal coordinates were utilised. The estimated accuracy of the 

2009 photogrammetric project, calculated as the three-dimensional root mean 

square error (RMSE3d) on 57 check points measured by DGPS, was 0.247 m (RMSEx 

0.136 m; RMSEy 0.123 m and RMSEz 0.167 m). 

 

  

Figure 1.6. Coastal village of Villaricos on 1956 (left) and 1977 (right). 
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Figure 1.7. Ground points marked on the same features as they can be visualized in the 1956 

(left) and 1977 (right) photogrammetric datasets tested. 

Self-Calibrating Bundle Adjustment Models 

Five self-calibrating bundle adjustment models were tested on the two 

historic flights using a variable number of GCPs. These models were compared 

with bundle adjustments conducted without self-calibration models (subsequently 

referred to as no self-calibration, NSC). All the photogrammetric projects were 

carried out using LPS 9.1® software, produced by Leica Geosystems. 

The NSC bundle adjustment was applied to both historic datasets. The 

principal distance and principal point position were held fixed. The principal 

distance printed as marginal data in the aerial photography was used as the 

camera calibration information and the principal point was set to x0=0 and y0=0, so 

that no offset was assumed between the principal point and the fiducial centre. In 

order to solve the interior orientation, the photo-coordinates for the fiducial marks 

were required for each camera used. With no fiducial mark information available, 

the following steps were carried out:  (i) a digital photograph at the correct scale 

was loaded into CAD software; (ii) a translation was computed such that the image 

coordinates of the point where the lines joining opposite fiducial marks 

intersected was assigned as the origin (zero) of the photo-coordinates; (iii) a 

rotation was applied to fix the angle between the principal point and the first 

fiducial mark to 0º (in cases where the fiducial marks were only available along the 

edges of the photo frame) or 45º (where the fiducial marks were placed in the 
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corners of the photo frame); (iv) the image coordinates of the fiducial marks were 

precisely measured on each digital image using the CAD software; (v) finally, the 

mean of the fiducial mark coordinates for all the photographs in every dataset 

were used to compute each camera’s interior orientation. Note that for the 19 6 

dataset two cameras were used, thus two different sets of fiducial marks and 

principal distances were entered.  

Besides the NSC bundle adjustment triangulation, five other self-calibrating 

bundle adjustment triangulations (advanced options in the aerial triangulation 

module of the LPS software) were undertaken. These models are incorporated in 

the collinearity equations, which allow for the modelling of various systematic 

errors associated with the camera/sensor model and atmospheric refraction. Five 

different self-calibrating models can be used in the triangulation process offered 

by LPS:  

(1)  Lens distortion model. This is designed to self-calibrate the lens distortion 

parameters automatically. This model has two APs (k1 and k2). 

(2) Bauer’s simple model. This has three APs, two parameters determine the 

extent of affine deformation (non-orthogonality and scale differential between the 

two axes in space image) and one parameter estimates symmetric lens distortion. 

(3) Jacobsen’s simple model. This has four APs, which compensate for the first 

and second order distortions associated with affine deformation and lens 

distortion. 

(4) Ebner’s orthogonal model. This model has twelve APs which compensate 

for various types of systematic error. It mathematically models and eliminates the 

systematic image errors in the location of the Von Gruber points, without any 

physical background. Since a greater number of parameters are estimated, an 

increased number of GCPs are required. 

(5) Brown’s physical model. This has fourteen APs which compensate for most 

of the linear and non-linear forms of film and lens distortion. 

Further information regarding all models implemented in LPS can be found in 

the Leica Photogrammetry Suite Project Manager (Leica 2006). 

Photogrammetric Projects from the 1956 and 1977 Datasets 

90 individual photogrammetric experiments were performed using the 1956 

dataset. Six triangulation models, both with and without self-calibration models, 

were tested (NSC, lens distortion, Bauer’s, Jacobsen’s, Ebner’s and Brown’s . Three 

different repetitions of 9, 18, 27, 36 and 45 GCPs, obtained either by DGPS or from 

the 2009 flight, were extracted from the initial 86 ground points. The 15 sets of 

GCPs extracted had the best possible distribution, although some weak areas were 

identified. Once the task of observing every ground point (GCPs and CPs) in image 
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space was complete (noting that the interior orientation and photo-coordinates for 

each ground point remained constant for every project), the LPS automatic tie 

point collection was performed. Thus, 44 tie points were automatically generated 

for the 1956 flight. These were visually checked and manually edited as required. 

The exterior orientation of each photogrammetric project was then computed. 

Because any aerial triangulation accuracy assessment should ideally be based 

upon CPs, in other words those ground points not used in the aerial triangulation 

process, the remaining ground points were used as CPs for computation of the 

RMSE3d for each photogrammetric project. The number of CPs therefore ranged 

from 41 to 77, depending on the number of GCPs employed. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1.8. Distribution of one of the three sets of GCPs and tie points used in the 1977 dataset. 

(a) 9 GCPs; (b) 18 GCPs; (c) 27 GCPs; (d) 36 GCPs; (e) 45 GCPs; (f) tie points. 
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The same methodology was followed for the 1977 dataset. In this way, 90 

photogrammetric cases were computed, but in this instance 89 ground points and 

95 tie points were used to compute the bundle adjustment for every 

photogrammetric block. The 15 groups of GCPs showed a slightly better 

distribution than in the 1956 case, although there were still zones where new 

urbanisation meant new ground points could not be measured (Figure 1.4). 

Statistical Analysis 

In order to study the influence of different factors on aerial triangulation 

accuracy, analysis of variance (ANOVA) tests were utilised. ANOVA is a common 

statistical tool used to analyse datasets for which the importance of several factors 

is evaluated at once (Snedecor, Cochraw 1980). In this case, the observed variables 

in the ANOVA for the designed factorial model with three repetitions were the 

planimetric RMSE (RMSEp), vertical RMSE (RMSEz), and RMSE3d, corresponding to 

1956 and 1977 projects. The sources of variation, or factors, were the number of 

GCPs, the employed self-calibration method, and the cross-interactions between 

them all. When the results of the ANOVA turned out to be significant, the 

separation of means was carried out using Duncan’s multiple range test at a 9 % 

confidence level. 

It is noteworthy that all the residual populations at the X, Y, and Z axes were 

tested for the normality of their distribution by means of the Kolmogorov–Smirnov 

test. Furthermore, no blunder errors were identified at the residual populations 

after applying the 3-sigma rule (Daniel, Tennant 2001). 

RESULTS 

Two independent statistical tests were developed using the accuracy 

estimates for the triangulations (RMSEp, RMSEz and RMSE3d values obtained using 

CPs) as observed variables. They were carried out from the 90 photogrammetric 

cases generated with both 1956 and 1977 datasets respectively. Within these 

statistical tests, the observed variance was partitioned into components due to the 

different sources of variation which had been considered. The two main factors 

analysed (namely the number of GCPs and the method of self-calibration) were 

significant at the 95% level for both the 1956 and 1977 datasets. In both cases the 

number of GCPs had the most significant repercussion in the ANOVA model, 

followed by the method of self-calibration. However, the interaction between the 

self-calibration method and the number of GCPs was not found to be significant, 

indicating that there are no statistical differences among the performance of the 

six calibration methods regarding the number of GCPs required to perform the 

triangulation.  
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Table 1.6. Global comparison of mean values expressed in metres (m) of RMSEp, RMSEz, and 

RMSE3d from the 1956 and 1977 projects depending on the number of GCPs and self-

calibration method. RMSE values given in planimetry (p), height (z) and 3D (3d). Values in the 

same column followed by different superscript letters (a, b, c) indicate significant differences at 

a 95% significance level (p < 0.05). 

 1956 1977 

 RMSEp RMSEz RMSE3d RMSEp RMSEz RMSE3d 

No. of GCPs       

45 1.330ab 1.438a 1.961ab 0.273a 0.377a 0.466a 

36 1.290a 1.431a 1.929a 0.276a 0.371a 0.463a 

27 1.266a 1.450a 1.928a 0.282a 0.405a 0.494a 

18 1.344ab 1.555a 2.058ab 0.299b 0.478b 0.566b 

9 1.579b 1.843b 2.438b 0.334c 0.618c 0.707c 

Self-Calibration Method       

Lens distortion 1.348ab 1.415a 1.958a 0.287ab 0.445ab 0.530ab 

Brown 1.312a 1.570b 2.049ab 0.277a 0.411a 0.496a 

Jacobsen 1.379ab 1.562ab 2.087b 0.303c 0.458ab 0.551ab 

Bauer 1.374ab 1.571b 2.091b 0.300c 0.451ab 0.544ab 

Ebner 1.341a 1.600b 2.091b 0.297bc 0.433ab 0.528ab 

NSC 1.418b 1.542ab 2.103b 0.294bc 0.501b 0.585b 

Influence of the Number of GCPs on Triangulation Accuracy 

1956 Dataset. Table 1.2 shows the global comparison of mean values of 

RMSEp, RMSEz, and RMSE3d from 1956 and 1977 projects according to the number 

of GCPs and self-calibration methods. For example, 1.330 m is the RMSEp mean 

value obtained for all the photogrammetric projects carried out using the 1956 

dataset and 45 GCPs for any self-calibration model, whereas 1.348 m is the RMSEp 

mean value for all 19 6 dataset’s projects using the model of lens distortion for 

any number of GCPs. For the 1956 flight, the worst accuracies were generated 

using 9 GCPs. In theory, of course, with more GCPs the accuracy should improve. 

Thus, the significant differences presented in Table 1.2 imply 27 GCPs would be 

optimal for this flight in terms of RMSEp and RMSE3d (i.e. for RMSEp, 1.266 m using 

27 and 1.290 m with 36 GCPs are the only values in this column which present 

significant differences with the mean value of 1.579 m attained using 9 GCPs 

because the 1.266 and 1.290 m values are the only ones without the letter “b”, 

which accompanies the 9 GCPs value). However, 18 GCPs would be the ideal 

number of GCPs in the case of RMSEz. Bearing in mind that GCPs were distributed 

across different numbers of stereo pairs for each flight, it is perhaps prudent to 

refer to the ratio of the number of GCPs per stereo pair. In this manner, the ideal 

ratio for the 1956 flight could range from 9 to 14 GCPs per stereo pair. 
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1977 Dataset. In the case of the 1977 flight and for RMSEp, RMSEz, and RMSE3d, 

the best and significantly different (p < 0.05) accuracies were generated when 27, 

36 or 45 GCPs were used (Table 1.2). Although the RMSE values for 36 and 45 

GCPs were better than those attained using only 27 GCPs, no statistical differences 

were found. Thus, the optimal number of GCPs is around 7 per stereo pair for this 

flight. 

Influence of Self-Calibration Method on Triangulation Accuracy 

The general results regarding the tested self-calibration models are also 

depicted in Table 1.2. These results are provided in more detail in Table 1.3 and 

Table 1.4 for the 1956 and 1977 datasets respectively, comparing the accuracies 

attained by applying the different self-calibration methods and varying the number 

of GCPs. Furthermore, the standard deviations corresponding to three repetitions 

are shown in brackets as an indicator of the variability of the planimetric, vertical 

and three-dimensional RMSE mean values. 

1956 Dataset. The results attained by the self-calibration models tested for the 

1956 archival flight were very changeable depending on the RMSE analysed (Table 

1.2). While the models of Brown and Ebner presented the best planimetric 

accuracies, the lens distortion model showed the best vertical results. In fact, when 

the number of GCPs was up to 27, only the lens distortion model could improve the 

vertical accuracies attained without self-calibration (Table 1.3). It is noteworthy 

that using 27 GCPs (Table 1.3), the RMSEp mean value for Brown’s model was 

statistically better than those obtained using the lens distortion model or without 

self-calibration. 

The best overall accuracy in terms of RMSE3d was achieved by means of the 

lens distortion model (Table 1.2), although very closely followed (and without 

significant differences at p < 0.0   by Brown’s model. The models of Jacobsen, 

Bauer, Ebner and NSC presented values that were statistically different to the lens 

distortion model. Regarding the detailed results for the number of GCPs used, the 

lens distortion model always attained the best accuracies, though being 

significantly better against the models of Bauer, Jacobsen and Ebner only for the 

case of 36 GCPs (Table 1.3). The standard deviations from the three repetitions, 

presented in Table 1.3, were almost always higher for NSC than for any of the self-

calibration models. That was true especially when the aerial triangulation was 

undertaken with a low number of GCPs. Hence the results from the self-calibration 

methods can be deemed as more reliable. 

The accuracy improvements achieved in the 1956 dataset using the lens 

distortion model compared with NSC were very dependent on the number of GCPs 

used. Also it was very dependent on the RMSE type being analysed (planimetric or 

vertical). Thus, using 9 GCPs, RMSEp improved to approximately 0.15 m (a relative 

improvement of 9%), while RMSEz diminished to 0.22 m (11% degradation). On 
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the other hand, when 27 GCPs were used, RMSEp was only improved to around 

0.05 m (a relative improvement of approximately 3.8%), while RMSEz decreased to 

about 0.12 m (8.3% degradation). 

Table 1.7. 1956 archival flight. Mean values and standard deviations (in brackets), of accuracy 

estimates for the triangulations (RMSEp, RMSEz and RMSE3d) measured in CPs (horizontal, h, 

and vertical, v) regarding the number of GCPs and the self-calibration method. Values in the 

same row followed by different superscript letters (a, b, c) indicate significant differences at a 

significance level p < 0.05. Values in rows without superscripts indicate no significant 

differences. 

No. 
of 

GCPs 

No. of  
CPs 

Accuracy 
(m) 

Self-calibration method 

NSC Lens Bauer Jacobsen Ebner Brown 

9 

 RMSEp 
Mean 1.647 1.499 1.598 1.613 1.593 1.526 

 
SD 0.081 0.048 0.222 0.208 0.037 0.113 

77 h 
RMSEz 

Mean 1.987 1.769 1.926 1.882 1.748 1.748 

75 v SD 0.738 0.219 0.192 0.181 0.218 0.235 

 RMSE3d 
Mean 2.609 2.321 2.514 2.488 2.369 2.329 

 
SD 0.573 0.188 0.019 0.040 0.136 0.114 

18 

 RMSEp 
Mean 1.372 1.309 1.363 1.383 1.339 1.300 

 
SD 0.083 0.099 0.097 0.113 0.066 0.071 

68 h 
RMSEz 

Mean 1.585 1.433 1.568 1.555 1.622 1.567 

66 v SD 0.300 0.206 0.131 0.082 0.126 0.076 

 RMSE3d 
Mean 2.099 1.944 2.080 2.082 2.106 2.038 

 
SD 0.281 0.186 0.110 0.105 0.056 0.033 

27 

 RMSEp 
Mean 1.346c 1.295bc 1.258ab 1.254ab 1.234ab 1.209a 

 
SD 0.048 0.058 0.032 0.035 0.040 0.018 

59 h 
RMSEz 

Mean 1.390 1.274 1.468 1.469 1.582 1.513 

57 v SD 0.124 0.056 0.098 0.095 0.185 0.160 

 RMSE3d 
Mean 1.936 1.818 1.933 1.932 2.010 1.939 

 
SD 0.108 0.037 0.091 0.087 0.132 0.117 

36 

 RMSEp 
Mean 1.351 1.309 1.300 1.296 1.250 1.236 

 
SD 0.111 0.112 0.022 0.022 0.031 0.035 

50 h 
RMSEz 

Mean 1.374 1.279 1.459 1.464 1.527 1.484 

48 v SD 0.055 0.033 0.087 0.089 0.040 0.027 

 RMSE3d 
Mean 1.928ab 1.832a 1.955b 1.957b 1.973b 1.932ab 

 
SD 0.101 0.067 0.053 0.055 0.030 0.020 

45 

 RMSEp 
Mean 1.372 1.327 1.353 1.350 1.291 1.289 

 
SD 0.110 0.114 0.049 0.050 0.053 0.061 

41 h 
RMSEz 

Mean 1.375 1.321 1.434 1.440 1.524 1.536 

39 v SD 0.077 0.037 0.095 0.093 0.107 0.075 

 RMSE3d 
Mean 1.943 1.874 1.972 1.975 1.998 2.005 

 
SD 0.115 0.088 0.077 0.079 0.086 0.084 
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Table 1.8. 1977 archival flight. Mean values and standard deviations (in brackets), of accuracy 

estimates for the triangulations (RMSEp, RMSEz and RMSE3d) measured in CPs (horizontal; h 

and vertical; v) regarding the number of GCPs and the self-calibration method. Values in the 

same row followed by different superscript letters indicate significant differences at a 

significance level p < 0.05. Values in rows without superscripts do not present significant 

differences. 

No. 
GCPs 

No. 
CPs 

Accuracy 
(m) 

Self-calibration method 

NSC Lens Bauer Jacobsen Ebner Brown 

9 

  
RMSEp 

Mean 0.328 0.334 0.333 0.339 0.338 0.331 

 
SD 0.018 0.014 0.011 0.014 0.014 0.021 

80 h 
RMSEz 

Mean 0.778 0.570 0.587 0.609 0.638 0.524 

68 v SD 0.260 0.162 0.161 0.199 0.162 0.043 

 
RMSE3d 

Mean 0.849 0.665 0.678 0.702 0.725 0.621 

  SD 0.235 0.135 0.138 0.176 0.140 0.034 

18 

  
RMSEp 

Mean 0.297 0.293 0.309 0.312 0.304 0.281 

 
SD 0.021 0.030 0.021 0.022 0.036 0.030 

71 h 
RMSEz 

Mean 0.563 0.465 0.469 0.472 0.468 0.432 

 59 v SD 0.137 0.075 0.082 0.077 0.085 0.032 

 
RMSE3d 

Mean 0.638 0.549 0.563 0.567 0.561 0.516 

  SD 0.127 0.079 0.070 0.063 0.070 0.040 

27 

  
RMSEp 

Mean 0.286b 0.278b 0.290b 0.292b 0.285b 0.261a 

 
SD 0.006 0.010 0.003 0.005 0.011 0.010 

62 h 
RMSEz 

Mean 0.446 0.415 0.410 0.417 0.377 0.367 

50 v SD 0.063 0.036 0.041 0.042 0.048 0.042 

 
RMSE3d 

Mean 0.530b 0.499ab 0.503ab 0.509ab 0.474ab 0.450a 

  SD 0.057 0.035 0.032 0.033 0.037 0.036 

36 

  
RMSEp 

Mean 0.281c 0.268b 0.285c 0.287c 0.280c 0.258a 

 
SD 0.004 0.005 0.003 0.004 0.006 0.005 

53 h 
RMSEz 

Mean 0.372ab 0.390b 0.390b 0.394b 0.333a 0.351ab 

41 v SD 0.031 0.020 0.020 0.022 0.029 0.028 

 
RMSE3d 

Mean 0.466ab 0.473ab 0.483b 0.487b 0.435a 0.435a 

  SD 0.027 0.019 0.015 0.017 0.023 0.025 

45 

  
RMSEp 

Mean 0.277b 0.262a 0.284b 0.284b 0.277b 0.253a 

 
SD 0.007 0.006 0.003 0.003 0.009 0.007 

44 h 
RMSEz 

Mean 0.346 0.385 0.400 0.400 0.347 0.382 

32 v SD 0.029 0.034 0.045 0.044 0.036 0.065 

 
RMSE3d 

Mean 0.444 0.466 0.491 0.491 0.445 0.459 

  SD 0.022 0.031 0.039 0.037 0.033 0.058 
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1977 Dataset. For the 1977 flight, Brown’s model could be considered as the 

optimal method overall, presenting significant differences (p < 0.05) with respect 

to the NSC approach for planimetric, vertical and three-dimensional RMSE mean 

values (Table 1.2). However, when the results were qualified by the number of 

GCPs (Table 1.4 , Brown’s model was only statistically better than using NSC in the 

case of 27 GCPs. The 1977 imagery had better radiometric quality and a larger 

scale than the 1956 dataset (Figure 1.2), reducing the pointing error when 

measuring GCP positions in image space. Furthermore, the photography was 

acquired more recently and so the available GCP distribution was slightly better 

than for the 1956 dataset. In this sense, it is noteworthy that the standard 

deviations for the accuracy values in 1977 presented in Table 1.4 were smaller 

than those for the 1956 flight. 

Regarding accuracy improvements achieved in the 1977 dataset using 

Brown’s model,  MSEp did not change when the 9 GCPs scheme was applied, 

whereas RMSEz diminished to around 0.25 m (a 33% relative improvement). 

However, when 36 GCPs were used, the RMSEp and RMSEz values only improved to 

around 0.02 m (a relative improvement of approximately 8% and 5.6% 

respectively). As in the 1956 dataset, a relatively small accuracy improvement was 

attained by self-calibration when a high number of very accurate GCPs were used. 

DISCUSSION 

Regarding the number of GCPs, in previous work Aguilar, Aguilar & Negreiros 

(2010) attained similar accuracies when applying the self-calibration models 

included in the LPS software with 24 GCPs and 12 GCPs, using only one stereo pair 

at a scale of 1:5 000 for a flight taken in 2001 with a Zeiss RMK TOP 15 camera. On 

the other hand, Walstra (2006) estimated the interior orientation of five vertical 

archival photographs without a calibration certificate in a self-calibrating bundle 

adjustment using between four and nine GCPs per stereo pair. In this case, the self-

calibration was performed using GAP (General Adjustment Program) software 

developed by Chandler, Clark (1992). Considering these results, a suitable number 

of GCPs per stereo pair to perform self-calibrating bundle adjustment could be 

placed at between six and nine. However, in the case of very old flights where the 

prints or negatives have not been appropriately conserved, are very hazy, or are 

taken at small scales, it could be necessary to increase this ratio up to values closer 

to 14 GCPs per stereo pair. 

With regard to the self-calibration models tested, previous works carried out 

upon photogrammetric datasets acquired with film or digital cameras have 

reported the successful use of self-calibrating bundle adjustment methods with 

additional parameters (Ackermann 1981, Cramer 2009). According to Kraus 

(1997), the proper use of self-calibration might improve the accuracy of 

conventional aerial triangulation by 50%.  
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With regard to which self-calibration model is best applied, the 

recommendations from other works are very variable. For example, Ebner’s model 

was presented as the best self-calibration approach for analogue photogrammetric 

datasets by both Cardenal et al. (2006) and Aguilar, Aguilar & Negreiros (2010). 

Silva et al. (2008) identified the lens distortion model as the best self-calibration 

method included in the LPS software for correcting systematic errors in imagery 

taken with a Hasselblad digital camera. Alamús, Kornus & Talaya (2006) 

considered four independent sets of Ebner’s self-calibration parameters (one for 

each image quadrant) in the block adjustments to model Intergraph DMC 

systematic errors detected in adjustments. Moreover, working with a stereo pair of 

conventional colour aerial photographs at a scale of 1:5  000, but scanned from 

negatives and using 24 GCPs, Aguilar, Aguilar & Agüera (2005) reported RMSE3d 

values of 0.252 m after the self-calibrating bundle adjustment was carried out 

using a low-cost close range software package. In this case, the principal point 

coordinates, affine image parameters (A, B) to correct for scale difference and non-

perpendicularity of the x and y image coordinates, radial lens distortion 

parameters (k1, k2) and decentring lens distortion parameters (p1, p2) were 

calculated. Working on the same stereo pair and with the same aforementioned 

number of GCPs, Aguilar, Aguilar & Negreiros (2010) attained RMSE3d values of 

0.153 and 0.157 m using the models of Ebner and Brown respectively. 

All the works mentioned above point to the underlying hypothesis 

constituting the basis of the current work, namely that self-calibration techniques 

should be able to remove, at least partially, the presence of systematic errors. This 

was found to be true in many cases where certain conditions were fulfilled, such 

as: no correlation among additional parameters; good distribution of GCPs in three 

dimensions; highly redundant photographic coverage; low pointing errors in 

image space (pre-marked points); preferably highly convergent photography; and, 

maybe the most relevant constraint, where systematic deformations were similar 

for all images in the block. In other words, the additional parameters are treated as 

block invariant. Unfortunately this supposition is only correct in cases of 

homogeneous projects (such as one camera, one roll of film, same flight direction, 

and so on) where any significant random errors due to poor conservation of the 

images are absent. Indeed, the assumption of systematic image errors which are 

constant for a whole set of photography cannot always account for the total error 

budget, which would also include correlation and variation of image deformations 

within a series of photographs. As already demonstrated by other authors, 

sometimes it may even be recommend to apply alternative additional parameters 

to different strips or groups of photographs belonging to a certain area. In this 

sense it is necessary to clarify that any extrapolation of the results from a locally 

computed self-calibration bundle adjustment to those areas outside the area 

bounded by the GCPs (even in the same stereoscopic model) should definitely be 

avoided. In this project, it should be taken into account that the quality of the self-

calibration will be compromised by the poor planimetric and vertical distribution 
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of GCPs due to the age of the imagery (and hence the difficulty in surveying proper 

GCPs), by the typical low relief of coastal areas (small vertical range) and by the 

presence of the sea occupying a high percentage of some photographs. However, 

all these characteristics are very common in archival photogrammetric imagery 

over coastal areas and, therefore, the approach is justified when working under 

real operational conditions.  

Examining the 1956 dataset investigated here, it is noteworthy that RMSE3d 

attained using 9 GCPs and without self-calibration was about 3.7 times higher than 

the GSD, whereas using the lens distortion model with 27 GCPs this value 

decreased to 2.6 times the GSD. These low accuracies might be expected since the 

photography was very old and in poor condition. Furthermore, the photography 

had a low resolution and poor radiometric quality, which made it difficult to 

precisely measure the corresponding GCPs in image space (see Figure 1.3 and 

Figure 1.4). Subsequently, the GCP pointing error arising from this dataset may be 

deemed as excessively large, thereby contributing to somehow masking the 

possible improvements derived from the application of the tested self-calibration 

models. In summary, there is an underlying masking effect due to higher degree 

sources of error as compared to the sort of systematic errors that can be properly 

modelled by self-calibration, which is very typical for archival photogrammetric 

imagery. Besides, the distribution of GCPs and tie points could be considered quite 

poor.  As a reference, it should be noted that Cardenal et al. (2006) reported an 

accuracy of 3.86 m (measured as RMSE3d on CPs) working with imagery from the 

“American flight”. 

In the case of 1977 dataset, using 9 GCPs and without self-calibration, the 

RMSE3d was around 3.1 times higher than the image GSD. On the other hand, with 

36 GCPs and applying the Brown’s model, the  MSE3d value decreased to 1.6 times 

the image GSD. Walstra (2006) reported RMSE3d accuracies within the range of 

1.31 m (4.8 GSD) and 0.63 m (2.3 GSD) for archival datasets acquired in 1971 and 

1995 respectively, displaying a GSD similar to that of the 1977 flight investigated 

here. 

Finally, a further reason which may explain why it is very difficult to highlight 

a single self-calibration method as optimal for all cases encountered in this work, 

could be related to the fact that the blocks are well-controlled. In this case, the 

standard bundle block adjustment (NSC case) could already be expected to 

compensate well for systematic errors. In that case additional parameters would 

only produce, at best, a relatively moderate improvement on the accuracy of 

adjusted coordinates. Given the low standard deviations computed when working 

with more than 18 GCPs (1956) or even only 9 GCPs in the case of the 1977 data, 

both blocks could be deemed as relatively well-controlled. 
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CONCLUSIONS 

This chapter has addressed the important issue of adopting self-calibrating 

bundle adjustment models, as included in commercial software, to try to improve 

the accuracy of results attained from the photogrammetric triangulation of historic 

aerial imagery taken at different scales and times on a specific pilot area. The 

underlying hypothesis of this work proposes that self-calibration with additional 

parameters might model the difference between the theoretical perspective 

geometry and the real image geometry for archival aerial photography and so 

remove, at least partially, the presence of systematic errors. The research has 

involved extensive fieldwork that provided a large number of very accurate 

ground points (GCPs and CPs). The use of accuracy estimations based on a large 

number of CPs makes the findings of the study reliable. Moreover, repetitively 

undertaking each experiment has allowed the realisation of a full statistical 

analysis which enables the following conclusions to be drawn. 

(1) Number of GCPs used in triangulation. The recommended number of 

accurate GCPs for performing a self-calibrating bundle adjustment with archival 

photography could be placed within the range of six to nine GCPs per stereo pair. 

However, when working with very old photography at small scales it could be 

necessary to increase this number to somewhere between 12 and 16 GCPs per 

stereo pair. 

(2) Self-calibrating bundle adjustment. The best three-dimensional accuracies 

were achieved for the 1956 dataset using the lens distortion model, although this 

was very closely followed by Brown’s model (without statistically significant 

differences). For the 1977 dataset, Brown’s model was found to be the best self-

calibration method. The recommendation should always be to test other models 

since each flight can present systematic errors of a different nature. In fact, the 

scale and special characteristics of each archival photogrammetric flight are, 

probably, the most important factor affecting the choice of self-calibration model. 

Therefore, every archival dataset should be treated in an independent and 

empirical way depending on its own particular characteristics. Furthermore, it 

may sometimes be recommended to apply alternative additional parameters to 

different strips or groups of photographs belonging to a certain spatial area. In this 

sense, it is necessary to clarify that any extrapolation of the results from a locally 

computed self-calibration bundle adjustment to those areas outside the area 

delimited by the GCPs (even within the same stereoscopic model) should definitely 

be avoided. 

(3) Accuracy improvement by applying self-calibration models. Low relative 

three-dimensional accuracy improvements were achieved using self-calibration 

models when a high number of very accurate GCPs were available. RMSEp and 

RMSEz improved by around 4% to 8% with respect to NSC for the two archival 

datasets. However, the accuracy improvement for RMSEp ranged from 0% to 9% 
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when using only 9 GCPs, whereas RMSEz diminished by between 11% and 33%. 

Hence, self-calibration techniques included in LPS software would be especially 

interesting when the number of GCPs is small.  There are two main reasons which 

could explain the relatively poor performance of the self-calibration applied in this 

work. Firstly, there is an underlying masking effect due to higher degree sources of 

error, as compared to the sort of systematic errors that can be properly modelled 

by self-calibration, which is very typical for archival photogrammetric imagery. 

The magnitude of such non-systematic errors could be much higher than 

systematic errors which can be solved by self-calibration. Thus the results are 

more heavily influenced by the number of GCPs used in the bundle adjustment 

than the self-calibration model employed. Furthermore the APs are computed as 

an average for the whole block, but each photograph could have its own systematic 

errors which would explain the reason why it is very difficult to point out a 

method as optimal for all the cases examined. The second reason relates to the fact 

that the blocks were relatively well-controlled. In these cases, the standard bundle 

adjustment of the block (NSC case) usually compensates well for systematic errors 

and additional parameters would only produce, at best, a moderate improvement 

on the accuracy of adjusted coordinates. 

As further research, it would be useful to compare the optimised accuracies 

achieved here using a high number of very accurate GCPs with the results obtained 

by other approaches such as those based on surface matching. Such approaches, 

which will be faced in the next chapter, would avoid the costly and time-

consuming necessity of collecting GCPs, which may be almost impossible to 

identify in archival photography. 
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ABSTRACT 

3D surface matching techniques have been used for multi-date DEMs co-

registration to help the quantification of terrain changes. In this chapter a new 

approach based on a two-step robust surface matching for DEM 3D georeferencing 

is proposed to avoid the costly and time-consuming GCPs acquisition. The 

procedure starts from a coarse orientation of the historical DEM where the stereo 

model y-parallax is removed by means of a traditional Automatic Relative 

Orientation. Additionally, it is recommendable to manually mark three GCPs (only 

approximated coordinates) just to apply a coarse Helmert 3D transformation, 

obtaining a preoriented stereo pair which turned out to be helpful to improve and 

speed up the subsequent surface matching process. The first step consists of an 

automatically process called shaded-relief image matching, basically headed up to 

improve the previous aforementioned coarse orientation. The second step starts 

from the absolute z-differences between reference and historical DEMs, allowing 

for the application of the widely known K-means algorithm to cluster up to four 

groups of homogeneous absolute z-differences. The two clusters showing the 

highest values are, thus, considered as areas where terrain has significantly 

changed. The remaining areas are deemed as potentially matching areas where the 

robust surface matching may be applied using the widely known Tukey’s Biweight 

(TB) M-estimator. In this way the diagonal weight matrix, regarding the TB 

function, is introduced in an iterative least-square routine to compute the Helmert 

3D transformation parameters to finely georeference the historical DEM. 

The proposed methodology was tested for georeferencing a historical grid 

format DEM (1977 photogrammetric flight). A 10 m grid-spacing DEM generated 

from a higher scale photogrammetric flight taken in 2001 was used as the 

reference surface. Two accurate DEMs based on LiDAR technology taken in 2004 

and 2009 were also employed to validate the final georeferenced product. 

The results obtained from this work may be deemed as very promising, 

showing a high efficiency and accuracy for historical DEM 3D georeferencing. The 

first step, i.e. shaded-relief image matching, was not always needed, mainly 

depending on the quality of the preorientation stage. The vertical accuracy for the 

finally co-registered DEM was computed over a validation dataset, presenting 

relatively non-altered or stable areas and yielding a computed uncertainty 

(standard deviation of the z-differences) close to 1.09 m. That is fairly similar to 

the estimated uncertainty for the reference DEM. 

 

Keywords: Matching; DEM/DTM; georeferencing; monitoring; change detection
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INTRODUCTION 

Spatial registration of multi-date data is required for many applications in 

remote sensing, such as change detection, the construction of image mosaics, 

DEMs generation from stereo pairs, and orthorectification. Focusing on coastal 

area, it is widely recognized that it is one of the greatest environmental and 

economic assets for a nation. In fact, coastal vulnerability studies are 

experimenting a growing demand because of the threatening tourism and 

construction development joined to the future scenario of widely predicted sea 

level rise (SLR) and coastal flooding due to climate change (Titus et al. 2009). 

Indeed, DEMs are usually used to model SLR vulnerability (Cowell, Zeng 2003) and 

coastal flood risk (Webster et al. 2006). Furthermore, DEM change detection 

within a certain time period may be also used to automatically quantify terrain 

changes owing, for instance, to urban development.  

The geometric correction for spatial registration of multi-date data must be 

accurate enough, because misalignments of features at the same location could 

render useless results. In this sense, many researchers have adopted 3D surface 

matching techniques without control points to automatically co-register multi-

temporal DEMs, usually using the newer DEM as the reference surface to achieve 

the 3D registration of an older and generally less accurate DEM (Rosenholm, 

Torlegard 1988, Pilgrim 1996, Li et al. 2001, Miller et al. 2008, Zhang, Cen 2008). 

Regarding surface matching, it is based on three-dimensional conformal 

transformations, requiring the computation of three rotations, three translations 

and a global scale parameter, so that the un-oriented DEM is transformed to the 

coordinate system of the reference DEM (Mills et al. 2005). 

On the other hand, nowadays DEM production is efficiently accomplished by 

means of LiDAR technology which is contributing, often coupled with passive 

optical imaging, to a wide range of coastal scientific investigations (Brock, Purkis 

2009). Nonetheless, as LiDAR is a relatively new technology, historical data beyond 

the past decade are practically unavailable (James et al. 2006). This is the reason 

why most of the studies headed up to extract shoreline position and evolution 

along a certain period of time (i.e. monitoring studies) are mainly based on 

rectified aerial photographs, beach profiles from surveying techniques and 

topographic maps. 

Despite DEMs are deemed as the best choice to extract accurate shoreline 

position (Aguilar et al. 2010a), few attempts have involved stereo-photography 

and, thus, 3D information extraction to monitor shoreline evolution. Taking into 

account that the accuracy of DEMs is clearly bound to the accuracy of the derived 

variables via error propagation (Aguilar et al. 2010b), it is crucial to start from the 

best possible DEM, both for newly-made DEMs and for historical DEMs (mostly 

compiled from historic stereo photogrammetric flights). 
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The same could be said about terrain change detection from multi-date 

stereo-photogrammetric flights, where it is necessary to count on a precise and 

well distributed set of GCPs to attain the georeferenced DEM. So, taking the idea a 

bit further, the latter approach requires a number of GCPs to compute the absolute 

orientation of every stereo pair, a survey task that usually becomes inefficient and 

costly because of the difficulty to accurately identify and survey a suitable set of 

ground points which could be pointed on the corresponding historic photographs. 

In fact, those GCPs are cumbersome to obtain in remote areas or from relatively 

old flights, simply because historical features are difficult to be currently localized, 

measured and even pointed out onto the digital images (Figure 2.1), depending on 

their scale, resolution and radiometric quality. Additionally, the current process of 

manual GCP measurement may be prohibitively labour-intensive for large projects 

under operational conditions, and it does not enforce sub-pixel level correlation 

between images due to the limitation of human visual interpretation. Finally, and 

with regard to extract high quality topographic data from historical imagery, GCPs 

should also be of high quality and well distributed over the photographs (Aguilar 

et al. 2013). This is especially important when camera calibration information is 

incomplete or unavailable (James et al. 2006). 

 

Figure 2.12. Example with regard to typical troubles on ground points location working on 

historical photogrammetric images (approximated scales: 1956-1:33000, 1977-1:18000, 2001-

1:5000). 

Given the aforementioned shortcomings of historical DEMs co-registration, 

the main goal of this work is to develop, test and validate a new rapid, efficient and 

robust surface matching procedure, non-sensitive to actually true terrain changes 

(considered as outliers in the surface matching jargon) and able to georeference 
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very-coarsely-oriented historical DEMs using a newer DEM as the reference 

surface without the need of GCPs. 

SURFACE MATCHING APPROACH 

The basic flow chart diagram regarding the new two-step robust surface 

matching fundamentals is shown in Figure 2.2 (step 1) and Figure 2.3 (step 2). 

Briefly, the proposed method starts from a pre-processing stage of the historical 

DEM applied onto previously digitized photographs, where the stereo model y-

parallax is removed by means of the Automatic Relative Orientation (ARO), a 

widely known photogrammetric procedure.  

Subsequently, suitable photogrammetric software must be utilised to carry 

out the interior orientation and the ARO process. In this case, ImageStation Digital 

Mensuration software (ISDM 4.0® by Z/I Imaging) was employed. ARO is the 

procedure that determines the relationship between two overlapping images, 

providing the position and attitude of one image with respect to another image by 

automatically matching tie points. Thus, it is an unattended process. Nonetheless it 

is worthy to manually mark three control points (two full points XYZ and one only 

Z point) to apply a coarse three-dimensional conformal transformation (seven-

parameters Helmert 3D), so obtaining a preoriented stereo pair which will be very 

helpful to improve and speed up the convergence of the subsequent robust surface 

matching process. It is noteworthy that those ground points only have to present 

approximated coordinates, both horizontal and vertical, so they can be easily 

extracted from available orthophotos (horizontal) and supposing a common Z 

coordinate (e.g. an average ground height for the whole working area).  

In this way, a DSM or, after applying a filtering process, a Digital Terrain 

Model (DTM), may be obtained by means of digital stereo image matching 

techniques (Aguilar et al. 2007). ImageStation Automatic Elevations (ISAE 4.0® by 

Z/I Imaging) was the software utilised to automatically generate a large number of 

elevation points. 

Shaded-Relief Image Matching stage (step 1) 

Within this stage, a 2D shaded-relief is generated for both the historical DEM 

(model to georeference) and the reference DEM (a more recently obtained and 

already georeferenced DEM). In this regard, different shaded-reliefs may be tested, 

only changing the solar elevation and azimuth to optimize the final 3D matching 

between the historical and reference DEMs. In this sense, the algorithm could be 

repeated till obtaining the best solution (Figure 2.2). 

An automatic matching algorithm, based on the Scale Invariant Feature 

Transform (SIFT), has been implemented to identify conjugated points in image 
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space (pixel coordinates) belonging to the reference and historical DEM shaded-

relief images. This algorithm is able to extract features invariant to image scale and 

rotation. Moreover, these features are shown to provide robust matching across a 

substantial range of affine distortion, change in 3D viewpoint, noise addition and 

illumination change, so it can be deemed as very suitable to our practical 

application. The reader can find an in-depth description of SIFT method in (Lowe 

2004). 

 

Figure 2.13. Flow chart diagram showing the algorithm framework for obtaining the coarse 

absolute orientation (Step 1: Shaded-Relief Image Matching stage). 
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Finally, the 3D coordinates for every pair of conjugated points were 

automatically extracted from the reference shaded-relief (UTM ETRS89 East and 

North) and reference DEM (bilinearly interpolated heights above GRS80 ellipsoid 

in our particular case). Those pairs of 3D points, previously transformed to 

geocentric coordinates, allowed computing an iterative least squares registration 

between both DEMs by means of a 3D conformal transformation (eq. 2.1): 
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] (2.1) 

where the orthonormal rotation matrix is represented by 3x3 elements which are 

trigonometric functions of the rotation angles Ω, Φ and Κ. On the other hand, X, Y 

and Z are the transformed coordinates regarding the reference system (reference 

DEM), being x, y and z the original coordinates for the DEM to be georeferenced. 

Equally, X, Y and  Z are the corresponding three translations and λ is a global 

scale parameter. 

It is relevant to notice that the gross errors among the geocentric coordinates 

of the conjugated points (reference and historical matching points after applying 

the computed transformation) found after each iteration were discarded and not 

taken into account in the next one by establishing a threshold value to avoid 

possible outliers due to both landscape changes (e.g. cut and fill earthworks, new 

buildings, etc.) and false matching points. Based on our experience, that threshold 

should be set up to around ten times of the approximated uncertainty measure of 

the reference DEM, but sometimes had to be increased because, at least, three 

points were needed to compute the 3D Transformation. 

By estimating the previous seven transformation parameters, the computed 

3D transformation was applied to the historical DEM to georeference it. All this 

process making up the basis framework, except for ARO and DEM generation, was 

programmed by using MATLAB®. 

Robust Surface Matching stage (step 2) 

This second step consists of using the reference DEM as a reference 

topographic surface to robustly register the historical DEM previously oriented by 

means of shaded-relief image matching (step 1). Thus, this second stage may be 

considered as a refine process to improve, whether it is possible, the 

georeferentiation results achieved through the first step.  

In this way, the conjugated points were extracted by overlapping both DEMs 

(e.g. map projection UTM ETRS89 and heights above GRS80 ellipsoid) and using 

bilinear interpolation over the reference DEM to obtain two different and 

planimetrically corresponding elevations (one for each DEM). At this time, those 

non-overlapping DEM points detected have to be pointed out and excluded from 
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the matching process from here onwards (i.e. each observation is assigned a zero 

weight). In this way, a very dense dataset of z-differences (dzi) between historical 

and reference DEM for every grid point can be computed. 

The widely known K-means clustering method (Spath 1985) was employed to 

take into account potential divergences between new and old DEM elevations due 

to true terrain change. Those true changes are considered here as outliers, and 

thus they should be excluded from the surface matching process. With K-means 

clustering, we are given a large dataset of N absolute Z-differences data points in a 

two-dimensional space and an integer of K. The problem is to separate the N 

observations into K clusters by means of an iterative algorithm that minimizes the 

sum of distances from each object to its cluster centroid over the remaining 

clusters. This algorithm moves points between clusters until the sum cannot be 

decreased any further. The result is a set of K clusters that are as compact and 

well-separated as possible. 

 

Figure 2.14. Flow chart diagram showing the algorithm framework for obtaining the final 

refined absolute orientation of the historical DEM (Step 2: Robust Surface Matching stage). 

Based on our experience, K was set to four in our particular application. In 

this sense, once the four absolute z-differences clusters are computed, the two 

clusters presenting the highest mean absolute z-differences are to be considered as 

potentially revised areas and so discarded to be applied in the subsequent surface 

matching process. The remaining two clusters are considered as potentially 
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matching areas where the robust surface matching can be applied using the M-

estimator called Tukey’s Biweight (TB . TB function is one of the most commonly-

utilised M-estimators, and as noted by Goodall (1983), is difficult to surpass in 

terms of delivering good performance in most situations. The weight function is 

defined as follows: 

 (  )  {
(    )

     |  |   

          |  |   
  (2.2) 

being ui the standardised least-squares residuals (dzi/σ , where σ is the standard 

deviation of all the Z-differences potentially selected to be involved in the surface 

matching process. In this way, the diagonal weight matrix regarding the TB 

function, that is w(ui) in eq. 2.2, is introduced in an iterative and massive least-

square weighted solution (Pilgrim 1996, Allan 2004) to compute the so-called 

Molodensky-Badekas 3D conformal transformation which works on geocentric 

coordinates (eq. 2.1).  

After the estimation of the seven transformation parameters, the resulting 3D 

transformation was applied to the historical DEM to refine its previous 

georeferentation that was achieved from step 1. This two stage procedure was also 

programmed with MATLAB® (Figure 2.3). 

DATASETS 

Datasets corresponding to 1977 (Historical DEM to georeference) 

Because this historical flight lacked of camera calibration certificate, which is 

very usual by the way, the corner coordinates for each photograph (fiducial marks) 

were established using the same methodology explained in Chapter 1. The 

principal point coordinates were fixed at zero, i.e. no offset existed between the 

principal point and the fiducial centre. Focal length was included because it usually 

appears as marginal data in aerial photographs. The reader is referred to the 

Datasets section of this Thesis for further information. 

A 10 m grid-spacing DEM was extracted by means of stereo matching 

techniques (ISAE 4.0® from Z/I Imaging), ranking over previously digitised 

images (1  µm per pixel ≈ 30 cm ground sample distance) with a radiometric 

resolution of 8 bits. ISDM 4.0®, from Z/I Imaging® was used to carry out the 

preliminary and approximate absolute orientation as it was depicted in the 

previous section. 

To test the capability of the developed method to deal with highly deformed 

DEMs (i.e. badly preoriented), different rotations, translations and scale changes 

were applied to the original preoriented DEM to obtain three synthetic deformed 

DEMs, as it is expressed in Table 2.1. 
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Table 2.10. Translations, rotations and scale change applied to the preoriented 1977 DEM to 

produce three different versions of synthetic deformations. 

Parameters Version 1 Version 2 Version 3 

ΔX 10 m 50 m 100 m 

ΔY 10 m 50 m 100 m 

ΔZ 10 m 50 m 100 m 

ΔΩ 10º 30º 45º 

ΔΦ 10º 30º 45º 

ΔΚ 10º 30º 45º 

Δλ 0.9 0.7 0.5 

Additionally, ISAE 4.0® software from Z/I Imaging was employed to extract a 

10 m grid-spacing DEM through similar stereo matching techniques but, in this 

case, by using a robust exterior orientation computed from the support of 45 

evenly distributed and accurate GCPs without applying self-calibrating additional 

parameters or APs (please see Chapter 1) due to the fact that ISAE 4.0® software 

does not allow their implementation. This configuration based on a large number 

of GCPs and no APs was proved to provide an absolute orientation with similar 

accuracy to that achieved from self-calibrating models supported by APs and with 

the same number of GCPs. The corresponding RMSE was 0.277, 0.346, and 0.444 m 

for planimetric, vertical and tridimensional accuracy respectively (see further 

information in Chapter 1 of this Thesis). Therefore, this configuration can be 

considered as the most accurate as possible, and so the collected DEM can be 

directly compared with the reference DEM. In this sense, the traditional 

photogrammetric techniques can be tested against robust surface matching 

techniques in order to check if GCPs collection effort can be someway replaced. 

Reference dataset corresponding to 2001 

The reference DEM corresponding to 2001 consisted of a 10 m grid-spacing 

DTM produced by the Andalusia Regional Government (Spain) throughout a 

photogrammetric flight taken in 2001 (scale ≈ 1:20000 . This original DTM was 

transformed from the UTM European Datum (1950) and orthometric heights to 

the new Spanish official geodetic system called the European Terrestrial Reference 

System (ETRS89) and ellipsoidal heights (based on the GRS80 ellipsoid). The 

corresponding DTM accuracy was estimated upon 62 DGPS check points located at 

open terrain, yielding a mean vertical error of 0.88 m (underestimated elevations), 

a vertical RMSE close to 1.34 m, and a standard deviation of 1.03 m. The 1977 

historical DEM to georeference and the 2001 reference DEM are illustrated in 

Figure 2.44 as 3D surface maps. 
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Figure 2.15. Photogrammetrically-derived DEMs corresponding to 1977 (left) and 2001 

(right). Reference system UTM-ETRS89. 

Validation datasets 

Two different validation datasets were used in this work to test the accuracy 

of the proposed two-step robust surface matching to register historical DEMs. The 

first one consisted of a LiDAR dataset taken during August and September 2004, 

based on a flood risk mapping study in Andalusia and led by the Water 

Government Agency of Spain. The LiDAR data capture was handled by the 

Cartographic Institute of Calalunya (Spain) by means of an Optech ALTM 3025 

LiDAR sensor. Among its main operational parameters, we highlighted the 

following ones: flight height 2300 m, point density around 1 point/m2 and 

computed vertical accuracy between 6 and 15 cm depending on the land cover. 

The accurate and high resolution (1 m grid-spacing) raw DSM was filtered and 

decimated using TerraScan® software to produce a more suitable to handle 3 m 

grid-spacing DTM within the working area, comprising a non-urbanised and, thus, 

relatively stable area along the Antas dry-ravine bed (Figure 2.9). 

The second validation dataset was a very recent DEM taken in 2009 (Figure 

2.10). It means a heavily developed coastal area relatively prone to be altered 

along time. This second DEM was a high accuracy (standard deviation estimated in 

8.9 cm) and resolution LiDAR-derived DEM. The initial very high resolution DEM 

was resampled to an easier to handle 5 m grid-spacing DEM. The reader is referred 

to the Datasets section of this Thesis for further information. 
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RESULTS AND DISCUSSION 

Starting point. 1977 preoriented DEM 

The initial preoriented historical DEM (coarse-oriented using ARO) presented 

a clearly diagonal-rotated N-W to S-E direction leaning as compared with the 2001 

reference DEM. It originated a sparse histogram of signed vertical residuals as can 

be observed in Figure 2.5. 

The mean error took a value of 16.18 m (Table 2.5), indicating a notable 

overall bias or systematic error from the preorientation process, as could be 

expected given the approximated coordinates of the ground points utilised to 

compute the absolute orientation. Meanwhile, random errors were also quite large 

as can be deduced from the high standard deviation of the whole z-differences 

within the overlap area (Table 2.5). Thus, the starting preorientation should be 

improved to allow an acceptable terrain change detection analysis. In this case, it is 

necessary to cope with these high local deformations by treating them as outliers 

while the designed algorithm, as a robust estimator technique, should be less 

sensitive to the existence of outliers. It is a non-easy problem to solve because 

there will be coexisting matching points, gross errors (significant surface 

differences due to the passage of time) and boundary outliers (i.e. points within 

the transition area). In the remaining sections, the two-step proposed algorithm 

will be tested to check its ability to afford this intriguing challenge. 

 

Figure 2.16. Map of signed z-differences (1977 ARO preoriented DEM – 2001 reference DEM 

within the overlap area) and the corresponding histogram. 
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Shaded-Relief Image Matching (step 1) 

As it was previously commented, the process called Shaded-Relief Image 

Matching (SRIM) makes up the first step of the proposed two-step robust surface 

matching approach. 

 

Figure 2.17. Results regarding Shaded-Relief Image Matching (image space) for a 45º solar 

azimuth and a 45º solar elevation. 1977 DEM (left) and 2001 DEM (right). 

First of all, it is important to point out that the matching results may be quite 

variable depending on the solar position from which the shaded-relief images 

were generated. In fact, automated GCP location in two images consists of two 

stages. The first one extracts spatial features from each image. Then the features 

are paired by correspondence matching. The success of the process depends, 

partially, on the similarity of the features in the two images, which is clearly 

related to the solar position. This is the reason why the proposed algorithm 

attempts to iteratively search for an optimal solution changing both solar azimuth 

and solar elevation. Just as an example, the matching results coming from different 

solar positions are depicted in Figure 2.6 and Figure 2.7. With the 45º solar 

azimuth case, 22 conjugated points were successfully matched out of 2784 and 

1722 key points found in 1977 and 2001 shaded-relief images, respectively. 

Likewise, with the 90º solar azimuth situation, 21 conjugated points were finally 

extracted out of 2172 and 1380 key points detected in 1977 and 2001 shaded-
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relief images, respectively. At this point, it is imperative to state that the most 

important is not only the number of pairs achieved but the matching precision and 

even distribution of those points on the working area. 

 

Figure 2.18. Results regarding Shaded-Relief Image Matching (image space) for a 90º solar 

azimuth and a 45º solar elevation. 1977 DEM (left) and 2001 DEM (right). 

Table 2.2 shows the estimated transformation parameters for the iteratively 

computed 3D conformal transformation. It is important to underline that the 

number of automatically detected GCPs, already included in the adjustment 

(robust least-squares adjustment iteratively discarding poorly matched points), 

has been notably lower in the case of 90º solar azimuth shaded-relief situation 

(Table 2.3 and Table 2.4). It is also worth reporting that the used threshold to 

discard GCPs along the iterative adjustment took a value of 10 m since the final 

results are highly depending of this variable. In this way, the accuracies obtained 

from the least-squares variance-covariance matrix turned out to be better with the 

45º solar azimuth case (Table 2.2), indicating a more robust and reliable solution. 

In short, the higher the number of ground points included in the least-squares 

adjustment, the better to achieve an even distribution over the complete working 

area. So, we strongly recommend computing the 3D conformal transformation 

with no less than 10 ground points, particularly if the two matching DEMs 

correspond to a highly dynamic area where landscape change probability may be 

considered as very high. 
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Table 2.11. Estimated parameters and accuracies for the computed 3D conformal 

transformation (based on geocentric coordinates with regard to GRS80 reference ellipsoid). 

Parameter 

Solar azimuth 45º 
Solar elevation 45º 

Solar azimuth 90º               
Solar elevation 45º 

Value Accuracy Value Accuracy 

ΔX -30.10 m 0.24 m -43.01 m 1.21 m 

ΔY -7.78 m 0.25 m -4.60 m 1.21 m 

ΔZ -21.64 m 0.24 m -31.07 m 1.22 m 

ΔΩ 0.454º 0.072º 0.373º 0.217º 

ΔΦ 0.990º 0.028º 1.104º 0.310º 

ΔΚ -0.856º 0.092º -0.750º 0.229º 

λ 1.00007 0.0003 1.00629 0.0032 

Table 2.12. Residuals in X, Y and Z from the 3D conformal transformation adjustment 

computed on the five utilised (out of 21) GCPs and automatically obtained by shaded-relief 

image matching (azimuth 90º, elevation 45º). 

Matched 
GCPs 

X (m) Y (m) Z (m) 

1 -2.02 3.61 2.91 

2 0.27 -3.20 -0.04 

3 -0.19 -1.72 0.02 

4 -0.29 -2.12 0.02 

5 2.52 5.55 -2.94 

 Table 2.13. Residuals in X, Y and Z from the 3D conformal transformation adjustment 

computed on the 15 utilised (out of 22) GCPs and automatically obtained by shaded-relief 

image matching (azimuth 45º, elevation 45º). 

Matched 
GCPs 

X (m) Y (m) Z (m) 

1 -0.40 -0.27 0.14 

2 0.34 -0.31 0.12 

3 0.74 1.65 -0.03 

4 -0.74 0.01 -0.46 

5 -0.66 -1.29 -1.26 

6 0.69 1.67 0.20 

7 0.64 0.05 0.37 

8 0.10 -0.28 0.30 

9 -1.16 -1.98 -0.44 

10 0.06 -0.33 0.89 

11 -0.01 -0.35 0.19 

12 -0.24 -2.04 0.33 

13 0.70 2.68 0.47 

14 0.62 1.03 -0.66 

15 -0.68 -0.23 -0.15 
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Table 2.14. Signed z-differences statistics within the overlap area corresponding to the 

comparison between 1977 historical DEM and 2001 reference DEM. 

1977 DEM - 2001 DEM comparison Mean Maximum Minimum 
Standard 
deviation 

1977 Initial preoriented DEM 
2001 DEM 

16.18 63.34 -35.02 22.12 

1977 SRIM-oriented DEM (90º-45º) 
2001 DEM 

-1.78 10.40 -18.66 3.17 

1977 SRIM-oriented DEM (45º-45º) 
2001 DEM 

-0.14 10.14 -16.28 2.03 

The initial position of the 1977 historical DEM has been notably corrected and 

the matching results have been clearly improved after applying the SRIM 

algorithm (Figure 2.8). Because the algorithm checks through different solar 

positions (previously selected by the user), it is possible to obtain dissimilar 

solutions and, later on, to check which is the best option. In this sense, the 45º 

solar azimuth solution would be preferred. Indeed, some signed statistical results 

are shown in Table 2.5. It is worthy of note that the standard deviation of the 45º 

solar azimuth case is still almost twice higher than the one estimated for the 2001 

reference DEM (1.03 m). Since outliers were not removed from the SRIM-oriented 

DEM and reference DEM comparison, the final matching from SRIM process may 

be considered as highly accurate. 

By judging numerical data and qualitative maps depicted in Table 2.5 and 

Figure 2.8, SRIM stage can be used to automatically and coarsely co-register multi-

temporal DEMs without GCPs. It is necessary to take into account that some of the 

gross errors detected (Figure 2.8) may be actually considered no error but 

landscape change due to earthworks projects (e.g. cut and fills). In this way, the 

proposed methodology seems to be very robust because localised shaded-relief 

features supporting the robust 3D conformal transformation are usually 

geomorphological features that remain relatively stable along time. 

When registering multi-temporal DEMs, the most important problem is 

associated to the intensity of temporal deformation or change occurred between 

the periods of the study. In most surface matching algorithms the deformation area 

is restricted, at most, 50% by introducing the so-called differential model and 

improving the classic least z-difference or LZD algorithm. It is rather complex and 

needs a previous rough co-registration or knowing about the approximated 

transformation to carry out (Zhang, Cen 2008). This SRIM stage has been used as a 

first step to later apply our robust surface matching algorithm to refine the initial 

matching as much as possible. The outcomes from the application of this second 

step will be presented along the next section.  
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Figure 2.19. Map of signed z-differences (1977 SRIM-oriented DEM – 2001 reference DEM 

within the overlap area) and the corresponding histogram after applying the computed 3D 

conformal transformation (45º solar azimuth and 45º solar elevation shaded-relief). 

Robust Surface Matching (step 2) 

Once step 1 (SRIM) has been concluded about the approximated best coarse-

orientation (45º solar azimuth in our case), it is time to refine the computed 

orientation by means of the aforementioned Robust Surface Matching (RSM) 

approach. According to the RSM results depicted in Figure 2.6, it can be noticed 

that the computed translation and rotations at this stage can be considered as very 

small, an expected situation given the good coarse orientation coming from the 

first step. The accuracy for the estimated parameters, calculated through the 

dispersion matrix, was very high. It was mainly due to the huge number of 

available matching points what confers to this process an important soundness 

and robustness. 

After applying this second step (RSM algorithm), the SRIM-oriented 1977 

historical DEM has been slightly refined to improve on its co-registration with 

respect to the 2001 reference DEM, yielding the accuracy results shown in Table 

2.7. As can be checked, the results may be deemed as fairly similar to those 

obtained after applying only the SRIM first step. Regarding this issue, it is essential 

to point out that the RSM second step has been designed to correct, whether 

needed, the approximation carried out through the SRIM first step. In this sense, 

the poorer is the SRIM performance the better is the added value from RSM stage. 
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Regarding the LiDAR-derived validation DEMs, the Antas dry-ravine can be 

supposed as a mainly non-altered area during the last decades and so reasonably 

free of change. In this sense, the maximum and minimum errors were the lowest, 

while the matching accuracy worked the best (Table 2.7), presenting an 

uncertainty (measured as standard deviation) almost equal to that one estimated 

for the 2001 reference DEM. In the same way, the z-differences analysis, with 

regard to the comparison between the 2001 reference DEM and the 2004 Antas 

DEM, showed similar results (Table 2.7), demonstrating the great efficiency of this 

method to obtain excellent multi-date surface registrations without costly and 

time-consuming surveyed ground points. Furthermore, the spatial error 

distribution turned out to be quite stable and evenly distributed all over the 

working area, indicating a good performance of the proposed matching algorithm 

to correct the poor preorientation of the original historical DEM (Figure 2.9). 

Table 2.15. Estimated parameters and corresponding accuracies from the Robust Surface 

Matching application. 

Parameters value Accuracy 

ΔX (m  -0.0159 0.0018 

ΔY (m  0.0005 0.0018 

ΔZ (m  -0.0757 0.0028 

ΔΩ (º  0.030 1.70 10-4 

ΔΦ (º  -0.004 1.37 10-4 

ΔΚ (º  -0.043 1.72 10-4 

λ 0.99998 2.06 10-6 

Table 2.16. Signed z-differences statistics within the overlap area corresponding to the 

comparison between the oriented 1977 historical DEM and several reference DEMs (for the 

presented cases, a 45º solar azimuth and elevation was applied to the SRIM orientation). 

Compared DEM Reference Mean 
Standard 
deviation 

Maximum Minimum 

1977 SRIM 
oriented DEM 

2001 reference DEM -0.14 2.03 10.14 -16.28 
2004 Antas dry-ravine 

DEM 
-0.58 1.27 3.63 -6.00 

2009 coastal DEM -1.29 1.48 6.35 -11.91 

1977 SRIM+RSM 
oriented DEM 

2001 reference DEM -0.20 1.95 9.38 -15.57 
2004 Antas dry-ravine 

DEM 
-0.55 1.09 3.32 -7.31 

2009 coastal DEM -0.81 1.44 6.09 -11.75 
2001 reference 

DEM 
2004 Antas dry-ravine 

DEM 
-0.50 0.93 3.87 -5.37 

2001 reference 
DEM 

2009 coastal DEM -0.68 1.40 7.39 -7.02 
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Figure 2.20. Spatial distribution of signed z-differences (1977 SRIM-45º-45º+RSM oriented 

DEM – 2004 Antas dry-ravine DEM within the overlap area) and the corresponding histogram. 

 

Figure 2.21. Spatial distribution of signed z-differences (1977 SRIM-45º-45º+RSM oriented 

DEM – 2009 coastal DEM within the overlap area) and the corresponding histogram. 
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Notice that the validation matching results coming from the 2009 LiDAR-

derived DEM were slightly poorer than those achieved in the case of the Antas dry-

ravine (Table 2.7). It was likely due to the larger number of years passed (since 

1977) and, above all, the presence of new urbanisations in this heavily developed 

coastal area what, somehow, means a lesser correspondence between the 1977 

and 2009 DEMs. Shortly, this area can be deemed as more contaminated and fully 

modified and, as expected, the number of potential matching points has decreased 

(Figure 2.10). 

In other words, the height changes between multi-date DEMs contain three 

main parts: random errors, terrain deformations and matching errors. Random 

errors come from DEM generation while terrain deformations are mainly caused 

by anthropogenic activities (constructions, land use changes, etc.). Obviously, the 

area embraced by the 2009 coastal DEM is more tending to suffer terrain 

deformations than the 2004 Antas DEM. 

Again, the statistical results coming from the z-differences analysis between 

the 2001 reference DEM and the 2009 coastal DEM turned out to be very similar to 

those offered by the SRIM+RSM oriented historical DEM (Table 2.7), confirming 

the goodness of 1977 DEM registration. 

Highly deformed DEMs 

One of the most important problems when registering multi-date DEMs is 

closely related to the quality of the previous preorientation issue because, 

somehow, a bad preorientation accentuates the problems due to the presence of 

local deformations. Summing up, it is needed a relatively well preoriented 

historical DEM to obtain accurate results. In fact, our second step of the RSM 

approach was not able to fully register any type of the synthetic deformations 

applied to the original preoriented 1977 DEM, as it can be observed in Table 2.8 

(though it is worth noting that those deformations are not usual under operational 

conditions). 

Therefore, and for those cases, it was needed to apply a first step process, the 

so-called SRIM algorithm, to get ready the preoriented DEM to be refined by the 

second step and based on the RSM algorithm. In this sense, the obtained results 

may be believed as fairly accurate, taking into account the extreme deformations, 

likely far away from real datasets, applied to the original 1977 historical DEM to 

test the robustness and soundness of the proposed two-step methodology. 
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Table 2.17. Signed z-differences statistics for the overlap area corresponding to the 

comparison between different versions of deformed 1977 DEM and 2001 reference DEM (for 

the presented cases, a 45º solar azimuth and elevation was applied to the SRIM orientation). 

  Reference DEM comparison results 

Version of 
1977 DEM 

Orientation phase Mean 
Std. 
Dev. 

Max. Min. 

1 

Raw -0.80 47.03 80.84 -81.48 

RSM oriented -1.40 8.31 25.46 -36.88 

SRIM+RSM oriented -0.94 1.99 5.68 -19.21 

2 

Raw 0.89 45.93 78.91 -79.51 

RSM oriented -2.78 23.25 48.56 -49.68 

SRIM+RSM oriented -0.45 2.05 7.11 -14.76 

3 

Raw -0.10 30.10 51.59 -52.00 

RSM oriented 5.94 15.73 38.13 -28.30 

SRIM+RSM oriented -0.25 2.54 12.33 -16.49 

Traditionally extracted DEM 

It is quite interesting to compare the results obtained from applying this 

automatic robust matching technique with the traditional way to acquire DEM by 

means of photogrammetric processes. Thus, the 1977 photogrammetrically 

oriented project was used to produce an accurate DEM (henceforth 1977 photo 

DEM) which was directly compared with the 2001 reference DEM and the 2004 

lidar-derived DEM. The results are shown in the Table 2.9 revealing that no 

significant differences were observed between photo DEM and SRIM + RSM DEM 

(both for 1977). 

Table 2.18. Signed z-differences statistics within the overlap area corresponding to the 

comparison between the 1977 no APs DEM and two reference DEMs. 

 Mean Sd. Dev. Max. Min. 

1977 photo DEM - 2001 
reference DEM 

0.21 1.56 6.68 -8.76 

1977 photo DEM - 2004 
Antas dry-ravine DEM 

-0.16 0.94 4.70 -9.06 

The systematic bias for the 1977 photo DEM was opposite to the DEM 

obtained by the two-step robust matching (0.21 instead of -0.20, Table 2.7). These 

results were achieved since the georreferenced SRIM + RSM DEM was obtained by 

matching it with the 2001 reference DEM which presented a systematic vertical 

offset as it was previously mentioned (DGPS quality control). Furthermore, the 

1977 photo DEM was extracted by a photogrammetric project directly referenced 
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by accurate GCPs so not including the vertical offset appreciated in the 2001 

reference DEM. Moreover, the random error estimated from the standard 

deviation values was similar between both approaches, especially for the 

comparison with the 2004 lidar-derived DEM in which the traditional 

photogrammetric process was only 15 cm more accurate. When the two 

georreferenced DEMs were compared to the 2001 reference DEM, the difference 

between them regarding vertical accuracy was close to 39 cm, again being the 

classical process more accurate. However, and taking into account the larger cost 

of the ground support in the case of the traditional photogrammetric process (45 

GCPs had to be surveyed in field to ensure the highest possible accuracy), the 

results obtained from robust matching (image and surface) can be considered as 

accurate enough and the proposed approach should be stated as much more 

efficient than the classical one. 

Terrain change detection 

One of the main advantages of the proposed method could be its immediate 

application to issues related to terrain change detection. Certainly, detecting 

regions of change in DEMs for the same area taken at different times is of 

widespread interest due to a large number of applications in land cover or land use 

studies (Coppin, Bauer 1996). Moreover, terrain changes could be relevant to 

studies such as shoreline evolution, soil sealing, flooding analysis and so on. The 

goal is to identify the set of points (pixels in a raster context) that are significantly 

different between the last DEM of the sequence and the previous DEMs (these 

pixels comprise the “change mask” . The traditional methods usually used in this 

discipline can be very sophisticated when they are applied to images, but are 

notably simplified working on DEMs because there is no need to apply pre-

processing methods (radiometric/intensity adjustments, sudden changes in 

illumination, shadows, etc.) except for the crucial geometric adjustments, i.e. 

matching as best as possible all the compared DEMs just as it has been already 

done via the algorithm proposed along this chapter.  

Several methodologies have been developed for change detection, from the 

simplest one (simple differencing), to the more sophisticated one such as those 

based on significance and hypothesis tests, predictive models, shading models, 

background modelling, etc. (Radke et al. 2005). In this case, and just as an 

approximation attempt, a mixed approach has been used involving simple 

differencing and significance tests supposing that the z-differences follow a 

Gaussian distribution. In fact, a 95% confidence interval has been computed from 

the reference DEM estimated uncertainty (Sd ≈ 1.03 m . Thus, the symmetric 

upper and lower limits would adopt the values ±1.96.Sd = ±2.02 m (presuming a 

zero mean of z-differences). This methodology has been applied to the working 

area highlighting a few and defined areas where there have been changes between 
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1977 (referenced by SRIM+RSM) and 2001 (Figure 2.11). Those areas were 

concentrated in high relief zones and, in some cases, may be partially due to the 

different quality of the compared DEMs (Figure 2.5), being the 1977 DEM smother 

and worse defined (e.g. without breaklines edition) than the 2001 counter partner. 

Actually, the results can be visually checked in a reliable way. Additionally, most of 

the working area presented z-differences within the computed confidence interval 

(see the corresponding histogram in Figure 2.11).  

Summing up, the percentage of significant terrain change within the tested 

area from 1977 to 2001 (24 years) could be estimated as 9.53% as much while the 

fill earthworks (69.2%) clearly prevailed over cut earthworks (30.8%). 

 

Figure 2.22. Discrete distribution of signed z-differences (1977 SRIM-45º-45º+RSM oriented 

DEM – 2001 reference DEM within the overlap area) where dark grey colour means areas 

within the tolerance of ±2.02 m (95% confidence interval). 
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CONCLUSIONS 

The results obtained from this work can be regarding as very promising, 

showing a good co-registration between reference and historical DEMs in heavily 

developed coastal areas. 

The second step process, based on a robust surface matching algorithm which 

needs a relatively good first approximation, can be applied successfully only 

whether the preoriented historical DEM turns out not to be excessively misaligned 

respect to the reference DEM. In the case of a very badly preoriented DEM, and 

likely also for intense temporal deformations or terrain changes, it is necessary to 

take into consideration a previous step headed up to correct such issues, which can 

be afforded by means of the proposed Shaded-Relief Image Matching. In such 

situations, the second step method proposed along this work could be applied as a 

refining method to polish subtle deficiencies coming from the first step.  

Therefore, and just to widen the range of situations wherein our methodology 

could be suitable, it is always highly recommendable applying the Shaded-Relief 

Image Matching (first step), which makes up an integrated method comprising a 

two-step robust surface matching. The first step should render a well coarse-

oriented historical DEM by means of the automatic and unattended shaded-relief 

image matching. On the other hand, the second step would refine the initial coarse 

orientation using the developed robust surface matching algorithm. In this way, it 

would be possible to deal even with very poor preoriented DEMs that present a 

high rate of change regarding the reference DEM.   

Certainly, the point is the high efficiency and robustness demonstrated by our 

Robust Surface Matching approach for historical DEMs 3D georeferencing, 

especially when it is compared to the costly and time-consuming traditional 

methods such as photogrammetric absolute orientation based on surveyed GCPs 

and, very often, self-calibrating bundle adjustment techniques, which have been 

proved as similar in terms of accuracy even when a large number of GCPs have 

been utilised. 
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ABSTRACT 

The extraction of high accuracy shorelines is fundamental to carry out 

accurate and reliable studies headed up to understand coastal evolution and 

vulnerability. In our case, it was needed to develop a method based on 

extrapolation process since the most suitable height for datum-coordinated 

shoreline extraction along Spanish coastal areas turned out to be the orthometric 

datum origin, i.e., the origin of the vertical reference system in Spain. Due to the 

microtidal nature of the Mediterranean Sea, this vertical datum makes rather 

troublesome to remotely extract ground points under this reference vertical datum 

to apply traditional shoreline extraction methods based on interpolation 

procedures. In this sense, a new method for shoreline extraction based on an 

iterative digital elevation model extrapolation is presented in this work. The 

Elevation Gradient Trend Propagation method employs the local elevation 

gradient in order to estimate the shoreline position by extrapolating the slope until 

the zero-elevation contour, representing the modeled intersection of the vertical 

datum and beach profile, is reached.  

The proposed methodology was tested on a LiDAR-derived digital elevation 

model, which comprised a coastal area of Almeria (Mediterranean Sea, South 

Spain). The results obtained from the new approach were compared with those 

provided by the widely known Cross-Shore Profile (CSP) method. 

A validation process was carried out over both methods to bring out their 

advantages and shortcomings. An alternative contour level of 0.4 m was employed 

as ground truth since the zero-elevation contour was not available due to the lack 

of LiDAR returns under water surface. The validation pointed out that the 

proposed method turned out to be more robust and suitable than CSP method for 

microtidal coasts and when there was a need of extrapolation to reach the desired 

contour level. In addition, the influence of the starting point to apply the elevation 

extrapolation process was also proved. 

 

Keywords: Shoreline change, shoreline detection, shoreline analysis, shoreline 

definition, coastal erosion-accretion, remote sensing, LiDAR, digital elevation 

model, extrapolation method, cross-shore profile 
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INTRODUCTION 

Mediterranean coastal areas are being progressively degraded mainly due to 

they are withstanding a high dynamic economic activity that provides large profits 

from the tourist industry. Moreover, this process is causing the emergence of new 

infrastructures (harbors, roads, urbanizations, engineered structures, etc.) which 

are seriously affecting the coastal environment (Sua rez de  ivero,  odr  guez 

Mateos 2005). In this sense, it is noteworthy that urban development on the 

coastal areas and resource use conflicts spawn environmental degradation and 

increasing hazard vulnerability (Mills et al. 2005). Indeed, they are one of the 

richest and changeable, but also fragile, systems (Woodroffe 2002). As a result, 

some specific programs have been developed for the Mediterranean Sea (e.g. 

United Nations Environment Program/Mediterranean Action Plan) in order to 

study the degradation and conservation processes along Mediterranean coastal 

areas.  

The shoreline, as the reference of land-water interface, is one of the most 

important features on the Earth’s surface, representing a critical indicator of 

coastal evolution and vulnerability for any Coastal Geographic Information System 

(Li, Ma & Di 2002). In this way, the development of monitoring techniques has 

become essential to improve the accuracy and efficiency of shoreline mapping, 

facilitating studies headed up to coastal evolution assessment by estimating the 

rate of coast erosion or accretion (Boak, Turner 2005, Genz et al. 2007, Aguilar et 

al. 2010a).  

In order to extract the shoreline, a wide range of geomatics techniques have 

been employed (Gens 2010, Boak, Turner 2005). Since the 1920s, aerial 

photogrammetry has replaced more and more traditional ground surveys headed 

up to capture beach surface by means of topographic profiling. In recent decades, 

new technologies have arisen for coast and shoreline mapping, including high 

resolution satellite imagery, kinematic GPS vehicles and, above all, airborne LiDAR 

surveys (Brock, Purkis 2009). Until recently, the direct digitization over aerial 

image (orthorectified images are preferred) has been the most utilized method by 

identifying a physical shoreline indicator as the High Water Line (HWL) (Pajak, 

Leatherman 2002). However, since more accurate spatial data acquisition and 

analysis techniques have appeared, the set of methods for shoreline definition 

have been increased. The development of some techniques that make possible to 

efficiently obtain high accuracy DEMs, such as Digital Aerial Photogrammetry or 

airborne LiDAR technology, have pointed out to the datum-coordinated shorelines, 

based on either tidal or vertical reference datums, as the most suitable shoreline 

indicator. In fact, a shoreline that is defined based on a stable vertical datum can be 

treated as a reference shoreline and used to differentiate shoreline changes (Li, Ma 

& Di 2002). In this sense, LiDAR surveys are quite efficient as compared with 
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coastlines extracted from digital orthophotography or photo interpretation. That is 

because LiDAR-based shorelines are georeferenced to a certain tidal datum which 

avoids problems related to biases or horizontal shifts bound to the presence of 

different tidal levels when the images were taken, the disturbing effects of waves 

and runup, or even the possible misinterpretations of the wet-dry beach line. 

Hence using tidal datum indicators can be deemed as a more objective and robust 

way to identify the shoreline position. 

Several methods have been employed in this decade in order to extract the 

desired tide-coordinated or datum-coordinated shoreline from LiDAR data. Li, Ma 

& Di (2002) described a method for mapping the shoreline by using instantaneous 

shorelines and other ancillary data; Liu, Sherman & Gu (2007) devised a method 

based on morphological operations over segmented LiDAR DEMs; White 2007, 

White et al. (2011) proposed a contouring method over LiDAR data by utilizing a 

datum transformation from geodetic to tidal datum. The latter method is being 

employed officially by the U.S. National Ocean Service. One of the most widespread 

method to extract the datum-based shoreline from altimetry data or DEMs is the 

Cross-Shore Profile (CSP) method (Stockdon et al. 2002), which is based on linear 

regression over foreshore altimetry profiles. This method has also been officially 

used by the U.S. Geological Survey (Morton, Miller & Moore 2004, Morton, Miller 

2005, Hapke et al. 2006). The adjusted straight line is estimated over a vertical 

range of heights and it is intercepted with the desired datum in order to obtain the 

shoreline position for each specific profile by using linear interpolation. Tidal 

datums as Mean High Water (MHW) or Mean Lower Low Water (MLLW) are 

usually employed as the reference for high accuracy tide-coordinated shoreline 

extraction (NCR 2004, Monmonier 2008) since they correspond to the nautical 

charts depths reference (MLLW) or include legal boundary considerations (MHW 

in US) as well as the fact that the MHW shoreline provides mariners with a visually 

recognizable boundary between land and sea (Graham, Sault & Bailey 2003, 

Monmonier 2008). Furthermore, these tidal datums are averaged over a historical 

record of elevation water levels embracing a period of not less than 19 years, 

corresponding to a National Tidal Datum Epoch (NTDE) (Ruggiero, List 2009), and 

so they can be considered as robustly computed. 

In contrast to the United States case, some areas of the Mediterranean coasts 

(e.g. Spanish coast) lack of a large enough network of historical tidal observations 

for the establishment of an accurate tidal datum. Moreover, the elevation of the 

MHW tidal datum may experience large variations along the coast as a function of 

the local tide range and mean tide level. This is the main reason why an open coast 

tide station very close to our working coastal area is needed to accurately estimate 

its MHW. And it is not always available in the case of Spanish coast. Therefore, an 

accurate enough and easy to define datum should be specified for shoreline 

extraction along Spanish coast. In this sense, we strongly recommend the use of 

the Spanish Vertical Reference System (orthometric heights). According to the 
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Spanish legislation, the vertical reference system in Spain is defined as the mean 

sea level in the city of Alicante (located at the East of Iberian Peninsula, 

Mediterranean Sea). Actually, it was the first tide gauge station in Spain. That mean 

sea level was recorded along the decade from 1870 to 1880. Nowadays, the 

Spanish vertical reference system is materialized by the Spanish High Precision 

 eveling Network (‘ ed de Nivelación de Alta Precisión’,  EDNAP; Instituto 

Geográfico Nacional). The EGM08 geoid model has been recently adapted to the 

Spanish Vertical Reference System (REDNAP) by means of a correction surface 

adjusted by applying the minimum curvature algorithm over around 13700 check 

points where both the orthometric and ellipsoid heights were known. Therefore, a 

reasonably dense geodetic network is currently available in Spain which allows to 

locally and accurately establish that EGM08-REDNAP vertical datum in 

everywhere along the Spanish coast. Furthermore, the observations of the national 

network of tide gauges are related to this vertical datum (Puertos del Estado 

2013), and other geographical features such as cadastral or administrative 

information are also related to this vertical reference level. In fact, the Spanish 

Oceanography Institute (IEO 2013) defines the 0 m contour level (based on 

EGM08-REDNAP orthometric datum) as a required feature for the official 

geographical database, making up the cartographic element called “shoreline”. 

That datum-coordinated shoreline could be also applied as a vertical reference for 

bathymetric works since the “hydrographic zero” (analogous to M  W datum  is 

the reference datum for nautical charts in Spain and many Spanish tide gauges 

report a vertical relation between the EGM08-REDNAP datum and the 

“hydrographic zero” (IHM 2013). 

However, the choosing of the EGM08-REDNAP vertical datum as the most 

suitable for datum-coordinated shoreline extraction makes difficult to apply 

interpolation methods since the instantaneous sea level is, most of the time, 

located over the corresponding 0 m contour level along the Mediterranean Spanish 

coast. Furthermore, the short tide level variation and the presence of waves and 

runup on flat beaches stand in the way of mapping negative elevation data. It 

means that it is very troublesome to count on a nearshore bathymetry. As a 

consequence, interpolation methods could be unsuitable in order to obtain an 

accurate zero-elevation shoreline position and, thus, extrapolation methods should 

be tested. 

The main goal of this work is to look for a response to all the aforementioned 

shortcomings, outlining a new methodological proposal for high accuracy 

shoreline mapping based on DEMs processing and taking the EGM08-REDNAP 

orthometric datum as the vertical reference datum. In this way, a new approach for 

shoreline extraction, called Elevation Gradient Trend Propagation (EGTP), is 

introduced and tested along this work. This method has been based on the 

iterative extrapolation of the local gradient in order to obtain the desired zero-

elevation contour level (Aguilar et al. 2010a). The new approach has been 

http://www.ign.es/
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compared with the widespread CSP method since this approach, based on straight 

line regression, allows for the application of an extrapolation process. A validation 

process was carried out on the results from both methods to check which one is 

more suitable to be applied on microtidal Mediterranean coastal areas. 

DATASET AND STUDY AREA 

The shoreline extraction methods tested over the study area were applied on 

a 1 m grid spacing LiDAR-derived DEM taken in August 2009. The flight height 

above ground was close to 1000 m, using a LeicaGeosystems® ALS60 airborne 

laser scanner with 35° FOV, 1.61 points/m2 average point density and counting on 

one ground GPS reference station. These data were properly processed to their 

registration in ETRS89 geodetic system. The orthometric vertical datum was 

chosen based on the Spanish vertical reference system (REDNAP 2013). The 

estimated vertical accuracy, computed from 62 Differential Global Positioning 

System (DGPS) high accuracy check points distributed over the whole working 

area, took a value of 8.9 cm (measured as standard deviation). All the processes to 

filter the laser point cloud, adjusting the four flight-lines strips and managing 

LiDAR data were carried out by means of TerraMatch® and TerraScan® 010 

software. 

Additionally, Terrascan® software also allowed estimating the instantaneous 

sea level by plane-to-cloud adjustment at time when LiDAR data were taken. It was 

possible since the LiDAR-infrared echo was capable to return from the water 

surface in many occasions. In that way, the instantaneous mean sea level was 

extracted and vertically georeferenced to the Spanish vertical datum, turning out 

to be close to 18 cm average in open coast. That is nearly the locally corrected 

MHW estimated from historical data coming from the tide gauge station located at 

Almeria harbor (non-open coast station), which would take a value around 20 cm. 

After applying a contouring process to the LiDAR-derived DEM, the 0.4 m contour 

level was proved to be the lower one free of noise and outliers owing to waves and 

runup (i.e., it was a continuous contour). As a result, this contour was employed as 

reference in order to filter out LiDAR sea points and carry out the next 

extrapolation processes (as described further below). 

SHORELINE EXTRAPOLATION METHODS 

Cross-Shore Profile Method 

As one of the most extended methods for shoreline extraction based on 

vertical datum indicators, the CSP method has been implemented as a proper 

reference for this work (Stockdon et al. 2002, Morton, Miller & Moore 2004, Hapke 

et al. 2006, Brock, Purkis 2009, Ruggiero, List 2009). Notice that, along this work, 
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CSP method has been employed as an extrapolation method, while it has been 

proved as suitable enough for interpolation processes. It implies that the shoreline 

position is estimated supposing that the computed slope from the available data is 

kept further below the data set range. 

Firstly, and in order to attain the 0 m datum shoreline by means of this 

methodology, the horizontal cross-shore profiles were initially obtained. DSAS© 

software (Thieler et al. 2008) was employed to achieve an appropriate framework 

of cross-shore profiles or transects (5 m transect spacing) from which the final CSP 

shoreline was extracted. 

Secondly, by means of a 2 m both sides buffer operation, the corresponding 

elevation data were included into every cross profile along the coast. As a result, 

distances to profile origin data (abscise) and elevation data (ordinate) were 

recorded for each transect. Then, a regression line was fitted for each profile data 

by means of least-squares method, the slope and intercept being the variables to 

compute. Finally, it was calculated the intersection between that adjusted line and 

the chosen water level or reference datum as it is shown in eq. 3.1. Moreover, the 

covariance matrix resulting from the least-squares adjustment was employed to 

estimate the uncertainty related to shoreline position for every transect (Wilcox 

2003). 

    
        ̅

 ̅
 (3.1) 

Being    the estimated shoreline position respect to the corresponding profile 

origin along cross-shore axis,        is the datum elevation,  ̅ is the regression-

estimated slope, and  ̅ is the regression-estimated intercept. Additionally, the 

linear regression coefficient of determination (R2) was also computed for each 

profile. 

Shoreline uncertainty estimation for the CSP method 

Briefly, the relationship between the foreshore slope, DEM vertical accuracy 

and extracted shoreline accuracy (Stockdon et al. 2002) can be explained by 

         
  
 ̂⁄  (3.2) 

Being         the shoreline uncertainty due to vertical uncertainty of the 

ancillary DEM (   = ± 0.089 m in our case) and  ̂ the foreshore least-squares 

estimated slope. However, in addition to the uncertainty proposed by (Stockdon et 

al. 2002), the overall uncertainty should also depend on the method employed for 

the shoreline position estimation (Aguilar et al. 2010b), as it is shown in eq. 3.3. 

          √       
                

  (3.3) 
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Where           corresponds to the total shoreline uncertainty, 

and                is the uncertainty owing to the own regression as a result of the 

application of the general error propagation law (Heuvelink, Burrough & Stein 

1989), yielding: 

              
  

  
 (   ̂)
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 ̂ 
     

 
(   ̂)

 ̂ 
 (3.4) 

Where   
  and   

  are the variances of computed slope and intercept, 

respectively, and    
  represents the covariance between both parameters. 

Looking for the best elevation range for applying the CSP method 

An essential parameter for the shoreline position estimation by means of the 

CSP method is the proper elevation range to be used. Other authors (Stockdon et 

al. 2002) have proposed a general data range of ±0.5 m from the required datum 

(i.e., MHW). Since data below the chosen datum in this work were not available, a 

further study has been carried out in order to find out the most suitable elevation 

data range from which starting the linear extrapolation process. The 0.2 m and 0.4 

m elevations were taken into account as the minimum heights whilst the tested 

maximum elevation ranged from 0.8 m up to 2.0 m stepping 0.2 m. The potential 

outliers derived from the CSP shoreline computing process were removed by 

applying the widely known 3-sigma rule (Maune 2001). The overall results were 

compared by means of a decision factor (DF) shown in eq. 3.5. The final chosen 

range was the range whose results yielded the largest value for the decision factor, 

which depends on the average for all the computed coefficients of determination 

(        
 ), the percentage of remaining data after outliers removal 

(               ), and the average estimated uncertainty (           ). 

   
        
                 

           
 (3.5) 

In this way, the elevation range from 0.4 m to 0.8 m was found as the best-in-

class range in our local conditions. Moreover, the 0.4 m level was proved as the 

optimum reference elevation level in order to apply the extrapolation methods to 

the DEM data employed in this work since it was perfectly distinguishable against 

those ranges where the lowest level was 0.2 m (Figure 3.1). In this last case waves 

and runup clearly disturbed the performance of the contouring process by 

introducing an unacceptable noise. 
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Figure 3.9. Decision Factor (DF) values for every tested elevation data range. 

Elevation Gradient Trend Propagation method 

In this work, EGTP method is proposed as a new approach for shoreline 

extraction especially thought to cope with data and operational conditions where 

extrapolation is needed. For example, it would be very useful to face those cases 

where a nearshore bathymetry is not available. It is based on an iterative grid-

based data technique that expands the elevation gradient trend (norm and 

direction) computed for every grid point towards extrapolated grid points with 

unknown heights. The process is repeated till the new grid point reaches the level 

just below the chosen vertical datum. After that, it is easy to join the border which 

separates grid points situated above and below the reference height to map the 

corresponding datum-coordinated shoreline. Obviously, the datum-coordinated 

shoreline (e.g. EGM08-REDNAP in our case) can be extended to tidal-coordinated 

shoreline, whether a proper tidal datum was available, and should not affect the 

discussion in the remaining part of the article.  

Firstly, elevations below a specific threshold (reference elevation) are 

removed. Then, the initial local gradients and their uncertainty are estimated in 

east-west direction (X-axis) and north-south direction (Y-axis) by means of a 

Sobel’s filter (González, Woods 2008) from the non-removed elevations (eq. 3.6). 
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] (3.6) 
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Being    and    the local gradients for X and Y directions, respectively,   is a 

3x3 neighborhood within a grid DEM and   represents the convolution operation. 

Additionally, the estimated initial gradient uncertainty for both orthogonal 

directions is estimated (          
 ,           

 ) by applying the general error 

propagation law (eq. 3.7). 

          
            

   
 

     
  
  (3.7) 

Being r the DEM grid spacing and assuming that it is the same along both axes 

X and Y.  

It is worth to point out that, in every iteration, the elevation gradient for 

components X and Y is only computed for those central grid points which present a 

complete neighborhood (i.e., all the 8 neighbours have a height value). The 

elevation gradient for each component of those grid points located at the border 

was interpolated by means of the inverse distance weighting method, using a local 

support made up of the gradients really calculated on the nearest adjacent grid 

points (eq. 3.8). 
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Being     and     the gradient to be interpolated, i represents each adjacent 

node where elevation data is known,    is the Euclidian distance from each known 

node to the node to be interpolated, and     and     are the gradient values for 

each adjacent node. Similarly to eq. 3.3, the total gradient uncertainty (given by eq. 

3.10) is estimated by the initial gradient uncertainty (eq. 3.7) and the uncertainty 

due to the extrapolation process described in eq. 3.8. The application of the general 

error propagation law yields the following expression: 
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   (3.10) 

Where n is the total number of adjacent nodes containing elevation data. 

Again, the Y-axis expression results in an analogous way. Fort the next 

extrapolation iteration,         
  would be the initial component while        

  would 

depend on the corresponding variances. In this sense, the actual variance         
  

would be increased in each iteration. 

An estimation process for extrapolated elevations is carried out once the 

gradients have been computed. The unknown elevations are extrapolated by 
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means of a weighted average onto a 3x3 kernel neighborhood. The previously 

extrapolated gradient results, adjacent node elevations and relative position 

regarding the central node are taking into account for the extrapolated elevation 

estimation (eq. 3.11). 

   
∑  ∑     ∑    

 
 (3.11) 

In eq. 3.11,    and    are the weighting indexes for the gradients, which make 

the local gradient additive or subtractive, depending on its relative position with 

regards to the central node (see eq. 3.12 where r represents the DEM grid spacing). 

   [
   
   
      

]      [
    
    
    

] (3.12) 

Following the description of the elements of the eq. 3.11, ∑  is the summation 

of the adjacent elevations,    and    are the local gradients corresponding to the 

3x3 kernel neighborhood, and N is the number of adjacent nodes containing 

known elevation data. The iterative process is locally stopped when the estimated 

elevation results are located just below the required vertical datum for shoreline 

extraction. In our case, the process was stopped when the extrapolated elevations 

resulted in negative numbers (i.e., below 0 m elevation level). Similarly to the 

gradient process, the elevation uncertainties were also estimated using the 

following expression:  

       
           

        
   (3.13) 

In this case,           refers to the initial DEM uncertainty (±0.089 m for the 

first iteration) and       
  indicates the uncertainty caused by the own 

extrapolation process. Again, and as a result of applying the general error 

propagation law through eq. 3.11,       
  could be estimated by means of the next 

formula: 

      
     ⁄  ∑(            

             
                

    )

    

 (3.14) 

Where N is the total number of adjacent nodes containing elevation data, 

           
  and            

  are the gradient variances at i and j positions (ranging from 

1 to 3), and r takes the value of the DEM grid spacing. It is worth noting that grid 

spacing effectively affects the uncertainty of extrapolated height, so it is strongly 

recommended to use high resolution DEMs to limit somehow the extrapolation 

error. Also notice that the gradient error will be increased after each iteration 

because the growing uncertainties of extrapolated heights. 
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The last step in the EGTP approach deals with the shoreline contour level 

extraction from the final extrapolated DEM. In doing so, the norm and direction of 

the local elevation gradient are used in the immediately upper elevation of the 

required datum by means of the horizontal distance from those positions respect 

to the required datum. The uncertainty was estimated for both the slope (m) and 

the horizontal distance (D), as it is shown through the following equations: 

  √  
    

     
  

 

  
(  

    
    

    
 ) (3.15) 

  
           

 
    

  
 

  
(
(           )

 

  
  
       

 ) (3.16) 

In the last equations,    and    are the gradient in X and Y directions, 

respectively,    
  and    

  being their estimated uncertainties along the iterative 

process. Furthermore,   
  is the slope uncertainty, whereas      and      

  are just 

the upper elevation regarding the desired vertical datum elevation and its 

corresponding uncertainty. Finally,        refers to the shoreline vertical level (0 

m in our case). 

The final horizontal coordinates are obtained by means of the slope direction, 

the D distance and the horizontal coordinates of the starting node. Thus, a 

continuous shoreline can be extracted usually comprising a large set of shoreline 

points, one for each pair of contiguous heights vertically located at both sides of 

the shoreline. Therefore, the denser is the original DEM, the more points are 

drawing the extracted shoreline. 

Finally, the shoreline extraction for each CSP transect was carried out in order 

to compare the EGTP and CSP methods. In this way, the intersection of each 

reference transect with the entire shoreline was computed and, moreover, the 

average uncertainty between the points A and B was estimated according to the 

next expression (Li 1993), where A and B are shoreline points lying on both sides 

of the resulting intersection point.  

   
  

 

 
  
  

 

 
  
  (3.17) 

RESULTS AND DISCUSSION 

Cross-Shore Profile Method Results 

As has been widely proved in other works (Stockdon et al. 2002, Ruggiero, 

List 2009), the foreshore slope has a crucial effect on the shoreline accuracy when 

CSP method is employed, as can be easily deduced from eq. 3.2. Furthermore, the 

employed data range to compute the linear regression has been proved as very 
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significant in this work. The accuracy is lower and outliers arise when estimated 

slope is too small or the elevation data range hardly fits to a straight line, so a 

further outlier removal process is required. When this sort of errors turns out to 

be frequent in a specific area, a dispersion effect appears and certain coastal areas 

are clearly bad-defined (e.g. Figure 3.2). Also bearing in mind that a relatively 

short elevation data range was employed (only from 0.4 m to 0.8 m), the data 

points used in the fitting procedure could be too small and, thus, the relative high 

weight apply to any outlier could get worse the computed least-squares 

adjustment. 

 

Figure 3.10. Dispersion effect for the computed shoreline position (yellow points) due to the 

presence of too flat areas (low slope estimation). 

Finally, and after applying the outlier removal by means of the 3-sigma rule 

over the entire study area, the maximum uncertainty took a value of ±10.22 m, the 

median turned out to be ±1.00 m and the average was ±1.34 m. The number of lost 

transects was significant, representing the 15% of the initial ones. Additionally, it 

should be noticed that               
 , defined in eq. 3.4, contributed with 20% 

average over the whole          
 , depicted in eq. 3.3. That is to say, DEM 

uncertainty (       
 ) was the most influent component on the total uncertainty, 

although the uncertainty due to the regression term made the model more 

complete. 
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Note that the computed theoretical uncertainty for the extracted shoreline 

seems to be high (average of ±1.34 m), although this value should be compared 

with a proper ground truth since the error owing to the extrapolation process has 

to be quantified. For example, the presence of an abrupt change in beach slope and 

curvature in the immediate vicinity of the datum-shore intersection would 

produce an additional uncertainty not taken into account by the theoretical model. 

On the other hand, a clear influence on the final results was attributed to the 

lack of orthogonality between shoreline and transects. It was evaluated by using a 

simple test consisting on checking the effect on shoreline accuracy due to different 

rotations of the transect framework respect to the shoreline. In fact, CSP method 

was applied taking into account a synthetic required datum of 0.4 m and an 

elevation data range from 0.6 to 1.0 m in a steady-sloped beach close to 100 m 

long. The transects system was rotated regarding the local steepest line from 0° up 

to 75°, stepping 15°. The resulting shoreline for each set of transects was then 

compared with the ground truth, which was previously extracted as the 0.4 m 

contour level. The results are depicted in Table 3.1. It is shown that, as a rule of 

thumb, the less the alignment between transects and local steepest line, the 

greater the extracted shoreline error committed. Moreover, a systematic bias was 

found which was increased with the growing misalignment between transects and 

steepest line. 

Table 3.14. Residuals average and residuals standard deviation regarding the ground truth for 

the different misalignments between transects and steepest line. 

Applied 
misalignment 

Average slope Average R2 
Residual 

average (m) 
Standard 

deviation (m) 

0° -0.117 0.981 0.390 ± 0.287 

30° -0.104 0.956 0.337 ± 0.407 

45° -0.05 0.572 -2.506 ± 1.009 

60° -0.05 0.992 1.909 ± 1.764 

75° -0.035 0.523 -4.889 ± 1.797 

Elevation Trend Propagation Method Results 

The results obtained by means of EGTP method have been referred to the 

reference elevation of 0.4 m because it was previously proved as the most suitable 

lower contour level. For this iterative approach, the shoreline positions which 

presented the largest uncertainties did not correspond to any “dispersion effect”, 

but a high number of iterations needed to achieve the final position. Therefore, the 

outlier removal process was not applied in this case. It is worth noting that a little 

and limited error appeared as “shoreline gaps” where the local gradient turned out 

to be positive (landward direction), since the extrapolation process was not able to 

propagate elevations along seaward direction. Regarding the estimated 

uncertainty, a large influence of slope was also revealed for EGTP method. 
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Generally, the smaller the slope, the larger number of iterations was required and 

the greater uncertainties were estimated. An average uncertainty of ±2.08 m and a 

median of ±1.51 m were estimated over the entire study area, being a little bit 

larger than CSP one, although it should be taken into account that the outlier 

removal process was not applied in the EGTP case. 

Qualitative comparison CSP vs. EGTP 

For the study area, the EGTP method was able to represent the shoreline in a 

more continuous way than CSP method. CSP was affected in those areas where the 

elevation data profile was not alike to a linear trend. Moreover, complex and 

bended coast forms (engineered structures, rocks, little islands, sedimentary 

shapes, etc.) made the CSP method to yield irregular results. Finally, when the 

adjusted profiles included outlier data, i.e. wave and runup data, the linear 

regression was also affected. On the other hand, the EGTP method came out much 

more efficient than CSP one in order to represent the complex shapes, drawing the 

coast shape properly. In fact, around 14% more transects were available for EGTP 

method as compared with those available for CSP one. Furthermore, the EGTP 

method was able to identify little islands, achieving even more than one position 

for the same transect and later allowing to carry out a more suitable shoreline 

evolution analysis over these areas (Figure 3.3). Additionally, EGTP method can be 

deemed as much more automatic and unattended than CSP, since it is not needed 

to choose an appropriate elevation data range. In fact, the CSP method has offered 

inappropriate results when small or positive slopes were estimated (Figure 3.4 

and Figure 3.5), producing a shoreline indetermination along certain coastal areas. 

Moreover, it is very sensitive to the elevation data range employed, so being the 

most affected for the local coast morphology (e.g. berm areas, Figure 3.6). In such 

cases, the fit straight line did not correspond to the morphological local variations. 

Thus, an important shortcoming attributable to the CSP method is that it would 

require a previous study of the altimetry profiles to find out the most suitable 

elevation data range, and even to check other sort of fits apart from the linear one 

(Huang, Jackson & Cooper 2010). Finally, EGTP method is more independent than 

CSP regarding the transect framework orientation. 

Quantitative comparison CSP vs. EGTP 

The high performances of the interpolation processes have been previously 

proved (Wilcox 2003). In order to test the performance of the extrapolation 

methods applied in this work, a numerical validation process has been developed. 

Since the true 0 m contour level (EGM08-REDNAP required vertical datum in this 

work) was not available due to the absence of a nearshore bathymetry, a synthetic 

elevation level of 0.4 m was employed as ground truth because it was the first 

contour level free of unacceptable noise. 14 sample areas were extracted from the 



Chapter 3: Tide-coordinated shoreline extraction 

117 
 

DEM, which represent different type of beaches along the working area. In 

addition, a mixed methodology was proposed in order to determine the potential 

negative effect of the transect-steepest line deviation for the CSP method. 

Therefore, the mixed method, called from here onwards CSP_EGTP method, was 

carried out in two steps: i) an iterative extrapolation of the DEM is applied, 

similarly to EGTP and ii) the shoreline is extracted by applying the CSP method 

over the previously EGTP extrapolated DEM. 

 

Figure 3.11. Example of the EGTP method performance for irregular coastal shapes and rocky 

coastal areas. Green points represent the ‘continuous’ EGTP-derived shoreline, whereas red 

points depict the EGTP-derived shoreline positions along the transect framework. Yellow 

points represent CSP-derived shoreline positions. Note that more than one position per 

transect could be captured the EGTP-derived shoreline. Notice the lack of data and the large 

errors committed along some transects in the case of the CSP-derived shoreline. 

Figure 3.12. Example of the underestimation of foreshore slope because of the use of 

inadequate landward elevation data. 
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Figure 3.13. Example of the underestimation of foreshore slope because of the use of 

inadequate seaward elevation data. 

 

Figure 3.14. Example of the underestimation of foreshore slope because of the ‘berm effect’. 

Note that the required shoreline vertical level is the synthetic 0.4 m one, instead of the 0.0 m 

level (both referred to EGM08-REDNAP vertical datum). The used data elevation in this case 

ranged from 0.8 m to 1.2 m. 

This validation approach was intended to establish the main factors which 

significantly affect the shoreline accuracy. The standard deviation of the 

differences between the ground truth contour level and the extracted shorelines 

was employed as an accuracy indicator for each sample area. The tested variables 

were i) the applied method (CSP, EGTP and CSP_EGTP), ii) the reference elevation 

from which the DEM is extrapolated seaward, and iii) the extrapolated amplitude, 

i.e., the height difference between the required shoreline extraction level and the 

reference elevation. Moreover, the extrapolated data range, i.e., the height 
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difference between the minimum and maximum elevation used to compute the 

regression line in the case of the CSP method, took a value of 0.4 m in every case. 

The experimental design has been summed up in Table 3.2. 

Table 3.15. Experimental design for the quantitative analysis carried out to compare the three 

tested methods. 

Method 
Reference 

elevation (m) 
Extrapolated 

amplitude (m) 
Elevation data 

range (m) 
Alias 

EGTP 0.6 0.2 - EGTP06 

EGTP 0.8 0.4 - EGTP08 

EGTP 1.0 0.6 - EGTP10 

CSP 0.6 0.2 1.0 – 0.6 CSP06 

CSP 0.8 0.4 1.2 – 0.8 CSP08 

CSP 1.0 0.6 1.4 – 1.0 CSP10 

CSP-EGTP 0.6 0.2 0.7 – 0.0 CSP_EGTP06 

CSP-EGTP 0.8 0.4 0.9 – 0.0 CSP_EGTP08 

CSP-EGTP 1.0 0.6 1.1 – 0.0 CSP_EGTP10 

The results of the standard deviation and the average of the shoreline position 

differences (random and systematic errors, respectively) for every sample area are 

shown in Table 3.3 and Table 3.4. Note that the 3-sigma rule for outlier removal 

was applied in order to obtain the results in a more suitable way to be analysed. It 

should be observed that certain residuals average values could be highly 

significant. That systematic error or offset could be likely due to the difference 

between the extrapolated gradient and the true one. This is a bias error inherent to 

the application of extrapolation approaches and, usually, is larger for the CSP 

method, since the EGTP method utilizes a local gradient which is closer to the true 

gradient than that estimated from the CSP method. In Table 3.3 and Table 3.4 may 

be underlined the large variability existing among the sample areas, which mainly 

depends on the beach morphology. Significant differences have been found 

between EGTP and CSP methods for rocky and high sloped areas and also for 

moderate sloped beaches, where EGTP method performed better. Furthermore, 

the transect orientation effect could be tested in some samples. The results from 

both methods were quite similar in steady-sloped beaches (sample areas 4 and 

10). The largest error came out from the so-called “non-classified areas”, which 

corresponded to beach areas where typical berm shapes were present. These 

bended and irregular shapes negatively affected the results computed from the 

CSP method when they were embraced by the elevation data range. In this sense, 

the EGTP method was pointed out as more robust and so less affected by this kind 

of beach morphology. Meanwhile, the EGTP method resulted in failures and 

provided inappropriate results in part of the sample areas where the local gradient 

was positive or quite low. 



 

 

Table 3.16. Residuals Average results (m) for the extrapolated shoreline validation depending on the observed sample area. EGTP extrapolation failure due 

to non-extrapolation of positive gradients is indicated by *. Results supported by a low number of observations due to the 3-sigma outliers analysis are 

indicated by **. 

Sample 
data 

Group CSP06 CSP08 CSP10 EGTP06 EGTP08 EGTP10 
CSP 

EGTP06 
CSP 

EGTP08 
CSP 

EGTP10 

1 
Rocky and 

high-sloped 
areas 

-1.683 -1.518 -2.316 0.563 0.489 0.557 0.242 -0.246 -0.852 

2 -0.713 -1.316 -1.397 0.013 -0.422 -0.488 -0.179 -0.904 -0.888 

14 -0.273 -0.074 -0.339 0.125 0.48 0.797 0.04 0.343 0.552 

3 Sandy and 
moderate-

sloped 
beaches areas 

-0.416 -0.766 -1.022 0.414 0.861 1.418 0.315 0.725 1.276 

13 -1.643 -5.332 -7.838 -0.271 -1.567 -3.995 -0.358 -1.866 -4.698 

4 Sandy and 
low-sloped 

beaches areas 

0.175 -0.991 -0.335 0.418 -0.587 -0.945 0.38 -0.602 -0.142 

10 0.782 0.858 0.307 0.643 1.077 0.348 0.609 1.071 0.378 

5 

Non-classified 
areas 

-3.499 -2.894 -2.955 -0.645 -2.593* 0.091 -0.659 -2.986* 0.097 

6 0.346 -5.07 -6.572 0.432 -0.392 -3.981* 0.407 -0.393 -8.58* 

7 0.271 -13.946 -15.805 0.292 -0.812 -6.003* 0.277 -0.809 -5.655* 

8 -15.945 -45.159 -13.936 0.436 -1.851 6.35* 0.415 -1.661 28.772* 

9 0.563 -2.488 -152.581 0.459 0.905 -1.343 0.429 0.883 -1.591 

11 -23.566 -46.553 -128.643 0.17 -0.327 3.079 0.054 -0.892 3.398** 

12 -2.44** -4.785** -95.73 -1.63 -2.704 4.911* -1.63 -2.631 -3.826** 

  



 

 

Table 3.17. Standard Deviation results (uncertainty in m) for the extrapolated shoreline validation depending on the observed sample area. EGTP 

extrapolation failure due to non-extrapolation of positive gradients is indicated by *. Results supported by a low number of observations due to the 3-sigma 

outliers analysis are indicated by **. 

Sample 
data 

Group CSP06 CSP08 CSP10 EGTP06 EGTP08 EGTP10 
CSP 

EGTP06 
CSP 

EGTP08 
CSP 

EGTP10 

1 
Rocky and 

high-sloped 
areas 

3.639 3.187 4.159 1.031 1.745 1.718 1.385 2.818 3.562 

2 1.168 1.861 2.247 0.587 1.313 1.678 0.792 1.76 1.934 

14 1.13 1.807 3.234 0.901 1.444 2.469 0.923 1.41 2.385 

3 Sandy and 
moderate-

sloped 
beaches areas 

0.755 1.447 2.149 0.392 0.705 0.649 0.398 0.635 0.678 

13 2.164 3.891 7.12 0.528 1.539 3.869 0.546 1.575 4.113 

4 Sandy and 
low-sloped 

beaches areas 

1.193 1.216 1.809 0.857 1.715 1.763 0.84 1.737 1.337 

10 0.548 1.223 1.742 0.576 0.959 1.878 0.563 0.948 1.818 

5 

Non-classified 
areas 

3.486 2.205 8.638 0.56 1.679* 1.856 0.542 2.034* 2.172 

6 0.51 4.584 3.537 0.48 0.92 2.54* 0.466 0.897 7.998* 

7 0.468 9.275 5.866 0.382 1.177 2.112* 0.375 1.174 1.893* 

8 14.399 38.11 14.695 0.524 1.427 7.852* 0.519 1.434 88.534* 

9 0.842 6.72 155.558 0.819 1.202 2.528 0.803 1.198 2.801 

11 31.067 59.789 339.387 1.164 3.028 5.78 1.26 4.172 6.592** 

12 1.352** 4.467** 101.547 0.805 1.74 16.414* 0.821 2.002 4.123** 
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Results by Reference Elevation 

The influence of the reference elevation can be properly understood if the 

results for every tested method are separately analysed. Standard deviation 

results, or extracted shoreline uncertainty, highlighted the higher accuracy of the 

EGTP method and how it is affected by the reference elevation (Figure 3.7). At the 

reference elevation of 0.6 m (i.e., 0.2 m extrapolated amplitude), the shoreline 

accuracy is generally under 1 m and rather stable. At 0.8 m, or 0.4 m extrapolated 

amplitude, the accuracy results were located within around 1 and 2 m. Note that 

for 1.0 m reference level (the highest extrapolated amplitude), the sample areas 

number 8 and 12 have been removed since the extrapolation turned out to be 

erroneous (positive local gradient). It is shown that the EGTP values were similar 

until reaching the sample area 5, whereas the results from sample area 6 are 

usually worse. The offset value clearly grew with the reference elevation. 

According to these results, it can be concluded that the EGTP accuracy clearly 

depended on the extrapolated amplitude. In fact, the ground truth and the 

extracted shoreline were quite similar in the case of low amplitudes to extrapolate, 

whereas the deviations were greater for farther distances depending on the 

discrepancy between the modelled foreshore morphology and the true one. Thus, 

it is stated that the best reference elevation should be the nearest as possible to the 

chosen shoreline extraction level in order to minimize the difference between the 

true gradient and the extrapolated one. 

 

Figure 3.15. Uncertainty results (standard deviation) for the EGTP method according to the 

extrapolated amplitude along the different sample areas. 

A better understanding about the performance of every method can be 

achieved by examining the accuracy results regarding the reference elevation. The 
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results of standard deviations for each reference elevation are shown through 

Figure 3.8. According to these results, the EGTP method has proved to be the more 

accurate for every reference elevation. 

On the other hand, CSP seems to be much more dependent on the used data 

range since the results are, usually, less accurate than those from the EGTP 

method. However, it could be noted that the CSP results were still rather 

appropriate for the 0.6 m reference elevation because they have not been affected 

by the berm effect. In fact, the best accuracy for the CSP method is given by the 

lowest reference elevation (0.6 m) with a general standard deviation close to 2-2.5 

m. On the contrary, the results became worse when higher reference levels were 

used, especially in berm sample areas. It could be explained because most of the 

foreshore is located within the data range from 0.6 to 1.0 m, whereas most of the 

berms arise from heights higher than 1.0 m. Indeed, that result is proved as 

compared with the other reference elevations, where the berm morphology clearly 

altered the linear foreshore morphology. This behaviour is also stepped up by the 

offset results. Therefore, the reference elevation has been underlined as the main 

parameter for the CSP method application, since beach areas have a significant 

variation in those elevation ranges. 

Finally, the results for the EGTP and CSP_EGTP methods can be considered as 

quite similar, excepting for some sample areas where CSP_EGTP was less accurate. 

It was mainly due to a misalignment between the transect framework and the local 

steepest line. 

Statistical Analysis of the Quantitative Results 

In order to complete the analysis of the aforementioned results, a factorial 

experimental design was carried out. The differences between the estimated 

shorelines and the ground truth data for each transect were employed as observed 

or dependent variable. This experimental design allowed analysing the influence of 

different factors and their interactions on the shoreline extraction accuracy. The 

studied sources of variation were sample area, shoreline extraction method and 

reference elevation. Thus, a factorial univariate analysis of variance (ANOVA) was 

applied. It was performed onto two dependent variable grouping levels: i) 

individual observations (i.e., each transect constituted an independent 

observation) and ii) grouping observations which belonged to a given 

homogeneous sample area and computing their corresponding uncertainties or 

standard deviations (observed variable in this second case). 
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Figure 3.16. Uncertainty results (standard deviation) for every tested method. (a) Results for 

0.6 m reference elevation or 0.2 m extrapolated amplitude; (b) results for 0.8 m reference 

elevation or 0.4 m extrapolated amplitude; (c) results for 1.0 m reference elevation or 0.6 m 

extrapolated amplitude. Note that several results have not been depicted in order to offer a 

more understandable representation. These results especially correspond to the CSP method 

for non-classified areas (i.e., the sample areas 12, 13, 14 in c). See Table 3.4 for further 

information.
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ANOVA for the individual observations 

As a summary, Table 3.5 depicts the number of observations for each source 

of variation: Sample Area, Computation Method and Reference Elevation. Note that 

the number of observations for each Computation Method is variable due to the 3-

sigma outlier analysis, which removed less number of noisy observed data from 

the CSP method. It was mainly due to its high level of variability as compared with 

EGTP and CSP_EGTP methods. Additionally, it should be highlighted that the 

number of observations was also different for each Reference Elevation owing to 

the fact that a larger number of outliers was detected and removed in the case of 

the highest elevations. 

Table 3.18. Number of observations for each source of variation. 

Factor Variation Number of observations 

Sample Area 

1 914 

2 1527 

3 1327 

4 1035 

5 1106 

6 1459 

7 1953 

8 706 

9 1105 

10 2140 

11 826 

12 582 

13 999 

14 972 

Computation Method 

EGTP 5471 

CSP 5741 

CSP_EGTP 5439 

Reference Elevation 

0.6 m 5789 

0.8 m 5600 

1.0 m 5262 

The final results from the ANOVA study are shown in Table 3.6. It is worth 

noting the high signification level for all the factors and their interactions 

(p<0.001). These results clearly bring out that every one of the tested explanatory 

variables presented a large and statistically significant influence on the final 

results, as it was initially expected. Therefore, it can be stated that the estimated 

shoreline accuracy greatly depends on the applied extrapolation method. In 

addition, and as was shown in previous sections by means of a qualitative 

approach, it has been proved that both the sample area and the reference elevation 

are also relevant to explain shoreline extraction accuracy. Meanwhile, the 
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interactions between all these variables were also statistically significant. For 

example, each method worked significantly different depending on the sample 

area where it was applied, likely due to the presence of different beach 

morphologies (Computation Method and Sample Area interaction). With regard to 

the Computation Method and Reference Elevation significant interaction, it should 

be noted that it is pointing out that each method yielded different results 

depending on the reference elevation. Finally, the significant results shown by the 

Sample Area and Reference Elevation interaction is clearly indicating that every 

homogeneous area considered, and so each beach typology, was sensitive to the 

different reference elevations tested. In this sense, more steady slopes allows 

increasing the reference elevation and vice versa. 

Table 3.19. ANOVA table corresponding to the differences between the extracted shoreline and 

the ground truth along each transect (observed variable). 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 
Mean square F 

Significance 

(p<0.05) 

Model 126 6168051.49 48952.79 48.20 <0.001 

Computation 

Method (A) 
2 673802.05 336901.02 331.75 <0.001 

Reference 

Elevation (B) 
2 198285.40 99142.70 97.62 <0.001 

Sample Area 

(C) 
13 616843.00 47449.46 46.72 <0.001 

A * C 26 1387091.31 53349.66 52.53 <0.001 

B * C 26 838015.45 32231.36 31.73 <0.001 

A * B 4 468609.08 117152.27 115.36 <0.001 

A * B * C 52 1647466.52 31682.04 31.19 <0.001 

Error 16525 16781593.46 1015.52   

Total 16651 22949644.95    

Once proved that the results were statistically significant, a Mean Separation 

Analysis (MSA) was applied to each factor. In this case, a Tukey’s test for treatment 

differences (John 1998) was carried out. Tukey’s test is a ‘post hoc’ test designed to 

perform a pairwise means comparison between the different levels or treatments 

corresponding to an analysed factor after ANOVA analysis. 

The MSA results for the variable Sample Area are depicted in Table 3.7. Five 

clusters were statistically separated, the groups 1 and 2 being significantly 

different, while the groups 3, 4 and 5 are quite underhand. Obviously, the 

qualitative-based classification carried out for Table 3.3 and Table 3.4 does not 

match with this one because the ‘post hoc’ analysis was applied in order to 

differentiate the mean of each group, while the previous qualitative classification 

was made up attending to the standard deviation of each group, since it indicates 

the overall accuracy of the applied shoreline extraction method. 
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Table 3.20. Mean Separation Analysis for the 14 levels which make up the factor Sample Area. 

Different super indices indicates significant differences at level p<0.05. 

Sample Area 
Homogeneous groups regarding mean differences (m) for each 

sample area 

 1 2 3 4 5 

11 -23.64a     

9  -18.00b    

12  -15.34b    

8   -6.56c   

7   -4.57cd -4.57cd  

13   -3.13cd -3.13cd -3.14cde 

6   -2.49cd -2.49cd -2.50cde 

5    -1.72de -1.73de 

2    -0.69de -0.69de 

1    -0.49de -0.49de 

4    -0.29de -0.29de 

14     0.29e 

3     0.35e 

10     0.67e 

The MSA results for the variable Computation Method are depicted in Table 

3.8. This may be deemed as a very relevant result because it stated that the EGTP 

and CSP_EGTP methods were significantly more accurate than the CSP one. In fact, 

the overall accuracy for the CSP method turned out to be very poor, especially due 

to the ‘berm effect’ over the profile data adjustment. 

Finally, the ‘post hoc’ results for the variable  eference Elevation turned out 

to be very relevant as well, since they proved that the elevation from which the 

DEM is extrapolated highly affected the shoreline extraction accuracy. In fact, as it 

is shown in Table 3.9, there were three significantly different groups according to 

the observed variable and the factor Reference Elevation. That is, an increase of 

only 0.20 m in the reference height produced statistically different results 

regarding extracted shoreline accuracy, what arises the need of finding the most 

suitable reference elevation (i.e., as close as possible to the required shoreline 

extraction level) for starting the extrapolation process. 

In order to check the influence of the CSP method observations on the 

previous analysis, a further factorial experimental design was carried out over the 

observed data after removing all the CSP ones. In this second case, all the factors 

and interactions were found significant (p<0.05) except the factor Computation 

Method and the Computation Method and Reference Elevation interaction. 

Therefore, the EGTP and CSP_EGTP methods seemed to perform quite similar 

shoreline accuracy. However, a very important finding can be observed in Table 

3.10. The ‘post hoc’ results for the  eference Elevation variable points out how the 
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mean value for each level turns out to be much lower than those found in the 

previous results (Table 3.9), indicating a somehow polluting effect owing to the 

inclusion of the CSP data. On the other hand, it is worth to notice that a lesser 

dependence regarding the reference elevation was found since the two highest 

elevations rendered the same accuracy results. 

Table 3.21. Mean Separation Analysis for the three levels which make up the factor 

Computation Method. Different super indices indicates significant differences at level p<0.05. 

Computation Method Mean values (m) for each method 

 1 2 

CSP_EGTP  -0.225a 

EGTP  -0.174a 

CSP -11.854b  

Table 3.22. Mean Separation Analysis for the three levels which make up the factor Reference 

Elevation. Different super indices indicates significant differences at level p<0.05. 

Reference elevation Mean values (m) for each level 

 1 2 3 

0.6 m   -0.749a 

0.8 m  -2.827b  

1.0 m -9.514c   

Table 3.23. Mean Separation Analysis for the two levels which make up the factor Reference 

Elevation after excluding all the CSP observations. Different super indices indicates significant 

differences at level p<0.05. 

Reference Elevation Mean values (m) for each level 

 1 2 

0.6 m.  0.12a 

0.8 m. -0.37b  

1.0 m. -0.37b  
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ANOVA for the uncertainty (standard deviation) estimated for each sample area 

The ANOVA results regarding individual observations have proved that the 

variables Sample Area, Computation Method and Reference Elevation can be 

deemed as statistically significant to explain the variability of the differences 

between the estimated shoreline and the considered ground truth. However, and 

along this paper, the standard deviation of the aforementioned differences has 

been established as an adequate accuracy indicator for the extracted shorelines. 

Therefore, an additional factorial univariate ANOVA was carried out over the 

standard deviation results for each combination of Sample Area, Computation 

Method and Reference Elevation. In this case, the number of cases or observations 

was 146 (14 sample areas, three computation methods and three reference 

elevations). 

In Table 3.11 are depicted the results of the computed standard deviation for 

the observed differences, where it is worth to underline that the factors 

Computation Method and Reference Elevation turned out to be statistically 

significant (p<0.05), whereas Sample Area only showed slightly significant 

differences (p<0.10). These results could be expected since the number of 

observations has been drastically reduced respect to those used in the first ANOVA 

headed up to analyse individual observations or transects. 

Table 3.24. ANOVA table corresponding to the standard deviation (dependent variable) 

computed from the individual observed differences regarding the extracted sample areas. 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 

Mean 

square 
F 

Significance 

(p<0.05) 

Computation 

Method (A) 
2 8549.05 4274.53 4.65 0.0139 

Reference 

Elevation(B) 
2 7931.15 3965.58 4.31 0.0185 

Sample Area (C) 13 21876.20 1682.79 1.83 0.0628 

A*B 4 7395.49 1848.87 2.01 0.1068 

A*C 26 39324.9 1512.50 1.64 0.0636 

B*C 26 22563.6 867.83 0.94 0.5530 

Error 52 47852.00 920.23 
  

TOTAL 125 155492.00 
   

With regard to the ‘post hoc’ analysis for the ANO A significant factors, a 

highly relevant finding has been obtained from the variables Computation Method 

and Reference Elevation. Two statistically homogeneous groups have been 
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separated according to Tukey’s test in the case of the factor Computation Method 

(Table 3.12). The first group included the CSP method, which was clearly less 

accurate than the other two ones. In this way, there was no significant differences 

(p<0.05) between the EGTP and CSP_EGTP computation methods regarding the 

shoreline extraction accuracy. 

Table 3.25. Mean Separation Analysis for the standard deviation within the three levels which 

make up the factor Computation Method. Different super indices indicates significant 

differences at level p<0.05. 

Computation 

Method 

Homogeneous groups regarding 

standard deviation (m) 

 1 2 

EGTP  1.984a 

CSP_EGTP  3.904a 

CSP 20.338b  

Regarding the variable Reference Elevation (Table 3.13 , the ‘post hoc’ 

analysis brought out two different subsets. The reference elevations of 1.0 m and 

0.6 m were situated within different homogeneous groups, whilst the reference 

elevation of 0.8 m was not statistically different from the other two ones. Summing 

up, the reference elevation to start the extrapolation process significantly affected 

the shoreline extraction accuracy, being more pronounced when the height 

difference between the reference elevation and the desired shoreline extraction 

level was larger. 

Table 3.26. Mean Separation Analysis for the standard deviation within the three levels which 

make up the factor Reference Elevation Method. Different super indices indicates significant 

differences at level p<0.05. 

Reference Elevation 
Homogeneous groups regarding 

standard deviation (m) 

 1 2 

0.6 m.  1.966a 

0.8 m. 4.385ab 4.385ab 

1.0 m. 19.875b  

This quantitative analysis over the transect-by-transect shoreline differences 

between the extracted shoreline and the ground truth has highlighted the high 

influence contributed by every tested variable. The extrapolation method has 

turned out to be a highly significant factor affecting the variability of the shoreline 

differences, both considering individual observations and computing their 

accuracy by means of their standard deviation. The EGTP method could be pointed 

out as the most suitable method, although there were no significant differences 

with respect to the CSP_EGTP method. On the other hand, the CSP method was 
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found as an unsuitable method to extrapolate along typical microtidal beach 

profiles. In addition, the reference elevation has been established as a decisive 

parameter since at least two groups could be statistically separated. It is indicating 

the importance of a proper choice for the reference elevation. Shortly, the nearer is 

the reference elevation regarding the shoreline extraction level, the better will be 

the extracted shoreline accuracy. Finally, the influence of the data for every sample 

area could be proved through the individual transects study, underlining the 

existence of a close relationship between the extracted shoreline accuracy and the 

beach morphology. 

CONCLUSIONS 

A new methodology based on iterative gradient extrapolation, called EGTP 

method, has been presented in this work. It has been especially designed to be 

applied over coastal microtidal areas where the required shoreline vertical datum 

could not be interpolated because of the absence of data under that level. 

Moreover, the linear adjustment of altimetry profiles (CSP methodology) was 

developed in order to carry out the extrapolation process, being one of the most 

widespread DEM-derived shoreline extraction approaches. The EGTP method have 

usually headed up to a better drawing of the coastal shapes as compared with the 

results from the CSP method, above all when working on bended and complex 

coastal areas. The influence of transect orientation for an accurate shoreline 

extraction when using the CSP method has been also proved. Therefore, it is 

strongly recommended to apply an automatic profile extraction following the local 

direction of the steepest line. 

Conversely to the CSP algorithm, the EGTP method is presented as a more 

robust and unattended method, i.e., less dependent on onshore data. Furthermore, 

this new methodology does not need an elevation data range, but a minimum 

elevation from which the original DEM is extrapolated. This elevation took a value 

of 0.40 m in this work after performing a careful DEM contouring inspection, 

although it could be also estimated as the maximum wave height or runup 

(Stockdon et al. 2006), or by removing LiDAR returns over water (Yates et al. 

2008). This methodology also offers a high resolution shoreline, since it is 

extracted from an analogous way to a contour level. In this sense, the EGTP 

method does not need defining a transect framework to draw the extracted 

shoreline, although the transect system could be needed for carrying out a 

shoreline evolution assessment. 

In addition, an exhaustive validation process based on a factorial 

experimental design was carried out to quantitatively test the performance of the 

CSP, EGTP and CSP_EGTP methods. The analysis was carried out using the 0.4 m 

contour level instead of the required zero-elevation contour (both referred to the 

Spanish EGM08-REDNAP vertical datum) since nearshore bathymetric data were 
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not available.  egarding further works, ‘in situ’ data will be collected (e.g. by 

means of DGPS profiles) in order to carry out a specific validation on the zero-

elevation contour corresponding to the Spanish EGM08-REDNAP vertical datum. 

From this analysis, a systematic error or offset has been detected which is mainly 

attributed to the difference between the true gradient and the extrapolated one. 

Thus, those data which allow applying interpolation processes are strongly 

recommended. The reference elevation was proved as a statistically significant 

factor affecting the extracted shoreline accuracy, especially in the case of the CSP 

method. In this way, the inadequate performance of the CSP method in many areas 

was mostly due to the berm morphology effect, i.e., the captured foreshore profile 

did not match to a linear fit. This situation was frequent when the elevation data 

range was the highest one and so the likelihood to embrace a berm was relatively 

high. This results recommend that the ready-to-fit elevation range should be the 

nearest as possible to the required shoreline extraction height. The use of an 

elevation range below the berm morphology elevation is also recommended.  

Summing up, along this work has been proved the satisfactory results yielded 

by the proposed local gradient extrapolation method in order to estimate datum-

coordinated shorelines where the interpolation methods cannot be used. Based on 

the presented results, it can be drawn that, both quantitatively and qualitatively, 

the new grid-based approach can be strongly recommended because its precision, 

local slope acquisition, robustness regarding the presence of noise and outliers, 

and capability to deal with very curved and even closed coastal features. 
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ABSTRACT 

The long-term shoreline change rate constitutes an essential parameter for 

coastal areas management and monitoring in order to estimate erosion areas and 

to be able to forecast the future shoreline position. Here, shoreline rates were 

assessed in a heavily human influenced coastal cell of the Mediterranean coast 

located at Almeria province, Spain, by using multisource and multitemporal 

shoreline positions from 1956 to 2011. Since no older data than 1956 was 

available, medium-term instead of long-term evolution could be yielded. Two 

kinds of sources were used in order to derive shoreline positions: digitizing the 

high water line through orthoimage interpretation and automatically extracting a 

contour level from coastal elevation models (CEMs). Moreover, two types of 

images were used: own-produced and existing spatial data infrastructure (SDI) 

orthoimages; while two types of CEMs were also utilized: high accurate LiDAR-

derived and photogrammetrically-extracted own-produced CEMs. 

The most appropriate proxy used for shoreline extraction was studied, 

comparing HWL and two datum-based contours, one extrapolated up to 0 m and 

the other interpolated at 0.75 m above mean sea level (Spanish altimetric datum), 

resulting the last one as the most accurate shoreline indicator and proving the 

effects of including the bias between HWL and datum-based shoreline. Moreover, a 

high variability of shoreline position could be tested when HWL was used as a 

proxy for shoreline, being HWL less accurate than CEM-derived shorelines except 

for the oldest dataset. The shoreline accuracy was estimated for both HWL and 

CEM-derived shorelines in order to apply weighted regression methods to 

estimate shoreline change rate. The rate of shoreline change was observed over 

the time in order to relate natural and artificial impacts with shoreline evolution. 

In this way, it was observed that the temporal distribution on flood events and the 

sediment reduction due to a dam construction into the main river basin presented 

a high relation with the erosion occurred over the years. Additionally, other 

human-induced factors such as jetties installation and sand nourishment had a 

large impact on shoreline evolution. 

Finally, the effects of including SDI shorelines, using concentrated in-time 

shoreline positions, considering different time spans, performing estimation of 

outlier shoreline position, and considering shoreline position accuracy, were 

estimated by means of the assessment of medium-term shoreline change rate by 

means of several regression methods and different sets of shorelines. The most 

appropriate approach was proved to be the reweighted-weighted least squares 

(RWLS) when the entire time span was used by means of a confidence interval 

comparison. 

 

Keywords: Shoreline change rate, shoreline accuracy, shoreline indicator, 

medium-term shoreline evolution. 
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INTRODUCTION 

Coastal areas are one of the most populated and economic development areas 

in the world and this pressure in the coastal zone will increase during the last 

centuries (Brommer, Bochev-Van Der Burgh 2009). Shoreline evolution 

constitutes one of the most important issues for coastal scientists, engineers, and 

managers (Boak, Turner 2005). Determination of erosive coastal stretch and the 

erosion rate is highly important in order to estimate future positions of shoreline 

and to plan the needed actions. For instance, setback policies (buffer space where 

permanent constructions are not allowed) should take into account the possible 

effects of extreme storm events but also the most probable future position of the 

high water mark (Sánchez-Arcilla, Jiménez & Marchand 2011). Therefore, 

according to the Spanish coastal law the shoreline behaviour has strong 

implications for the position of the limit of the Maritime-Terrestrial Public Domain 

–MTPD- (Sanò et al. 2011). 

Shoreline change rate assessment is only one part of the coastal zone 

management which comprises several disciplines such as stratigraphic, 

geomorphological, and coastal engineering communities (Brommer, Bochev-Van 

Der Burgh 2009). Coastal sediment cell (or just coastal cell) is delimited for coastal 

management and corresponds to a geographical area within the budget of 

sediment is determined and it is essential for analysing coastal erosion or 

accretion (Marchand et al. 2011). Therefore, a complete shoreline evolution 

assessment should be performed in an entire coastal cell. Sediment budget is also a 

highly important issue regarding the coastal management since it constitutes one 

of the main influent factors of shoreline behaviour related to long-term coastal 

evolution (Rosati 2005, Brommer, Bochev-Van Der Burgh 2009). Especially for 

Mediterranean coasts, the sediment supply reduction coupled with alongshore 

currents have been considered the main reason of shoreline erosion (Uceda, 

Sánchez-Arcilla & Cardeña 2005). Moreover, especially in the Spanish case, 

torrential-type meteorology makes quite difficult to properly assess the sediment 

input from very short rivers (Sánchez-Arcilla, Jiménez & Marchand 2011). The 

same authors also identified the shortage of space for coastal processes due to 

urbanization as an erosion problem source together with the lack of sediments. 

For coastal management it is also important to define the scale of the 

framework and the relations among different processes occurred at different 

scales. Thus, long-term and medium-term shoreline change rates are related with 

mega and macro scales respectively representing from years to centuries time 

span (Cowell et al. 2003), although shoreline evolution studies usually include 

around 100 years. Temporal scale is a central issue and it can influence the 

perceptions of dynamics and conclusions regarding cause and effect relationships 

within them (Fenster, Dolan & Morton 2001) and, in fact, forecast should not be 

made for periods longer than half the period covered by the dataset (Bowman, 
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Pranzini 2008). Moreover, the geological framework should be taken into account 

to explain the erosional or accretion processes (Honeycutt, Krantz 2003) and some 

authors have recommended the sediment thickness mapping to explain the 

relationship between erosion and the underlying geology (Bowman, Pranzini 

2008). 

Regarding the methods used to estimate shoreline evolution and variability, 

the most used approach is based on transects (historical shoreline position are 

used for change rate estimation), although some other approaches such as surface 

variation analysis have been utilized (Pranzini, Daniela 2008). Moreover, although 

having as many transects as possible reduces the effects of noise, some binning 

methods have been developed to eliminate overparameterization (Frazer, Genz & 

Fletcher 2009). In order to estimate the shoreline evolution for every transect (or 

a group of them), it should be clear whether the aim is the assessment of long-term 

or short-term evolution. While different and varied regression methods are used 

for the former (Genz et al. 2007), some polynomial approaches have been 

developed for trying to describe the latter (Romine et al. 2009) and even 

acceleration on shoreline evolution has been tested (Frazer, Genz & Fletcher 

2009). Furthermore, shorelines have to be defined by a physical shoreline 

indicator used as a proxy to represent the true shoreline position (HWL, wet/dry 

boundary, etc.) or by a tidal datum-based shoreline, e.g. MHW or mean sea level 

(MSL) (Boak, Turner 2005). The latter are being more commonly used during the 

last decade due to availability of high accurate LiDAR-DEMs, while physical 

shoreline indicators have been usually extracted from aerial (ortho)images or even 

more coarse satellite images (Maiti, Bhattacharya 2009). However, although 

accurate shoreline extraction is indispensable, it does not guarantee to define the 

long-term coastal evolution since oversampling can occur and severe oscillations 

must be cut off (Bowman, Pranzini 2008). Moreover, for the most of the shoreline 

evolution studies, the inherent variability of the shoreline position indicator 

(especially for physical ones) will remain a limitation on the final accuracy of the 

data (Douglas, Crowell 2000). 

Shoreline evolution assessment on Mediterranean areas 

Many of the most relevant literature on shoreline evolution assessment 

methods, shoreline indicators and accuracy, shoreline data source and extraction, 

and influent factors such as time span, influence of storm-events, etc., are based on 

very different types of coast but non-Mediterranean ones (Crowell, Leatherman & 

Buckley 1993, Crowell, Douglas & Leatherman 1997, Douglas, Crowell 2000, 

Fletcher et al. 2003, Morton, Miller & Moore 2004, Morton, Miller 2005, Hapke et 

al. 2006, Genz et al. 2007, Frazer, Genz & Fletcher 2009, Romine et al. 2009). For 

instance, beach morphology and shoreface are not equal for different tidal regime 
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coasts (Mediterranean can be considered entirely micro-tidal), so the shoreline 

indicator and accuracy can be different. 

Other considerations should be done because the time span can significantly 

vary since accurate old data source are not widespread available for every coastal 

area. Thus, while in UK some charts exist from 1750, US T-sheets are available 

from mid-1800s in some areas. Latters have been widely used for shoreline 

evolution assessment constituting the warrantee for estimating long-term 

shoreline rates and their uncertainty has been also studied (Moore 2000, Boak, 

Turner 2005). However, for some Mediterranean areas such as Spain, it is difficult 

to have such an old dataset and the long-term evolution assessments are 

constrained and the first dataset used is normally the so-called ‘American flight’ 

taken between 1956 and 1957 (Jiménez, Sánchez-Arcilla 1993, Viciana 1996, Ojeda 

et al. 2007, Espinosa, Rodríguez 2009). However, older maps (e.g. from 1870) have 

been used for other Mediterranean coastal areas (Alberico et al. 2012). 

Regarding the shoreline definition in Mediterranean areas, there is not a 

unique proxy used for physical indicator but HWL or wet/dry boundaries are 

usually utilized (Bowman, Pranzini 2008, Virdis, Oggiano & Disperati 2012). 

Furthermore, there is not a Mediterranean regional tidal-datum used for shoreline 

definition in contrast with US, where MHW –average elevation of all high waters 

recorded locally over 19 years (Ruggiero, List 2009)- is officially used. It has been 

found that in Italy, the zero isobaths is generally used as reference shoreline in 

spite of it is invisible on beach but it is an objective geodetic element (Bowman, 

Pranzini 2008). Therefore, the definition of a stable datum-based reference should 

be a key issue in order to harmonize shoreline change rates at European or 

Mediterranean continental scale. 

Shoreline change assessment has become an important issue in 

Mediterranean coasts in Europe. For instance, almost 41% of the Andalusia 

Mediterranean coast is currently undergoing erosive processes (European-

Commission 2009). In Italian Tuscany beaches, the 45.7% of them experienced a 

shoreline retreat greater than 2 m/yr during the last 50 years (Bowman, Pranzini 

2008). The most important factor for erosion in Mediterranean beaches has been 

the drastic reduction of sediment supply because fluvial basins regulation and 

dams construction (Senciales, Malvárez 2003, Uceda, Sánchez-Arcilla & Cardeña 

2005). Thus, deltas and river mouths have experienced great retreats. For 

example, up to 10.7 m/yr erosion was found along the Tuscany river mouths 

(Bowman, Pranzini 2008). Additionally, the differences in climate conditions play a 

key role for sediment supply and have an effect on shoreline evolution when the 

rainfall rate changes (Alberico et al. 2012). The effects of wave currents were 

found to be highly significant for delta and river mouths erosion when coupled 

with sediment supply reduction (Jiménez, Sánchez-Arcilla 1993). 

The aim of this Chapter is determining the medium-term shoreline change 

rate in a Mediterranean sediment cell of Almeria (Spain). In order to yield a 
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comprehensive explanation of shoreline change evolution, a more detailed 

description of the study site (as compared with Study Site section of this Thesis) 

will include geological background, the nearshore description, the oceanographic 

and climatic features, and the principal human impacts affecting this coastal area. 

Then, the different datasets from which shorelines were extracted will be 

described. Afterwards, the different shoreline indicators used, their extraction 

from the datasets, and the accuracy of every extracted shoreline will be discussed. 

Finally, shoreline change will be presented by discussing the short-term evolution 

of changes linked with climatic features and human interventions, and assessing 

the long- or medium-term shoreline change rate for the entire time span trying to 

find the most appropriate regression method.  

STUDY SITE 

General description of the area 

As previously seen in the ‘Study site’ section of this Thesis, the study area of 

this work was situated between the villages of Villaricos and Garrucha, in the East 

part of the Almeria province (South of Spain). Here, a much more detailed 

description of the study area is undertaken in order to help the understanding of 

the shoreline evolution results. Although the dataset extension comprises a wider 

area, only those coastal zones in which relevant changes are due to natural 

processes have been included. For instance, the Garrucha’s beach corresponds to 

an artificial embayed beach progressively installed at the south of the Garrucha’s 

harbour. The Villaricos’ urban beaches do not depict any sensible evolution and 

they are also close embayed beaches located between rocky systems and harbour 

docks. Therefore, the remaining coastal area from the South of the Villaricos urban 

area to the North of the Garrucha’s harbour will be the study site of this work. It is 

worth noting that the finally chosen coastal area seems to fit the ‘coastal sediment 

cell’ concept perfectly since it “defines a coastal compartment that contains a 

complete cycle of sedimentation including sources, transport paths and sinks” 

(Marchand et al. 2011). The sources of sediment are clearly defined in this area by 

the Almanzora and Antas river mouths, although direct sediment exchange 

between sand beaches and open coastal areas cannot be discarded. Regarding 

transport processes, it seems to be clear that the main transport direction is 

alongshore from North-East to South-West (see climate features). The Almanzora’s 

mouth and delta, located at the north of the coastal cell, can be considered as the 

main sediments supplier of the studied coastal cell, delivering the sediments 

through the alongshore direction, the balance between erosion and accretion 

mainly depending on the relative position between the coast angle (given by the 

normal to the shoreline) and the dominant waves direction (Roelvink, Reniers 

2012). 
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Geological background 

It is important to know the geological background of the area and its evolution 

(Figure 4.1), in order to contextualize the coastal evolution under the low-order 

coastal change (geological time scale order, 103 years). The entire study site is 

located in the so-called ‘ era basin’, one of a series of interconnected Neogene-

Quaternary sedimentary basins located within the Internal Zone of the Betic 

Cordillera (Stokes, Mather 2003, Stokes 2008). 

 

Figure 4.1. Representation of the geological background of the study site. Image courtesy of Dr. 

Chris Meikle (Meikle 2008). 

This area is confined among the Paleozoic-Mesozoic metamorphic basement 

formed by four ranges of mountains: Sierra Almagrera, Sierra Almagro, Sierra de 

los Filabres, and Sierra Cabrera. Historically, Vera basin has been filled from the 

ancestral forms of the rivers Almanzora, Aguas and Antas which captured basins 

and mountain catchments from the north (Huercal-Overa basin), southwest 

(Sorbas basin) and west (Sierra de los Filabres range). Consecutively, the evolution 



Geomatics techniques for coastal monitoring 

145 
 

followed in this basin mainly consisted of three stages: first, a Pliocene marine 

sedimentation; second, a Plio-Pleistocene continental sedimentation; and finally, a 

Pleistocene fluvial incision (Stokes 2008). Moreover, the Palomares fault crosses 

the Vera basin near the shoreline and it would have acted as a shelf edge and also 

it would have induced to a narrow offshore shelf (Meikle, Stokes & Maddy 2010). 

Summing up, the study area has a sedimentary nature and the rivers which flow on 

it had a key role on the relief formation. 

Nearshore description 

The bathymetry of the study site indicates the great influence of the 

Almanzora River apart from the previously mentioned geological aspects (Figure 

4.2). Examining the depth data up to 30 m below sea level, it is clear that the 

distance between the -30 m contour line and the shoreline is gradually narrower 

from the Almanzora’s mouth to the Garruchas’ harbour. Moreover, the influence of 

the fan-delta sediment supplied by the Almanzora’s mouth seems to have much 

less influence towards North, being the -30 m contour line and the shoreline 

distance much rapidly narrower than towards South. That fact could strengthen 

the hypothesis that the overall historic sediment transport has been towards 

southwest from the Almanzora’s mouth. A key aspect of the nearshore area would 

be the Palomares canyon located at the study site south edge (just in front of 

Garrucha’s harbour , in which the previously indicated -30 m contour line is 

almost coincident with the harbour main dock. Geologically, the Palomares 

submarine canyon has influenced the near-shore morphology since it was 

connected with the Almanzora and Antas valleys varying the equilibrium profile of 

the rivers and increasing the eroded process during the sea-level lowstands 

(Meikle 2008). That canyon can play a key role since it constitutes a sediment sink 

from which sediment is removed far away from the coastal cell. 

Coastal sub-areas 

In order to discuss the results, different sub-areas can be defined. They do not 

have a clear edge between one each other but they present some geomorphologic 

distinction. However, this description can clarify the discussion of the shoreline 

evolution results. Following the guide of beaches from the Spanish Environmental 

Department (Ministerio de Agricultura, Alimentación y Medio Ambiente) these 

subareas would be the following (Figure 4.3): 

- Villaricos: from Villaricos village to the Almanzora’s mouth. It comprises about 

550 m of rocky sea bed beach. The northern part is formed by sand while the 

nearest part to the Almanzora’s mouth has a larger grain size. 

- Fábrica del Duro: constitutes the shoreline on the Almanzora’s mouth and the 

surrounding areas. It is 600 m long and most of the material can be considered 
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as coarse soil. Here, the difference in grain size is also clear since the foreshore 

has a significant higher slope. 

- Punta Hornicos: a cape located at the south of the Almanzora’s mouth which 

separates the Fábrica del Duro and Quitapellejos beaches. 

- Quitapellejos: corresponds to a non-built coastal area with a length of 1400 m 

which includes the curved transition between Punta Hornicos and the main 

coastal orientation (northeast-southwest). It presents a clear erosion front 

starting in Punta Hornicos and gradually extending up to the end of this beach 

(Figure 4.4). 

- El Playazo: sand beach located in a touristic built area with a length of 1200 m 

which has suffered an important erosive process that caused the construction 

of two transversal jetties to try to maintain an important and one-off sand 

nourishment effort carried out in the same area. 

- Puerto Rey: a 2300 m length sand beach located at the north of the Antas’ river 

mouth. It comprises an urbanized area which has been apparently in 

equilibrium over the years. 

- Las Marinas: the portion of beach located between the Antas’ mouth and the 

Garrucha’s harbour. It has a length of 1  0 m and its evolution has been very 

changing since it constitutes the last part of the beach system, just adjacent to 

the dock of the harbour and, therefore, some sediment deposit has been 

tested. However, it is known that a sort of sand mining activities have been 

done in this beach in order to carry out several sand nourishments in the 

northern beaches. 

As previously mentioned, the beaches located northern and southern the 

previous ones were not included since the evolution has been considered not 

interesting for this study because they are either no-evolution embayed beaches or 

totally artificially installed beaches. This is the case of Garrucha’s beach, just 

located at the south of the harbour of the same village. 
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Figure 4.2. Bathymetric map of the study site nearshore area up to 32 m of depth. 
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Figure 4.3. Location map. The beaches are represented in boxes. 
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Figure 4.4. Front of erosion located at Quitapellejos beach. Note that coarse grain size instead 

of sand beach is nowadays presented in this area. 

Natural features 

Some of the natural factors causing coastal erosion are winds, storm events, 

near-shore currents, vertical land movements (e.g. land subsidence), slope 

processes (i.e. landslides) and relative Sea Level Rise or SLR (European-

Commission 2004). Regarding the time and space patterns of that processes, 

hydrodynamic scale (tides, winds, storms, waves), engineering scale (near-shore 

current, slope processes), and geological scale (SLR, land subsidence) can be 

considered. In this study, although geological scale represents the general 

framework to work, hydrodynamic and engineering scale processes will be 

especially considered. Therefore, the climate features of this area will be highly 

important in order to better understand the coastal evolution results. 



Chapter 4:Medium-term shoreline change rate assessment 

150 
 

Oceanographic features 

Since this study site is located in a Mediterranean area, the tidal regime can be 

considered as microtidal, presenting about 50 cm of water level variation. 

According to the oceanographic and meteorology information supplied by the 

Official Department of Spanish Harbours (Puertos del Estado, www.puertos.es), 

the most frequent wind directions in the study area are from northeast (NE) to 

southwest (SW) and vice versa (Figure 4.5). 

 

Figure 4.5. Compass card supplied from the nearest information node available at 

www.puertos.es  

Additionally, the strongest wind episodes also occurred along those 

directions. Regarding the dominant wave direction, it is important to highlight that 

waves usually reach this coast coming from the East, being the significant wave 

height usually less than 2 meters. Finally, the currents direction should be taken 

into account. Unfortunately, there is not a near coast buoy to allow obtaining 

information with respect to this important variable. However, the nearest one 

(Cabo de Palos, about 200 km in NE direction) is expected to provided suitable 

information. As expected, the currents direction almost coincided with the winds 

http://www.puertos.es/
http://www.puertos.es/
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direction, being NE and SW the most frequent. The oceanographic data presented 

here have to be taken into account in order to determine the alongshore sediment 

transport. That is dominated by the flows induced by waves approaching the 

shoreline at an angle, although this current can be enhanced or reduced by wind-

driven or tidal currents. The magnitude of alongshore transport is directly related 

to the incident wave energy as well as the angle of wave incidence (Schwartz 

2005). 

Climatic considerations 

Since the weather conditions are a key factor not only for oceanographic 

features but also for the sediment supply, it is important to describe the general 

climate in the study site. Generally, the area is under a semi-arid Mediterranean 

climate characterized by a low level of rain episodes. However, some extreme 

storm episodes coupled with important floods events can happen, constituting 

both the main source of natural sediment supply and, at the same time, a huge 

source of sand beaches erosion. In fact, some parts within this area have been 

classified by the Regional Government as potentially flood zones (Antas’ mouth, 

Puerto Rey and Quitapellejos beaches). 

A list of the main historical floods events is shown in Table 4.1, in which a lack 

of flooding episodes can be observed between 1943 and 1968. Moreover, three 

different temporal variations can be made out: first, from 1870 to 1901, eleven 

events occurred which implies a rate of 3.5 events per decade; secondly, only 0.4 

events per decade happened from 1901 to 1968; and finally, in the time span from 

1968 to 2012 more than 3 great floods per decade was again reached. Taking it 

into account, this kind of climatic factor constitutes the main sediment supply 

agent in this coastal cell (Viciana 1996), indicating that the shoreline evolution 

could have been deeply affected by the overflowing irregularity. 

The effects of a very recent flooding could be tested on the 28th of September 

2012 when the urbanized area next to the Antas’ mouth was flooded and the 

surrounded beaches suffered a very significant erosion (for instance, the sand 

barrier located in the Antas’ mouth was totally removed, Figure 4.7). Additionally, 

some extreme water level events have occurred mainly coupled with extreme 

winds from East or Northeast (the so-called “Levante” in Spanish). Those events 

can lead to overwash and washover (sediment deposited inland of a beach) 

processes but also to beach erosion since the wave energy is considerably 

increased (Figure 4.6). 
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Table 4.1. Flooding events documented in the study site since nineteenth century. Source: 

“Spanish National Catalogue of Historic Floods. Area South. Updated until 2011” (Catálogo 

Nacional de Inundaciones Históricas. Zona Sur. Actualización año 2011) 

Affected river Date Comments 

Almanzora 1830  

Almanzora October 1871  

Almanzora June 1877  

Almanzora and ravines October 1879 3000 m3/s 

Almanzora November 1884  

Almanzora June 1886  

Almanzora September 1888  

Albox ravine September 1891  

Almanzora March 1894  

Almanzora November 1894  

Almanzora Julio 1899  

Almanzora June 1900  

Almanzora October 1915 205 litres in 8 hours 

Almanzora October 1924 
Water flow of 2000 

m3/s 

Almanzora October 1943  

Almanzora November 1969  

Almanzora November 1972 
Several overflowing 
events in the same 

month 

Almanzora June 1973  

Almanzora, Antas, and 
Aguas 

October 1973 
Water flow of 3500 

m3/s. The largest one in 
100 years 

Almanzora August 1974  

Almanzora October 1977 
Water flow of 1000 

m3/s 

Antas, Aguas September 1980  

Almanzora September 1989  

Almanzora and Antas September 1996  

Almanzora September 1997  

Antas November 2001  

Almanzora July 2002  

Almanzora July 2006  
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Figure 4.6. The beach bar depicted in the top image (2009 orthoimage) was surpassed by the 

maximum runup of a storm surge happened in April 2013, producing a huge damage and a 

significant erosion along the beach (own picture). 
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Figure 4.7. Example of damage caused in the Puerto Rey beach by the overflowing of 

the Antas river (own photography taken 9th October 2012) 

Important human induced factors 

The human interaction with coastal system has been increased mainly during 

the twentieth century. In general, urbanization of the coast has turned coastal 

erosion from a natural phenomenon into a problem of growing intensity. The so 

called ‘coastal squeeze’ because of the encroaching of artificially stabilized 

seafronts on sedimentary coastlines and cliffs do not enable the natural behaviour 

of coastal environments. Coastal engineering elements such as seawalls or 

breakwaters are one of the most important factors. These constructions modify the 

alongshore sediment transport (creating a deficit downdrift), hamper energy 

dissipation and augments turbulence resulting in increased cross-shore erosion, 

and alter the wave crest (wave diffraction) resulting in a wave energy diluted in 

some place and concentrated in others. Furthermore, river basin regulation works 

constitute one of the most visible impacts on sediment budget, directly influencing 

the shoreline equilibrium. Any activity which results in a reduction of the water 

flow or prevents river flooding (such as channelling) is expected to reduce the 

volume of sediments reaching the coast. For instance, the annual volume of 

sediment discharge for the southern European rivers is considered less than 10% 

of their level in 1950. Other important human induced factors are dredging for 

navigational purposes (including sand mining for some areas), vegetation clearing, 

and gas mining or water extraction which can provoke land subsidence which 

effects result irreversible (European-Commission 2004). The previously 

mentioned time and space patterns can be considered for this kind of factors as 

well. Thus, while dredging can affect the shoreline evolution yearly, both river 

damming and coastal artificialization are expected to influence over a century 

scale. 
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Human factors affecting the study site area 

Similarly to others Spanish Mediterranean coasts, the human factors 

constitute a key factor for understanding coastal evolution and, therefore, the 

influence of those factors should be evaluated. Here, a set of human factors is listed 

as possible influential components of the coastal evolution of the study site area. 

a. Urbanization process 

The previously mentioned ‘coastal squeeze’ effect can be clearly seen in the 

study area from the 50s to nowadays by only checking the historical aerial images. 

While only Villaricos and Garrucha villages existed in the first half of the twentieth 

century, a wide stripe of urbanized area can be seen nowadays mainly dedicated to 

touristic activities. The most affected areas are those located close to the beaches 

of El Playazo, Puerto Rey, and Las Marinas (Figure 4.8). This process has restricted 

the natural processes on the coastal area by influencing the sediment exchange 

between the beach and the inland area. Moreover, some natural environments 

have been degraded. This is the case of some wetlands which have been confined 

and currently have virtually disappeared (Figure 4.9). Finally, this urbanization 

process has not only affected the sediment exchange but it has provoked a high 

risk of flooding in some areas such as the Antas’ mouth, a circumstance which 

could be checked in the last flood event registered in September 2012. In 

conclusion, the urbanization process developed in the study site can have affected 

the natural sediment exchange in most of the coastal fringe under study. 

  

Figure 4.8. Urbanization process carried out in Puerto Rey beach from 1957 (left) to 2009 

(right) 
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Figure 4.9. Degradation of the wetland known as ‘Charca del Gato’ by the urbanization process 

from 1977 (left) to 2009 (right) 

b. Sand mining 

The Almeria province has undergone a huge increase in its agricultural sector 

since the 70s. One of the main developed areas was the greenhouse based 

agriculture (intensive agriculture) which required a great amount of sand which 

was extracted from the coastal environments all over the Almeria coast. A 

summary of that sand mining is presented in the Table 4.2 (some illegal sand 

mining activities have been documented but not accounted). Additionally, sand 

mining was also done from the fluvial channels between 1957 and 1995, being 

approximately 248.000 m3 and 1.103.000 m3 for Antas and Almanzora rivers 

respectively (Dr. Alfonso Viciana, personal communication). Here it is 

hypothesized that those mining activities have somehow affected the sediment 

supply within the studied coastal cell, so significantly altering the natural shoreline 

evolution. 

c. Sand nourishment 

When the sand mining stopped, just a process of sand nourishment was 

started. That was clearly due to the increase of the touristic sector in the Almeria 

province economy. As can be checked in Tables 4.2 and 4.3, the sand nourishment 

has been much more intensive than the sand mining (almost 3 times larger 

without including the sand mining carried out on the river channels). These sand 

nourishments processes have been mainly undertaken in the Quitapellejos and El 
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Playazo beaches, which correspond to the significantly more eroded beaches over 

the years. 

Table 4.2. Evolution of sand volume extracted in the study area from 1974 to 1986. It is known 

that illegal sand extractions were done but they could not be documented. Source: Dr. Alfonso 

Viciana, personal communication. 

Year 
Sand volume 

extracted (m3) 

1974 30600 

1975 33000 

1976 42800 

1977 38000 

1978 37400 

1979 34500 

1980 43700 

1981 0 

1982 100 

1983 5000 

1984 102000 

1985 0 

1986 11100 

TOTAL 343700 

Table 4.3. Evolution of sand nourishment during the period of 1988-2009. *2009 data 

corresponds to the nourishment carried out from the Garrucha’s harbour dredging. Source: 

General Coastal Division (Dirección General de Costas) through Dr. Alfonso Viciana. 

Year 
Sand nourishment 

volume (m3) 

1988 52402 

1991 46000 

1993 24000 

1997 56998 

1998 56000 

2001 33380 

2002 48600 

2008 400000 

2009* 100000 

TOTAL 817380 
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d. External mining activities 

The mining sector played an important role in the economy of the study area 

from the nineteenth century to the beginning of the twentieth one. According to 

the Spanish Mining Statistics of 1911 (‘Estadística Minera de España. Año 1911’) 

belonging to the Spanish Geologic and Mining Institute (‘Instituto Geológico y 

Minero de España’), the water volume flown into the study site coastal area during 

the 1906-1910 period was 3,303,417 m3 in 1910 and about 2,523,000 m3 per year 

from 1906 to 1909. It is expected that these huge water flows have influenced the 

sediment supply in the coastal cell although an accurate evaluation of that results 

constitute a really difficult task. However, it can be a key factor to explain previous 

accretion in the shoreline position since an extra sediment supply was done in a 

relatively short period of time. 

e. River basins regulation 

Both sand mining and nourishment activities have directly affected the 

sediment budget in the study coastal cell. Another important key factor affecting 

the sediment budget corresponds to the regulation carried out on the river basins. 

The main regulation works applied to the rivers Almanzora and Antas turn out to 

be the ‘Cuevas del Almanzora’ dam and the channelling of the rivers Almanzora and 

Antas. The ‘Cuevas del Almanzora’ dam was built in 1982 15.5 km upstream from 

the coastline and affects to 81.6% of the total basin surface so only downstream 

basin portion remains active for coast sediment supply. In this sense, the beaches 

along this area highly depend on the sediment supply coming from only the 18.4% 

of the river basin. This dam is expected to reduce the sediment supply of the river 

basin up to 7.5% based on the estimated erosion rate (400 Tm/km2), the sediment 

yield rate (between 32% and 42%) and the previously indicated active area of the 

river basin (Viciana 1996). In the same study, the sediment supply available for 

beach formation is evaluated to be between 83,069 and 154,233 m3/year based on 

a previous work which calculated a percentage of between 14 and 23% of the 

sediment provided by a river into a delta in Mediterranean areas (Carau 1981). 

Furthermore, the net sediment transport towards South from the Quitapellejos and 

Puerto Rey beaches vary from 131,000 and 175,000 m3/year (Viciana 1996). 

Therefore, the averaged sediment supply and the estimated sediment 

transport are almost coincident and the sediment budget can be balanced under 

this conditions. However, since the dam was installed, only a sediment quantity of 

between 6,069 and 11,633 m3/year is available for the beaches upkeep, so the 

deficit of sediment due to the ‘Cuevas del Almanzora’ dam (an estimated value of 

between 126000 and 13300 m3/year) have clearly affected the shoreline evolution 

of the coastal cell studied in this work. 
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f. Coastal engineering 

The coastal engineering carried out in the study site corresponds to the 

construction of harbour structures and jetties. The most influent harbour structure 

was built in Garrucha village. This construction finished in 1947 and the main 

cross-shore dyke modified the coastal sediment transport since it acts as a barrier 

for sediment transport (from the North-South drift) but also drives the sediment 

into the Palomares canyon, performing as a perfect sediment sink. In fact, the 

Garrucha’s harbour divided the physiographic unit and reducing the influence of 

Almanzora and Antas rivers from 43 km alongshore to no more than 9 km along 

the entire study site of this work (Viciana 1996). 

Two jetties were installed between July 2007 and March 2008 in the beaches 

of Quitapellejos and El Playazo in order to mitigate and correct the high erosive 

process observed in those areas. These jetties were built along the cross-shore 

direction in order two retain the sediment perpendicularly to the main alongshore 

sediment transport direction. This action was coupled with an important sand 

nourishment action (2008 nourishment in the Table 4.3). The installation of those 

two jetties, and the subsequent nourishment, clearly influenced the short-term 

shoreline evolution since it originated an accretion process just located at the 

North of the jetties and a more intensive erosion process immediately localized at 

the South of them. 

The emplacement of those jetties makes the shoreline evolution study to be 

divided in two temporal spans since the influence of these engineering structures 

marks a turning point in the most eroded areas at the coastal cell (Figure 4.10). 

Although these jetties seem to keep the sediment in the North face, a concomitant 

erosive process occurred in the South face, so the short-term and medium-term 

effects of these constructions should be adequately evaluated.  

g. Others human impacts 

Firstly, some hydrological and forestry measures were undergone in the 

Almanzora river basin trying to somehow stop the high erosive processes that 

happened in this area. These interventions, such as coniferous repopulation 

processes, measures against soil erosion (e.g. terracing) and river banks defence 

structures, likely reduced the capability of the river basin to supply sediment to 

the coastal system, but it is very difficult to quantify and, moreover, it is out of the 

scope of this Thesis. Furthermore, the channelling of several stretches of the 

Almanzora (1980-1981) and Antas (1986-1989) rivers have notably reduced the 

erosion of their river banks. In the same way, the enlargement of agricultural areas 

near to the river channel should have also influenced the contribution of river 

sediment deposition in the delta area. 
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Figure 4.10. Coastal evolution according to the jetties emplacement. In the left, activities 

regarding the construction (2007, official web map service source) are shown. In the right, first 

year stages of the construction and the sand nourishment is presented (2008, official web map 

service source). 

DATASETS 

Two kinds of datasets were used for shoreline extraction: DEMs and 

orthoimages. DEMs were consequently differenced regarding their original data 

source from which they were extracted. Thus, LiDAR and photogrammetrically 

derived DEMs were separately considered since their nature and accuracies are 

highly different. Furthermore, orthoimages were employed in order to extract 

shoreline through manually digitizing the position by means of the HWL, assuming 

to be the line between the wet and dry sands and representing the maximum 

altitude of the water for each dataset. The orthoimages were also divided 

according to the source. Therefore, own-oriented photogrammetric data and 

official orthoimages taken from different Web Map Services (WMS) were jointly 

used as data source. These datasets have been previously included in the general 

Datasets section of this Thesis so only more relevant information was included 

here just to clarify their use for the shoreline extraction. 
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Digital Elevation Models 

LiDAR-derived DEMs 

This kind of data was used from the so-called first and second digital flights 

taken in 2009 and 2011. Their high accuracy and point density allowed a suitable 

use for shoreline extraction. 

Stereomatching-derived DEMs 

Photogrammetric flights which allowed own-produced georreferenced data 

were used to generate stereomatching-derived coastal elevation models (CEMs) in 

order to extract datum-based shorelines. Thus, CEMs from American flight (1956), 

Agriculture flight (1977), and Coastal flights I and II (1988 and 2001) were 

produced mainly by means of an intense stereo editing process since sand beaches 

did not usually allow an appropriate image matching due to their lack in texture. 

The use of these CEMs will depend on the comparison between the accuracies 

estimated from datum-based CEMs-derived shorelines and orthoimage-derived 

ones in which HWL was used as a proxy for shorelines extraction. 

Orthoimages 

Own-produced orthoimages 

These data sources were widely described in Dataset section of this Thesis 

(Photogrammetric Flights subsection). The orthoimages production was carried 

out following usual digital photogrammetric processes. Summing up, six own-

produced orthoimages (1956, 1977, 1989, 2001, 2009, and 2011), ranging from 

archival aerial panchromatic images (1956 and 1977 images) to new digital aerial 

multi-channel (2009 and 2011 datasets), were compiled. The 1988 and 2001 

orthoimages were extracted from colour aerial frames and they required a 

previous scanning process similar to the one applied to the 1956 and 1977 aerial 

images. These data sources are listed in Table 4.4. 

Web Map Services orthoimages  

Although the previous set of images covers the time span under study (1956-

2011), it was clear that some relevant information could be lost. For instance, the 

placement of the jetties in El Playazo was carried out in 2007 while the own-

produced orthoimages were compiled from 2001 and 2009 data. Therefore, the 

evolution between 2001 and 2007 could keep unknown if a previous shoreline 

dataset was not included. Furthermore, some of the available WMS orthoimages 

can enable to fill some gaps in the own-produce data if the time span between two 

consecutive images was too large. 

Orthoimages from Web Map Services (WMS) can contribute to provide 

suitable information without an extra effort (i.e., scanning the original 
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photographs, carrying on the photogrammetric interior and exterior process, and 

deriving the final orthoimages) but their use should be carefully undergone 

because of accuracy and information issues. Moreover, and in order to compute 

erosion rates for shoreline evolution, the more observations (shorelines) are 

included, the lower will be the final uncertainty of the estimated rate. All the image 

data sources were obtained from the Spatial Data Infrastructure (SDI) provided by 

the regional government of Andalusia (www.ideandalucia.es). The WMS used are 

listed in Table 4.4. It is clear that the number of datasets have been increased from 

the beginning of the twenty first century. 

 

Table 4.4. Orthoimages used as source for digitizing shorelines.  

Year Source Date GSD (m) Comments 

1956 
Own-

produced 
30/09/1956 1.00  

1977 
Own-

produced 
15/07/1977 0.50  

1984-85 SDI 31/12/1984 1.00 
Information do not specify if 
the year was 1984 or 1985 

1988 
Own-

produced 
15/09/1989 0.30  

1998-99 SDI 31/12/1998 1.00 
Information does not specify 

whether the year was 1998 or 
1999 

2001 
Own-

produced 
09/04/2001 0.20  

2001 SDI 31/12/2001 0.50 
Images taken after the other 

2001 flight 

2004 SDI Unknown 0.50  

2006 SDI Unknown 0.50  

2007 SDI Unknown 1.00  

2008 SDI Unknown 0.50  

2009 
Own-

produced 
28/08/2009 0.15  

2011 
Own-

produced 
30/08/2011 0.10  

 

http://www.ideandalucia.es/
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SHORELINE INDICATORS 

In order to evaluate what shoreline proxy was more appropriate for shoreline 

rate change assessment, a comparison was carried out between three proxies for 

the 2009-2011 period, where shorelines extracted from LiDAR-derived DEMs were 

expected to be a good reference. First, the HWL was used to estimate the Net 

Shoreline Movement (NSM) and End Point Rate (EPR) between 2009 and 2011 

shorelines. It is convenient to explain that the NSM reports a distance between the 

oldest and youngest shorelines for each transect, not a rate. If this distance is 

divided by the number of years elapsed between the two shoreline positions, the 

result is the EPR. Secondly, the 0 m contour estimated by EGTP method (see 

Chapter 3) was utilized as a proxy of shoreline for the same calculation. Finally, a 

non-extrapolated contour was used in order to check the differences between the 

mentioned proxies so that the disadvantages of using extrapolated contours could 

be tested. These differences were evaluated in six different sand beaches 

environments: (1) Fábrica del Duro, (2) the Quitapejellos beach part northern the 

jetties, (3) the beach enclosed between both jetties, (4) the El Playazo beach part 

southern the jetties, (5) a part of Puerto Rey beach, (6) and the nearest part from 

Las Marinas beach to the Garrucha’s harbour. A set of 5 m spaced transects was 

used for this analysis so that the intersection of the three types of shoreline with 

this transects set was performed, resulting between 83 and 196 the number of 

transects for every group. 

Comparing DEM-derived contours with HWL 

The comparisons made to check the differences between every proxy used 

were performed for the same year. As shown in Tables 4.5 to 4.7, it was clear that 

the computed differences highly depended on the concrete tidal features of each 

dataset, being the 2011 HWL much more close to the 0 m contour than 2009 HWL, 

and even showing a seaward location in the case of 0.75 m contour level (negative 

differences). It should be noted that the group in which differences were assessed 

had also an important incidence on the results. For instance, the results on group 1 

are significantly different to the others, especially for the 2009 dataset and 0 m 

contour level. It is also clear that the standard deviation was always smaller when 

HWL was compared with the 0.75 m contour level, indicating that this shoreline 

proxy was more robust than the 0 m contour, which resulted obvious since the 

latter was estimated by means of an extrapolation process while the former was 

interpolated. A previous work demonstrated that the HWL – datum-based offset 

highly depends on the foreshore beach slope which induces variations in wave 

runup (Moore, Ruggiero & List 2006). The same authors estimated that the beach 

slope and offset are inversely proportional (the steeper the slope, the smaller the 

offset), concluding that the use of HWL as a shoreline indicator can be really 

complex. The relationship between slope and offset can be seen in groups 5 and 6. 
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According with Table 4.7 they are the only ones in which the differences between 0 

m and 0.75 m contours were larger for 2009 than for 2011, which completely 

matched with the fact that the slope got steeper for those groups. Additionally, the 

largest difference (group 4) coincided with the largest increase in slope. 

Table 4.5. Estimated offsets (in meters) between 0 m contour and HWL positions for the six 

tested locations along the working coastal area (see text for more details)  

 
2009 2011 

Group Average Std. dev. Average Std. dev. 

1 5.15 1.18 4.58 2.30 

2 11.57 3.48 5.69 2.30 

3 13.80 2.54 6.43 2.11 

4 10.52 1.42 7.73 2.41 

5 15.02 2.82 5.64 1.70 

6 15.02 3.69 6.23 2.83 

Table 4.6. Estimated offsets (in meters) between 0.75 m contour and HWL positions for the six 

tested locations along the working coastal area (see text for more details) 

 
2009 2011 

Group Average Std. dev. Average Std. dev. 

1 0.14 0.82 -2.06 1.12 

2 2.73 1.63 -4.06 1.11 

3 4.92 0.96 -3.05 1.33 

4 4.08 1.04 -3.94 1.61 

5 4.85 1.04 -3.02 1.13 

6 3.64 3.03 -3.96 2.55 

Table 4.7. Estimated offsets between 0 m and 0.75 m contours (estimated as the difference 

between the offsets yielded with HWL for both contours) for the six tested locations along the 

working coastal area (see text for more details) 

Group 2009 2011 
Offset difference 

(2009-2011) 
Slope difference in 

degrees (2009-2011) 

1 5.02 6.64 -1.63 0.9971° 

2 8.84 9.75 -0.91 0.4279° 

3 8.88 9.48 -0.60 0.2718° 

4 6.44 11.67 -5.23 2.5303° 

5 10.17 8.66 1.51 -0.5023° 

6 11.37 10.19 1.18 -0.6891° 
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The offset between DEM-derived contours and HWL has been previously 

parameterized, and its effects on shoreline accuracy and change rates have been 

studied (Ruggiero, Kaminsky & Gelfenbaum 2003, Moore, Ruggiero & List 2006, 

Ruggiero, List 2009). That offset or proxy-datum bias was formulated based on the 

fact that it is due to wave driven water level variations on beaches including wave 

setup and runup, and therefore that offset is predictable. By means of the 

formulation of total water level (TWL), which is a combination of the tidal level 

and a statistical representation of the wave runup elevation (Stockdon et al. 2006), 

and the datum utilized (MHW for the previously mentioned studies), the bias 

formula is expressed as in eq. 4.1. 

     (           )

 

([      (          √     
√    (          

       )
 

)]        )
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where      and        are the shoreline positions for both shoreline proxies,    

and         are the elevation of both proxies, β is the foreshore beach slope,    is 

the offshore wave height, and    is the offshore wave period, given by linear theory 

as (g/2π)T2, being g the acceleration of gravity and T is the wave period (in 

seconds). Therefore, according to eq. 4.1, the bias depends on the local beach 

morphology (slope) and the natural oceanographic features. Of course, HWL 

digitization errors are not accounted here. 

In order to estimate the bias between both datum-based proxies and HWL,    

and T values were extracted from the WANA dataset (wave data estimated by 

modelling in the point 2063087; see Puertos del Estado, 2013) since no direct 

measurement are available in this area (Puertos del Estado 2013) Regarding the 

temporal series in 2009, 0.90 m and 6.0 s values were used for    and T 

respectively, while no available data existed for the data collection period in 2011, 

so the approximate median values of 0.50 m and 5 s were employed. The    values 

for 2009 and 2011 shorelines, both estimated through tidal data and LiDAR 

elevations, were 0.21 m and 0.12 m respectively. 

Some of the results are depicted in Tables 4.8 and 4.9, showing that the 

empirical way to determine the bias resulted in the same order of magnitude than 

the actual one for both shorelines, although the bias estimated for 2009 was 

generally larger than for 2011. If the parameterization was considered completely 

correct, then the remaining error or offset could be considered as the digitizing 

error. For instance, up to 4 m offset due to different digitizing strategies was 

reported in other work (Moore, Ruggiero & List 2006), so the differences found 

here can be deemed as usual. Therefore, it is recommended that the same analyst 

performs the digitization of all shorelines as far as possible. Otherwise, a test to 

determine the differences between analysts should be carried out. Furthermore, 

more precise data about simultaneous oceanographic features are needed in order 
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to refine this assessment and the adjustment of the model expressed in eq. 4.1 

should be adapted and validated for this kind of coastal areas as well. 

Table 4.8. Offset measured and estimated bias for 2009 shoreline and 0 m contour. Similar 

results were found for 2009 shoreline and 0.75 m contour. 

Group Mean slope 
Mean offset 

measured (m) 
Estimated bias 

(m) 
Offset – bias 

(m) 

1 0.130 5.155 7.86 -2.70 

2 0.075 11.566 9.95 1.62 

3 0.071 13.804 10.28 3.52 

4 0.099 10.519 8.73 1.79 

5 0.062 15.020 11.05 3.97 

6 0.058 15.018 11.57 3.45 

Table 4.9. Offset measured and estimated bias for 2011 shoreline and 0.75 m contour. Similar 

results were found for 2011 shoreline and 0 m contour 

Group Mean slope 
Mean offset 

measured (m) 
Estimated bias 

(m) 
Offset – bias 

(m) 

1 0.129 -2.065 -1.01 -1.06 

2 0.113 -4.057 -1.58 -2.48 

3 0.087 -3.048 -2.99 -0.06 

4 0.075 -3.936 -3.96 0.02 

5 0.111 -3.017 -1.67 -1.35 

6 0.085 -3.959 -3.16 -0.80 

Summing up, it was proved that the offsets between the HWL and the datum-

based shorelines depended on the foreshore beach slope and, furthermore, no 

HWL identification gross errors affecting shoreline morphology were appreciated, 

what was checked by comparing the estimated bias with the observed offset. 

Contrary to other studies which considered the shoreline proxies bias as negligible 

for microtidal areas (Virdis, Oggiano & Disperati 2012), this offset has been 

demonstrated as significant in this work. Moreover, the standard deviation figures 

showed that an interpolated contour level can be more suitable for shoreline 

definition since the extrapolated 0 m contour level yielded more variable 

differences with respect to HWL than the interpolated 0.75 m one. 

Shoreline change estimation regarding the proxy used 

In order to test how differences between HWL and both datum-based 

shorelines affect the shoreline rate of change, NSM and EPR were estimated 

between 2009 and 2011 dataset for the same six previously mentioned groups by 
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using the three proxies. The results are shown in Table 4.10 pointing out some 

important differences regarding the tested group and mainly the proxy used for 

extracting the shoreline. As can be seen, results are highly variable. For instance, 

regarding groups 3 and 6, the average offset was similar between both contours 

but HWL yielded significant different results. For groups 2 and 5, both contours 

were not so similar, but again HWL achieved different results being even on the 

contrary direction for group 5 (accretion estimated by HWL instead of erosion 

yield by both datum-based proxies). For the remaining groups 1 and 4, the 0 m 

contour level results were more similar to HWL ones than to 0.75 m. Therefore, it 

is important to discuss what shoreline proxy can be more appropriate by taking 

into account these results. Note that here, a short-term shoreline evolution was 

performed (only 2 years gone by) and the EPR results presented significant 

differences. However, if medium-term evolution was calculated, the EPR 

differences would be significantly smaller. 

Table 4.10. NSM (m) and EPR (m/yr) results for every group and shoreline proxy. 

Group 1 2 3 4 5 6 

Mean 
NSM 
(m) 

HWL 2.79 -10.49 17.99 13.51 3.21 24.78 

0 m 2.21 -16.46 10.55 10.85 -6.50 16.43 

0.75 m 0.66 -18.16 10.12 5.46 -4.64 16.84 

Std. dev. 
NSM 
(m) 

HWL 2.55 17.87 3.34 5.87 3.30 10.65 

0 m 3.23 16.95 3.57 7.18 5.77 13.76 

0.75 m 1.79 16.96 2.47 6.47 3.15 11.76 

EPR 

HWL 1.39 -5.23 8.97 6.74 1.60 12.36 

0 m 1.10 -8.21 5.26 5.41 -3.24 8.19 

0.75 m 0.33 -9.05 5.04 2.72 -2.31 8.40 

First, the large differences between both datum-based shorelines will be 

explored in groups 1 and 4. Figure 4.11 shows the differences in NSM distribution 

for both proxies. It can be seen that 0.75 m contour seems to be less variable than 

0 m contour. While up to 1620 transect both proxies behave similarly, 0 m contour 

yielded larger NSMs values from that transect to the last one. Furthermore, if cross 

shore profiles of both years are checked (Figure 4.12), a clear change on the profile 

can be seen. While for 2009 the profile had a clear reflexive slope, a more 

dissipative beach profile appeared in 2011. According with the Figure 4.12 the 

0.75 contour offset will be significantly different than the 0 m contour offset since 

the change on the profile was yielded in smaller elevations. The latter means that 

the 0.75 m contour did not reflect the actual shoreline movement since erosion 

actually occurred. Therefore, the contour-derived NSM was also related to the local 

slope as well as the HWL-derived. 
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Figure 4.11. NSM distribution between 2009 and 2011 for 0 m and 0.75 m contours in the case 

of group 1. 

 

Figure 4.12. 2009 and 2011 cross shore profile corresponding to the transect number 1626 

(Group 1). 

On the other hand, for Group 4, in which the sand beach was much wider than 

for Group 1 and profile equilibrium dynamic played an important role, NSM in 0 m 

contour was much more pronounced and variable than those for 0.75 m. The same 
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problem than Group 1 appeared (different slope in 2009 and 2011 provoked more 

differences when 0 m contour was used) but some errors due to extrapolation 

came up. For instance, in Figure 4.13 the extrapolation carried out in 2011 seems 

to be exaggerated and then, the NSM for 0 m contour was much larger than for 

0.75 m contour. Therefore, the 0.75 m contour was evaluated as more appropriate 

for Group 4, unlike than for Group 1. 

 

Figure 4.13. 2009 and 2011 cross shore profile corresponding to the transect number 1160 

(Group 4). 

Once the groups in which the observed differences between using 0 m contour 

level and 0.75 one were excessively large have been explored, the groups in which 

both proxies yielded similar results will be discussed (groups 3 and 6). As shown 

in Figure 4.14, although the mean NSM was similar, the 0 m contour NSM results 

were more variable than the 0.75 m contour ones for group 3. Furthermore, some 

areas of important differences are shown (profiles around 1230 and from 1290 to 

1310). If elevation profiles of this group are checked (Figure 4.15) the parallelism 

of the foreshore slope for both years can be tested and therefore, the use of 

different datum-based shorelines was less influent for these groups. Generally, the 

steeper the slope, the smaller the differences between both proxies, because of a 

little error on gradient extrapolation means a great error on horizontal shoreline 

position when slope is gentle. Regarding the differences between NSM by means of 

HWL and datum-based shorelines in the groups 3 and 6, it is highlighted that the 

NSM differences were practically constant (Figure 4.16), which meant that the 

offset between both proxies were related to a constant error, probably due to the 

combination of HWL digitizing and the different shoreline proxy bias (remember 

that the tide level was different between 2009 and 2011). 
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Figure 4.14. NSM distribution between 2009 and 2011 for 0 m and 0.75 m contours in the case 

of group 3. 

 

Figure 4.15. 2009 and 2011 cross shore profile corresponding to the transect number 1160 

(Group 3). 
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Figure 4.16. NSM distribution between 2009 and 2011 for HWL and 0.75 m contours in the 

case of group 6. Both NSMs were almost parallel, indicating a systematic offset induced. 

 

Figure 4.17. NSM distribution between 2009 and 2011 for HWL and 0.75 m contours in group 

5. Both NSMs were almost parallel, indicating a systematic offset induced. 

Finally, the groups 2 and 5 in which the three proxies used were highly 

different will be explored. For group 5, HWL indicated that accretion occur while 

both datum-based shoreline indicators pointed out to an erosion process (Table 
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4.10). It is important to determine what could be the error since those different 

results could lead to misunderstand the actual shoreline evolution. Regarding the 

NSM results shown in Figure 4.17, it was clear that those were constantly parallel 

and so, some systematic error was committed. Again, there were two main 

possibilities: either a constant HWL interpretation error or a tidal and runup-

induced offset. Regarding the differences between both datum-based shorelines, 

the 0 m contour results depicted a high variability regarding some difference in the 

extrapolated gradient (similar to Figure 4.13). Both the fact that the HWL showed 

the similar distribution than 0.75 m contour, but with an added offset, and the fact 

that the 0 m contour was too variable because of extrapolation errors, leaded to 

the conclusion that 0.75 m contour was the most stable proxy datum for shoreline 

representation. Similar conclusions could be extracted from the results on Group 2, 

although more coincidences were found between both datum-derived shorelines 

mainly due to steeper slopes which implied less extrapolation errors. 

How to apply the shoreline proxies bias 

Two different ways of including bias can be considered. First, transforming 

the datum-based shorelines by moving the shoreline the same quantity that the 

estimated offset (Moore, Ruggiero & List 2006), and, secondly, incorporating bias 

into the HWL shorelines (Ruggiero, List 2009) and its uncertainty as runup 

uncertainty and bias. Here, the HWL has been corrected according to the bias 

estimated between that HWL and the 0.75 m contour. Thus, if Bias = X0.75m – XHWL, 

then the corrected HWL position is XHWLcorrected = XHWL + Bias. Then, once the 

corrected position was calculated, both NSM and EPR values were again estimated 

and compared with the previous datum-based shorelines (Table 4.11). 

Table 4.11. NSM (m) and EPR (m/yr) results for every group including bias-corrected HWL. 

 
Group 1 2 3 4 5 6 

Mean 
NSM 

HWLcorrected 0.67 -18.20 10.11 5.45 -4.65 17.07 

0 m 2.21 -16.46 10.55 10.85 -6.50 16.43 

0.75 m 0.66 -18.16 10.12 5.46 -4.64 16.84 

Std. dev. 
NSM 

HWLcorrected 2.54 17.94 3.25 5.92 3.28 10.42 

0 m 3.23 16.95 3.57 7.18 5.77 13.76 

0.75 m 1.79 16.96 2.47 6.47 3.15 11.76 

EPR 

HWLcorrected 0.34 -9.08 5.04 2.72 -2.32 8.51 

0 m 1.10 -8.21 5.26 5.41 -3.24 8.19 

0.75 m 0.33 -9.05 5.04 2.72 -2.31 8.40 

The results demonstrated that the bias correction should be taken into 

account if both shoreline proxies are used together. When bias was included, the 

NSM and EPR results were similar for 0.75 m contour and HWLcorrected. If compared 
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with Table 4.10, it is clear that the effect provoked by the different relative position 

between both proxies was removed. For instance, for Group 5, in which accretion 

process was estimated for non-corrected HWL, the results were practically similar 

when correction was applied and both shoreline proxies showed erosion. If Figure 

4.18 is compared with Figure 4.17, it is also highlighted that the offset have been 

removed and similar shoreline change rates were estimated. Of course, it still 

remained some differences regarding the shoreline extraction methods but the 

results were completely comparable. 

 

Figure 4.18. NSM between 2009 and 2011 distribution for HWLcorrected and 0.75 m contour in 

group 5. 

According to the previous results, the datum-based proxies will be always 

preferred instead of HWL for change rate estimation. According to Ruggiero, List 

(2009), “datum-based shorelines provide a more repeatable alternative to visual 

shoreline proxies, eliminating not only the effect of varying hydrodynamic 

conditions but also variations in shoreline interpretation”. However, the time span 

used for that rate assessment should be taken into account. That has been 

previously defined as “endpoint rate shift” (Moore, Ruggiero & List 2006) and it 

corresponds with the estimated offset divided by the time span. In cases when 

linear regression is used, the same authors recommended to assess both 

regressions (with and without including bias), evaluate both cases at the most 

recent shoreline, and estimate the difference divided by the time span. 

As an example, if the both shorelines used would be more time-spaced (e.g. 50 

instead of 2 years), with a 50 m of accretion in the studied transect, and the 

constant offset between 0.75 m contour and HWL would be the same magnitude 

but opposite sign (e.g. +7 m for one year and -7 m for the other), the EPR in 50 
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years would be 1.28 m/yr using HWL instead of 1 m/yr by using datum-derived 

shoreline, while the EPR in 2 years would be 32 m/yr instead of 25 m/yr. 

Furthermore, if HWL and contour shoreline were put together to estimate EPR, 

1.14 m/yr would be yield for a span of 50 years. Therefore, the combination of 

both kinds of proxies for medium-term shoreline evolution assessment can be 

considered. In fact, regarding the poor accuracy in height determination by means 

of stereo-photogrammetry using old and low scale photographs, HWL should be 

considered for shoreline definition. 

Finally, and from the estimation of the shorelines offset, it was clear that there 

was a shoreline position uncertainty due to water level variations. In this study, 

the effect of the bias can be removed by estimating the differences between the 

estimated offsets in 2009 and 2011 and, therefore, the results represent the 

difference due to water level variations (no digitizing error was supposed here). 

Apart from the Group 1, with a difference of 2.2 m between both shorelines, the 

average difference estimated for the remaining groups was 7.6 m. That meant that, 

only due to different natural features, the digitized shorelines were highly 

inaccurate as compared with datum-based ones. 

Therefore, the uncertainty due to water level variations or wave runup error 

(Virdis, Oggiano & Disperati 2012) should be evaluated. In a previous research the 

bias uncertainty was used as an estimation for water level variations uncertainty, 

being assessed through applying error propagation law on the eq. 4.1, taking into 

account the tidal height, beach slope, H0, and L0 uncertainties (Ruggiero, List 2009). 

Although the natural features were not the same than for this study area, a bias 

uncertainty of 9 m was estimated in that study. Unfortunately, accurate H0 and L0 

data were not available for this study and therefore, further research should be 

carried out. As an approximation, mean and standard deviation of H0, L0 (estimated 

through the wave period T), tidal height (Zt), and slope were estimated. While for 

the latter the DEM data were used, information extracted from histograms were 

used for the rest, so the results should be taken as approximate. The difference 

between the maximum and the minimum values was about 10 m, which is slightly 

probable. Taking into account the previous estimated difference, the previous 

research, and the maximum values, a wave runup uncertainty of ±7 m for digitized 

shorelines seemed to be a conservative value for this kind of coastal areas. As a 

consequence, more effort should be done in order to estimate this uncertainty 

more accurately. 

SHORELINE ACCURACY 

When the shoreline used for coast evolution rate estimation is based on the 

aerial image digitizing of a specific feature such as the high water line (HWL) -

defined as the “markings left on the beach by the last high tide” (Pajak, Leatherman 

2002)- some uncertainties influences the accuracy of the extracted shoreline. 
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Generally, three kinds of error sources can be taken into account: (i) the positional 

uncertainty due to natural phenomena such as tide stage, seasonal, and runup 

uncertainties, which reduce the exactitude of the shoreline (Fletcher et al. 2003, 

Romine et al. 2009, Virdis, Oggiano & Disperati 2012); (ii) the planimetric 

uncertainty due to data source (in this case, the orthorectification error should be 

included); and (iii) the spatial uncertainty regarding the measurement method 

such as pixel or digitizing errors (Moore 2000, Fletcher et al. 2003). Taking into 

account the previous considerations, the next error sources were considered for 

this study: 

Natural phenomena uncertainty sources 

Tidal fluctuation error 

Tidal fluctuation error (Genz et al. 2007, Romine et al. 2009, Virdis, Oggiano & 

Disperati 2012), also called tide stage uncertainty (Fletcher et al. 2003), is the 

horizontal shift due to the variation of the tide in a tidal cycle. Therefore, this 

uncertainty depends on the oceanographic features of the study site but also on 

the grain size of the considered beaches (Bowman, Pranzini 2008). In the 

Mediterranean areas, a microtidal regime exists which implies that this 

uncertainty will be less influent than that from macrotidal coasts. There is not a 

tide gauge located close to the study site area, but some approximation can be 

carried out by using the nearest gauge called ‘Almeria’, 8  km far away the study 

site, which has been available from 2006. The tidal range in the period of 2006-

2010 of that gauge was 0.23 m and 0.59 m for the mean and the maximum 

respectively. Furthermore, the differences between the maximum and minimum 

sea level was only 1.17 m (-0.20 m in 2007 and 0.97 m in 2010). The MSL 

corrected by using the Spanish datum offset in the tide gauge (-0.23 m) was 0.16 

m. The evaluation of this error was estimated by a randomly generated uniform 

distribution since it has been considered as a conservative estimate of the 

probability distribution of HWL positions due to tidal fluctuation (Romine et al. 

2009). A deviation standard of ±1.48 m was estimated, which can be comparable to 

previous studies where the tidal regime is similar. For example, ±1.5 m was 

estimated for a Mediterranean Italian beach (Virdis, Oggiano & Disperati 2012). 

Otherwise, a range from ±2.5 to ±3.4 m was estimated for microtidal beaches with 

a wider tide fluctuation of 1 m (Romine et al. 2009). It is important to note that this 

kind of error affects to all the shorelines in the same way since tide regime is 

supposed to be similar during the time span considered in this work. 

Seasonal uncertainty 

It is defined as the difference between the HWL position in winter and in 

summer. It pretends to describe weather effects such as storms and tries not to 

remove any observation but include this uncertainty in the analysis. In other 
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microtidal environments, some estimates have been performed based on field 

campaigns measures. For instance, in microtidal Hawaiian areas of the Pacific 

Ocean a seasonal variability of ±8.6 m was found using two years observation 

(Fletcher et al. 2003) while a range from ±3.6 to ±6.2 m were estimated in a set of 

beaches of Oahu (Hawaii) through a more reliable study during 8 years (Romine et 

al. 2009). However, some authors assumed this uncertainty as negligible since 

their data were collected in spring and summer (Virdis, Oggiano & Disperati 2012). 

In this work, no data have been collected in order to evaluate this uncertainty. 

However, since the data were collected from April (2001 photographs) to 

September (1957 dataset), this seasonal error can be considered as negligible as 

well. Nevertheless, further work should be carried out in order to estimate this 

kind of error for this study site. Similarly to the tidal fluctuation error, the seasonal 

uncertainty would reach the same value for all the datasets independently on time.  

Wave runup uncertainty 

It is a short-term effect that should be taken into account when HWL is used 

as a proxy datum (Ruggiero et al. 2001, Virdis, Oggiano & Disperati 2012). It is 

possible to estimate extreme runup elevation R2% from empirical equations based 

on the deep-water significant height H0, the wave period T, and the beach slope 

(Stockdon et al. 2006). In a similar microtidal beach this uncertainty was evaluated 

to be ±0.7 m for a R2% ranging from 0.24 to 0.43 m (Virdis, Oggiano & Disperati 

2012), although only the uncertainty for LiDAR-derived slopes was taken into 

account, not being included H0 and T variations. However, as explored in the 

section ‘Comparing shoreline proxies’, the influence of this uncertainty must be 

considered. Although a rigorous approach could not be applied here, the wave 

runup uncertainty was conservatively estimated in ±7 m for the entire area. It is 

highlighted that some previous research did not include this uncertainty despite it 

may be considered one of the most important part of the final uncertainty for 

digitized shorelines. In ‘Comparing shoreline proxies’ section, the influence of the 

proxy datum shoreline bias for shoreline change rate was proved. However, since 

bias was not able to be estimated for all datasets, the wave runup uncertainty was 

expected to reflect the inaccuracy produced by this variable. 

Data source uncertainty 

As the shorelines have been digitized from aerial orthoimages, the main error 

that could be attributed to the data source is the orthorectification uncertainty. 

Although some authors have considered this error together with the pixel error 

(Fletcher et al. 2003), orthorectification error is commonly put aside (Moore 2000, 

Romine et al. 2009, Virdis, Oggiano & Disperati 2012). This uncertainty is usually 

given by the corresponding planimetric orthoimage RMSE and should be below the 

GSD of the image. 



Geomatics techniques for coastal monitoring 

177 
 

Uncertainty sources related to measurement methods 

Pixel uncertainty 

It is the minimum visible unit for digitizing and limits the ability to resolve the 

position of a feature (Romine et al. 2009), although some authors assume this 

error within the orthorectification uncertainty (Fletcher et al. 2003). Therefore, 

pixel error constitutes the uncertainty due to the size of the pixel on the ground 

(GSD). 

Digitizing uncertainty 

Also called onscreen delineation, digitizing uncertainty depends on the 

digitizer and it is measured by repeating the digitization of the shoreline following 

diverse strategies. For this study, an experiment was done by using three different 

areas on the aerial orthoimages from 1956 to 2011. Those areas were named A, B, 

and C, and were placed in the beaches of Quitapellejos, El Playazo, y Las Marinas, 

respectively. WMS data sources were not included. 20 shorelines were digitized in 

every area for each year so a total amount of 60 shorelines were available for each 

data source. Then, a set of 20 cross-shore transects were placed in each area and 

the variability of the shoreline position for each transect was evaluated. The 

results are shown in Table 4.12 and depict a low level of variation than it could be 

expected. 

Table 4.12. Standard deviation (SD) for digitized shoreline position. Note that ± symbol for SD 

values has not been included. 

Data Overall SD Group 1 SD Group 2 SD Group 3 SD GSD Flight scale 

1956 1.00 0.83 1.14 1.03 1.00 1/33.000 

1977 0.56 0.58 0.59 0.52 0.50 1/18.000 

1988* 1.23 0.53 1.73 1.18 0.30 1/10.000 

2001 0.52 0.58 0.35 0.59 0.20 1/5.000 

2009 0.18 0.09 0.20 0.23 0.15 
Digital 
flight 

2011 0.23 0.18 0.17 0.31 0.10 
Digital 
flight 

A direct relation seems to exist between the GSD and the overall standard 

deviation (OSD) being both figures similar for 1956, 1977, and 2009 data. 

However, significantly higher OSD than GSD could be found for 2001, 2011, and 

especially for 1988. In the cases of 1988 and 2001, several tide levels can be seen 

and some confusion existed apart from the poor visualization, especially for 1988 

data (Figure 4.19). Otherwise, in cases of 2009 and 2011 it is supposed that the 

main factor for a larger OSD was the operator skill. 
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Figure 4.19. Digitalization uncertainty for 1988 image due to previous runup level and poor 

visualization of the image. 

Regarding this kind of error, which depends on the data source but also on the 

operator, other studies undertaken on similar conditions have reported very 

variable results. For example, for a flight scale of 1:19,500 localized in Hawaii it 

was found an uncertainty of ±3.0 m by means of a test of reproducibility (Fletcher 

et al. 2003), while a range from ±0.5 to ±5.7 m was estimated for larger scale 

images in the same islands through the interpretation of several expert analyst 

(Romine et al. 2009). In a Mediterranean beach, digitizing uncertainties from ±0.6 

to 7.0 m were calculated by delineating the same feature several times and 

calculating its standard deviation (Virdis, Oggiano & Disperati 2012). In the latter 

work, it was also proved that the flight scale did not have a key role for this kind of 

error since for three images with similar scales (near to 1:33,000) three different 

uncertainties were estimated depending on the dataset and tide conditions (±5.0, 

±1.6, and ±2.0 m). Here, it can be concluded that the natural regime of beach and 

tides and the quality of image have a key role for the digitizing uncertainty. 

Therefore, one only expert should be recommended in order to digitize all 

shorelines included in the same study or instead, a clear criterion should be 

established for using shorelines from different operators. For instance, a mean 
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offset of up to 4 m was found in other research when an entire regional coast was 

digitized by 3 different operators (Moore, Ruggiero & List 2006). 

Overall uncertainty of digitizing shorelines 

The overall uncertainty was evaluated for the 1956-2011 orthoimages 

datasets (WMS not included) by means of the square root of all previously 

described variances (squared standard deviations). The results are shown in Table 

4.13 and yielded an overall uncertainty range from ±7.15 m for the most recent 

2009 and 2011 orthoimages to ±7.45 for the oldest 1957 orthoimage. If variances 

are taken into account, the percentage of every single variable variance on the 

overall one is able to be calculated. It is worth noting that wave runup uncertainty 

was the most influent uncertainty since it is constituted of 88.3% up to 95.8% of 

the total variance. Therefore, an additional effort should be done in order to 

accurately estimate this source of uncertainty. 

Finally, it is important to note that the entire coastal study site has been 

considered as one homogeneous unit instead of determining different 

uncertainties depending on the particular subarea or beaches. 

Table 4.13. Components of overall uncertainty results expressed in meters for own-produced 

orthoimages. 

Data 

Natural phenomena 
uncertainties 

Data source and measurement method 
uncertainties Overall 

uncertainty 
Tidal 

fluctuation 
Wave 
runup 

Orthorect. Pixel Digitizing 

1957 1.43 7.00 1.56 1.00 1.00 7.45 

1977 1.43 7.00 0.30 0.50 0.56 7.19 

1988 1.43 7.00 0.32 0.30 1.23 7.26 

2001 1.43 7.00 0.17 0.20 0.52 7.17 

2009 1.43 7.00 0.18 0.15 0.18 7.15 

2011 1.43 7.00 0.15 0.10 0.23 7.15 

Including shoreline accuracy for WMS-derived shorelines 

Similarly to the previous digitizing shorelines which were extracted from 

own-produced orthoimages, accuracy estimation should be undertaken for WMS-

derived shorelines. Here, since the image orientation process was not controlled 

and other error sources were not known, only an approximation could be 

performed. For instance, while the seasonal uncertainty was not included in 
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previous own-orthoimages digitized shorelines, this error was included for WMS 

orthoimages of 1984-85 and 1998-99 since the actual date of the images was not 

known. A conservative uncertainty of ±5 m was estimated according to other 

works (Fletcher et al. 2003, Romine et al. 2009). Furthermore, the natural sources 

of uncertainty were considered identical to the previous ones (tidal fluctuation and 

wave runup) and the digitizing uncertainty was not evaluated but estimated by 

means of the relation between the GSD and the digitizing uncertainty on the 

previously calculated own-derived orthoimages (R2=0.83). Finally, the pixel 

accuracy was obviously the GSD for every image while the orthorectification 

accuracy was conservatively estimated to be the double of the GSD since no 

information about it was found. Thus, the accuracy results were those shown in 

Table 4.14. As can be checked, the seasonal uncertainty made the 1984-85 and 

1998-99 datasets more inaccurate than the others. Again, the effect of wave runup 

uncertainty was clear for this kind of shorelines. Finally, it is highlighted that both 

own-produced and WMS orthoimages yielded shorelines with comparable 

accuracies. 

Table 4.14. Overall accuracy estimated for WMS orthoimages digitized shorelines 

WMS orthoimages date Overall accuracy (m) 

1984-85 9.10 

1998-99 9.10 

2001 7.27 

2004 7.27 

2006 7.27 

2007 7.61 

2008 7.27 

Digitized shoreline accuracy vs. DEM-extracted shoreline accuracy 

Once the accuracies of both ways to extract shorelines have been established, 

the comparison between them can be afforded. The accuracy of DEM-derived 

shorelines (DDS) strongly depends on the local beach slope (Stockdon et al. 2002, 

White et al. 2011). On one hand, the local slope of the beaches along the working 

area was estimated to be between 0.05 and 0.15. On the other hand, the vertical 

accuracy for photogrammetric DEMs (photo-DEM) was estimated by means of the 

comparison between every photo-DEM and the high accurate 2009 LiDAR-derived 

DEM in areas with no apparent changes and after applying outliers removal. The 

provided accuracy for every photo-DEM was estimated as the standard deviation 

of the differences between DEMs with an estimation error, used as an uncertainty 

measure of the final accuracy estimated (Aguilar, Agüera & Aguilar 2007), close to 
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3% for all DEMs since the comparisons between DEMs were done by means of a 

high number of check points. 

If a simple relationship between DEM accuracy and slope is used (    

       ⁄ ), it could be found that only 1956 image digitized shoreline (IDS) would 

be more accurate than 1956 DDS if a mean 0.10 slope was considered (Table 4.15). 

For the rest of datasets, DDSs were more accurate, especially when steeper slopes 

were considered. The great effort to extract photogrammetric DDSs should be 

taken into account, since the automatic stereo matching gets usually poor results 

in sandy areas and a huge manual DEM-editing may be required. However, photo-

DEMs can be really useful for volumetric changes (e.g. in sand environments) and 

their production may be highly interesting. 

If DDS and IDS are directly compared (Table 4.16), it is noted that for the most 

accurate DEM (i.e. LiDAR-derived DEM), the horizontal accuracy of DDS was 

almost 9 times higher than the one corresponding to IDS. For 2001 and 1988 

shorelines, the DDS accuracy was more than 2 times higher while for 1977 both 

accuracies can be considered quite similar. On the contrary, the 1956 DDS 

accuracy was three times less accurate than the IDS one. 

Table 4.15. Horizontal accuracy (expressed in meters) according to the type of DEM used and 

the local. 

Data Type of DEM 
Std dev 

DEM 
Accuracy 

0.15 slope 
Accuracy 

0.10 slope 
Accuracy 

0.05 slope 

1956 Photogrammetric 2.20 14.67 22.00 44.00 

1977 Photogrammetric 0.50 3.33 5.00 10.00 

1988 Photogrammetric 0.28 1.87 2.80 5.60 

2001 Photogrammetric 0.27 1.80 2.70 5.40 

2009 Lidar-derived 0.089 0.59 0.89 1.78 

2011 Lidar-derived 0.082 0.55 0.82 1.64 

Table 4.16. Horizontal accuracy for DDS and IDS for each dataset and relation between them. 

An overall slope of 0.10 was used for estimating accuracy of DDS. 

Data 
Accuracy DDS 

(m) 
Accuracy IDS 

(m) 
Acc IDS/ Ac DDS 

1956 22.00 7.45 0.34 

1977 5.00 7.19 1.44 

1988 2.80 7.26 2.59 

2001 2.70 7.17 2.66 

2009 0.89 7.15 8.03 

2011 0.82 7.15 8.72 
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SHORELINE CHANGE RATES METHODS 

For most of the shoreline change rates methods, linear change is assumed.  

However, shoreline erosion or accretion may not be uniform. For instance, a 

second or more polynomial can fit a short-term change properly, although non-

linear fits may not improve predictions of shoreline trends (Dolan, Fenster & 

Holme 1991). Moreover, Minimum Description Length (MDL) was developed in 

order to describe non-linear shoreline behaviour and to be compared with linear 

methods (Fenster, Dolan & Elder 1993), although some authors found no 

differences (Crowell, Douglas & Leatherman 1997, Douglas, Crowell 2000). Linear 

methods have been considered appropriate for shorelines unaffected by inlets or 

engineering changes but they should be used carefully otherwise (Galgano, 

Douglas 2000). Other main discussion about change rates methods has 

corresponded to the huge storm treatment since it can be considered as an outlier 

for the general rate (Douglas, Crowell 2000, Honeycutt, Krantz 2003) or as a key 

data for non-linear long-term shoreline movement (Fenster, Dolan & Morton 

2001) 

The shoreline data used for rates estimation also plays a key role since 

different sources of data are subject to varying degrees of error and the availability 

of data dictates the temporal limits of the study (Crowell, Leatherman & Buckley 

1993). Thus, to estimate historical shoreline change rate with some degree of 

confidence, the assessed movement must be larger than the shoreline mapping 

error (Anders, Byrnes 1991). As a consequence, the confidence interval computed 

from the linear regression analysis should be used for the shoreline position 

forecast (Douglas, Crowell 2000). 

Finally, other main factors are constituted by the time span in which change 

rates are estimated and the shoreline distribution during time, preferring evenly 

distributed sequence of shoreline (Dolan, Fenster & Holme 1991). For long-term 

studies, it should be considered more than several decades, and also considered 

the recovery from storms in more than 1 year, and more than 100 years was 

recommended (Galgano, Douglas & Leatherman 1998). It is important not to 

consider intervals of a few decades as adequate to characterize shoreline 

behaviour in a specific area except for few years into the future (Crowell, Douglas 

& Leatherman 1997). Therefore, the time span available for this study (1956 to 

2011) can be considered as medium-term shoreline evolution and the results 

should be taken carefully for forecasting purposes. Moreover, the great amount of 

human interventions in the study area made difficult to consider the shoreline 

evolution as natural. However, it was expected that a suitable description about 

the shoreline changes can be performed. 

Bearing in mind the latter, the shoreline change rates methods historically 

developed are subsequently listed according to previous works (Genz et al. 2007). 
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End Point Rate (EPR) 

Only two shorelines are used to compute a change rate by means of the net 

shoreline movement in meters (NSM) divided by the time span. It is very simple 

and easy to carry out but the EPR will be inaccurate if one of the reference 

shorelines is wrong. 

Average of Rates (AOR) 

Using a minimum time criterion regarding the shoreline accuracies, all the 

possible EPRs which passes that criterion are estimated and finally averaged. It is 

not very useful since short periods can be estimated and, then, the estimated EPR 

may result inaccurate. 

Minimum Description Length (MDL) 

MDL tries to describe influential short-term changes by estimating the best 

model to fit (line, quadratic, etc.). In general, if the resulting model is quadratic or 

more, two lines are fitted: first, the MDL ZERO by means of the most recent data 

and, second, the MDL LOW which assigns low weights to the oldest data. The 

reader is referred to Fenster, Dolan & Elder (1993) for further information. 

Ordinary Least Squares (OLS) 

A linear regression is estimated by taking into account all the shorelines 

available and assuming independent Gaussian errors. However, some outliers 

produced by storms, sediment supply and transport, presence of coastal 

structures, and so on, may not result in Gaussian variations in the data so the 

method is sensitive to outliers. Furthermore, non-well-spaced shorelines can 

greatly affect the results and the future shoreline position accuracy is not known 

since the shoreline uncertainties are not included. 

Jackknifing (JK) 

This method uses several OLS fits by means of removing one point for each 

iteration. Finally, the slope estimated is averaged. It can decrease the effect of 

clustering points but it could result inefficient (Genz et al. 2007). 

Reweighted Least Squares (RLS) 

It is based on identifying outliers through least median of squares (LMS). 

Those outliers are weighted as zero and the rest of points are assigned a weight of 
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one. Then, an OLS is fitted using the data with weight equal to one. Therefore, RLS 

is more robust than OLS since it is not sensitive to outliers. However, this method 

could lead to an undesirable risk, since points are removed without any previous 

knowledge. 

Weighted Least Squares (WLS) 

The uncertainties for every shoreline are included in the co-variance matrix 

when least squares are applied. The weight is set to be the inverse of the variance 

(1/σ2) and so points presenting less variance will have large influence on the final 

results and vice versa. This method could be sensitive to outliers even if their 

weights are small, so a priori knowledge could be necessary. 

Reweighted Weighted Least Squares (RWLS) 

RWLS is similar to RLS but different weights for every point are considered. 

Then, LMS is also used for identifying and removing outliers and WLS is utilized to 

estimate the rate. 

Least Absolute Deviation (LAD) 

LAD was developed to minimize the sum of the absolute value residuals 

instead of the sum of the squared residuals. It is more robust than OLS because 

outliers have less influence on the adjustment since residual are not squared. 

Moreover, LAD is preferable to least squares methods when outliers are in the y 

direction, e.g. shoreline positions (Rousseeuw, Leroy 1987). 

Weighted Least Absolute Deviation (WLAD) 

Similarly to WLS, weights can be incorporated for LAD and then, the fewer the 

variance, the lager the influence on the fitting process. 

For this study, the MATLAB® function fit was utilized for all the regression 

methods. The general option utilized for this function was ‘poly1’, indicating that 

linear regression is performed. When weights were required (RLS, WLS, RWLS, 

and WLAD) the function fit was set with the option ‘Weight’. Finally, for LAD and 

WLAD, the function fit was set with the options ‘Robust’ and ‘LAR’ (Least Absolute 

Residual) to indicate a different method to achieve the linear regression (LAD 

instead of OLS). 
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EVOLUTION OF CHANGES OVER TIME 

Here, a general description of changes occurring from 1956 to 2011 in the 

study site is done. For that reason, an explanation of every two consecutives 

shorelines is performed trying to identify the keys on the shoreline evolution 

occurred in this area. In order to carry out this analysis, the own-orthoimage-

derived shorelines were used and a high resolution set of 5 m spacing transects 

was created by means of the DSAS software tool, running into ArcMap GIS 

software (Thieler et al. 2008). Thus, the EPR and NSM were estimated for each 

couple of consecutive (in time) shorelines. 

1956-1977 

This is the period where shoreline changes were more evident. The 

alongshore distribution of the differences depicts a clear erosive area at North and 

an accrete area at South, following the general alongshore sediment transport 

previously described. The main affected areas by erosion were the surrounding 

areas of the Almanzora’s mouth (where the typical convex shape of the delta 

became to an erosive concave shape), Punta de Hornicos, and especially 

Quitapellejos beach, which reached a net shoreline movement of -154.4 m (-7.43 

m/yr of erosion rate). However, the accreted areas did not reach that intensity and 

a maximum NSM of 53.7 m (2.58 m/yr) was observed. 

During this period, there were some episodes of sand mining since 1974, 

although no documented sand nourishment has been found (Tables 4.2 and 4.3). 

However, the main reason of shoreline erosion seems to be related to the lack of 

powerful rain or floods episodes from 1943 to 1969, according to Table 4.1. In fact, 

and according to the study carried out by Viciana (1996), between 1957 and 1965 

the erosion affected mainly at the South (-20 m), Punta de Hornicos (-40 m), 

Fábrica del Duro beach (-45 m), being the Quitapellejos beach the most affected 

area with an estimated erosion of up to -120 m, yielding an incredibly high erosion 

rate close to 15 m/yr, which was the double of the rate estimated between 1956 

and 1977. That huge erosion rate was clearly related to the lack of sediment supply 

during the 1957-1965 time span since the erosion rate was later mitigated up to 

about -3 m/yr between 1965 and 1977 when some floods episodes occurred (e.g., 

1969, 1973, and 1974, see Table 4.1). Viciana (1996) found some accreted areas 

between 1965 and 1973 around the Antas and Almanzora mouths (20 and 30 m 

approximately in some points) but the entire area still reflected a general erosion 

process (43,421 m2 of beaches were estimated to be lost in this period by Viciana 

(1996)). 

Summing up, the 1956-1977 period clearly explained that the coastal cell 

defined by the study site was highly dependent on the sediment supply as well as 

the general alongshore sediment transport was proved. Also, the area between 
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Almanzora’s delta and Quitapellejos beach appeared as the most vulnerable to 

erosion mainly due to the initial coastal orientation regarding the main wave 

approaching angle. It was also clear that the Garrucha’s harbour main dock acted 

as a limit for the sediment making this area to have the main accretion processes. 

Finally, the existence of a sediment sink (i.e. the Palomares canyon) was proved 

since the erosive processes acting at North were not compensated or balanced by 

the accreted ones at South. This coastal evolution was highly important since 

showed its natural behaviour because of no clear human intervention was 

performed other than previously mentioned sand mining during the 1974-1977 

period. 

1977-1988 

The main characteristic of this period is the construction of the Cuevas del 

Almanzora dam in 1982, what drastically reduced the natural sediment supply 

towards the coastal cell. Furthermore, sand mining activities could play a key role 

since almost the 80% of the complete sand mining was carried out in this period 

and a total of 271,800 m3 were extracted from the coastal cell. This quantity was 

equivalent to two or three times the sediment supply yielded by the Almanzora 

river mouth per year which was expected to contribute to the sand beach 

formation (Viciana 1996). 

The erosion still dominated from North to the Puerto Rey beach from which 

some accretion and erosion areas were consecutively located. The main erosive 

process took place in the Almanzora’s mouth, where the concave shape was more 

pronounced, clearly related to the dam construction. Here, a maximum of -94.43 m 

NSM was calculated which leaded to a high erosive rate of -7.76 m/yr. An intensive 

erosion rate was estimated in Quitapellejos beach as well (about -4.5 m/yr). The 

erosion was declining from Quitapellejos to El Playazo beaches, indicating that the 

intensity of the erosion process was related to the relative position between the 

coast angle (given by the normal to the shoreline) and the dominant waves 

direction (a climate variable) (Roelvink, Reniers 2012). In this sense, the sediment 

balance during this period was clearly negative. 

1988-2001 

During this period of time, the sand nourishment activities became a key role 

for the coastal evolution, since the greatly erosive process which affected the 

coastal cell had to be stopped. In total, about 215,000 m3 of sand were poured into 

the study site area which was equivalent to 1.5 times the average of the available 

natural sediment supply in normal conditions per year. Additionally, although 

some flood events occurred in 1989, 1996, and 1997, the Cuevas del Almanzora 

dam dramatically reduced its sediment supply. Furthermore, even if sand 
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nourishment and flood events were taken into account, the erosion was expected 

to affect this area during the 1988-2001 period. 

On one hand, the erosion was clear between Quitapellejos and El Playazo 

beaches (up to -39 m or -3.4 m/yr) and in the Villaricos (-32 m) and Fábrica del 

Duro (-31 m or -2.7 m/yr) beaches. However, and towards South of El Playazo, 

erosive processes were only estimated in the North face of the Garrucha’s harbour. 

On the other hand, accretion processes were observed in the Almanzora’s mouth 

due to the reconfiguration of that environment because of the lack of sediment 

supply and the natural sediment migration. This mouth constitutes a highly 

dynamic sedimentary unit in which the finest sediment rapidly evolved forming 

some curious sandy shapes (Figure 4.20). 

Southern the El Playazo beach, the accretion was generalized being the 

maximum in Las Marinas beach (South face of the Antas’ river mouth reached an 

accretion of about 46 m or 4 m/yr). This local high accretion rate could be related 

to the sand nourishment and the flood events since the Antas River still allowed 

some natural sediment supply. Furthermore, an important accretion was observed 

in the Quitapellejos beach part located next the Punta de Hornicos (in which the 

wave incident angle clearly differs from the general shoreline orientation). 

However, this accretion was clearly related to a specific nourishment carried out 

on this area (even the sand colour was different, see Figure 4.21). It is important to 

note that this accretion was quickly lost according to the 2001 WMS orthoimage 

indicating that this area constituted a natural erosive area mainly due to the 

dominant wave approaching angle. 

 

Figure 4.20. Examples of sand migration and reconfiguration in the Almanzora’s mouth. Own-

produced 2001 orthoimage. 
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Figure 4.21. Top image represents the Quitapellejos beach on the 2001 own-produced image. 

Bottom image shows the same beach on the 2001 WMS image. It is clear that external sand 

nourishment was performed and a rapid erosive process took place and the old 1988 shoreline 

position was reached or even eroded. 

Summing up, the time span from 1988 to 2001 showed an average accretion 

scenario (the mean NSM was 7.68 m) which was mainly attributed to the sand 

nourishment carried out in the coastal cell. The main evolution was observed in 

the Almanzora’s mouth and surrounding areas, and also in the Quitapellejos beach 

where a sand nourishment was rapidly removed because of the general wave 
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approaching angle and the alongshore sediment transport. The nourishment 

activities, but also the flood events, were related to the general accretion on the 

beaches located at the South of the coastal cell. 

2001-2009 

In this period some important human-induced changes were carried on. A 

clear and great effort to stop the erosive processes was performed mainly in the 

Quitapellejos and El Playazo beaches. Here, two cross shore jetties were installed 

between 2007 and 2008, and a high volume nourishment was performed in order 

to stop the high erosion rates borne by these areas. In total, 548,600 m3 were 

deposited during this period which was equivalent to 3.5 times the maximum 

annual sediment supply by the Almanzora River in natural conditions, but a half of 

the total sediment that was supposed to be provided by the delta in that time span. 

It is important to note that the flood events occurred in 2002 and 2006 are 

supposed to not significantly contribute to the sediment supply because of the 

Cuevas del Almanzora dam. 

When erosive and accreted areas were analysed, some stretches of eroded 

and accreted areas were found. The Quitapellejos and El Playazo beaches were 

highly accreted because of the joint effect of nourishment and jetties, while Puerto 

Rey beach reached a NSM up to about 30 m (3.8 m/yr of accretion rate). A part of 

Puerto Rey beach accreted also up to 21 m probably as a consequence of sand 

nourishment or alongshore sediment transport. The eroded areas were the 

Almanzora’s mouth surrounding areas up to Punta de Hornicos, the South part of El 

Playazo (maximum erosion of -40 m), located towards South the jetty, and a large 

eroded shoreline appeared from Puerto Rey to Las Marinas beaches (maximum 

erosion of -37 m), likely influences by the lack of a local nourishment. The 

Almanzora’s mouth was still on a reconfiguration process (general erosion 

occurred and sand migration still continued) and a jetty was installed here in order 

to provide sea water to a local desalination plant. 

Generally, erosive processes were still presented and an average NSM of -3.8 

m was estimated for the entire coastal cell even when a great nourishment effort 

and jetties installation took place. However, since such important human 

interventions were performed between 2001 and 2009, a more detailed 

explanation was needed and the WMS images were highly helpful in this regard 

(2004, 2006, 2007, and 2008 WMS images were available). As previously 

mentioned, the 2001 WMS orthoimage enabled a more suitable description of the 

Quitapellejos beach evolution since it demonstrated that the accretion shown in the 

2001 own-produced image was greatly temporary. Because of that, the great 

accretion estimated in this area between 2001 and 2009 was supposed to be even 

larger. The erosion was clear for the periods 2001-2004 and 2004-2006 in 

Quitapellejos beach, mainly affected by the lack of sediment supply and the wave 
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approaching incident angle, and a slight accretion stage occurred between 2006 

and 2007, when the northern jetty was being installed. Regarding the Almanzora’s 

mouth, the sand migration continued from 2001 and 2007 and the trend was 

clearly towards the equilibrium. Moreover, an accretion process seemed to turn up 

at Las Marinas and Puerto Rey beaches, confirming the alongshore sediment 

transport. Finally, if 2007 and 2008 WMS-derived shorelines are analysed (both 

jetties are visible in 2008 image), a large accretion can be seen in Quitapellejos 

beach in between both jetties and surrounding northern areas (a huge sand 

nourishment was performed) while some important erosion can be proved 

southern the jetty located more southern. Likewise, important erosion was seen at 

Las Marinas beach between both images and it could be related to the Garrucha’s 

harbour main dock extension carried out during this period. 

Summing up, the period between 2001 and 2009 was not easy to analyse 

since many human interventions were carried out and the natural shoreline 

evolution was partially masked by them. However, important information could be 

extracted from WMS orthoimage and some conclusions could be extracted. 

2009-2011 

During this short time span, a general accretion occurred at Las Marinas, 

Puerto Rey, and El Playazo beaches, while the erosive processes were concentrated 

at the Quitapellejos beach. The previous sand nourishment done during 2009 and 

the jetties installation seems to maintain a significant impact. The area under 

erosion in Quitapellejos beach got significantly reduced by the jetties although that 

had a high intensity, reaching up to -43 m (-21.6 m/yr). Similar to what happened 

in 2001, the rapid erosion carried out in this area is clearly dissuading new sand 

nourishment on it, at least in those parts which the wave approaching angle is far 

to be perpendicular. However, the alongshore sediment transport turned out to 

have an accretion effect on the southern areas, especially due to the jetties 

installation and the Garrucha’s harbour. Thus, the jetties acted as a wall for 

sediments in their North face, reaching 25 m of accretion between both of them. 

Moreover, once the capability of retaining sediments of the southern jetty was 

exceeded, the sediment started to follow towards alongshore direction through the 

South, and the beaches beyond the jetties started to accrete up to 22 m cross shore. 

However, the main accretion occurred in Las Marinas beach in which a NSM of up 

to 44 m was calculated (a rate of 21.9 m/yr). Here, it is estimated that the new 

Garrucha’s harbour dock played a key role by acting as a wall for sediment. 

Some conclusions from the evolution of changes 

The previously discussed results showed that the study site coastal cell 

evolution was really variable. Too many factors were proved to play highly 
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important roles. Firstly, natural features on the study site were very influent. On 

one hand, the lack of sediment supply derived from the few number of flood events 

between 1943 and 1969 leaded to point it out as the main factor explaining the 

generalized huge erosion observed in the North part of the area during the 1956-

1977 coast evolution. On the other hand, the seaward positions of the shoreline in 

1977 for the South part clearly indicated the general alongshore transport, the 

important role played by the unbalanced orientation of the shoreline regarding the 

wave approaching incident angle, and the importance of the Garrucha’s harbour as 

a cross shore limit for sediment transport. Therefore, this coastal cell can be 

classified as a highly dynamic coastal area regarding its morphology because of the 

sediment supply was not provided regularly due to the local climate features 

(sediment supply highly depends on the flood events), but also because of the 

initial orientation of the shoreline which made some areas, such as Quitapellejos 

beach, potentially erodible due to the coastline angle with respect to the dominant 

wave approaching. 

In this sense, a modified model of alongshore transport of sediment adapted 

from the model proposed by (Roelvink, Reniers 2012) has been run in the study 

area to compute the erosion/accretion balance (sediment transport in m3/yr) for 

every point along the coastline as a function of different variables such as 

bathymetric data, climate data (wave direction and associated probability, 

significant wave height and wave peak period) and coast angle (given by the 

normal to the shoreline). The results, which should be interpreted as qualitative 

more than quantitative data due to the fact that the model has not been validated 

against experimental data, are depicted in Figure 4.22. It is worth noting that the 

negative net sediment transport (red line) is situated approximately between the 

coast angles from 165º to 205º with respect to the North, clearly coinciding with 

the area corresponding to the Quitapellejos beach, i.e., the coastal area which has 

been experimentally pointed out as the more vulnerable in the presented shoreline 

evolution analysis. The estimated volume of sediment lost in the worse point of 

this zone would reach a value close to 170000-180000 m3/yr along an active 

cross-shore profile of about 2193 m length and up to a depth of 30 m below the sea 

surface. 

The dependence of the sediment supply can be proved if the results reported 

by Viciana (1996) are taken into account. The erosion rate decelerated in 

Quitapellejos beach if 1957-1965 and 1965-1973 are compared, being the latter 

the half of the former. That reduction was probably due to the flood episodes of 

1969 and 1972. Finally, the fact that the erosion was always more evident than 

accretion could demonstrate the existence of a sediment sink located at the 

Palomares canyon. Therefore, sediment budget (supply, sources, and sinks) and 

oceanographic conditions were revealed as important factors for shoreline 

evolution of the study area. Here, it is important to note that the geology 

framework, the grain size, and the nearshore can play a significant role (Honeycutt, 
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Krantz 2003). That means that the changes occurred over the years in the study 

area could make the evolution to be different in the future. For instance, the 

Almanzora’s delta became formed by coarse grain size while it was formed by finer 

sizes in 1956. Thus, the potential erosion is nowadays less than it was before and 

the erosion rate will be surely changed. The same could occur in Quitapellejos 

beaches where the erosive front is clearly formed by stones or clays instead of 

sand beaches. Therefore, the shoreline evolution cannot be linear in those areas 

since the material to be eroded has been changed over time. 

 

Figure 4.22. Sediment transport (S) expressed in m3/yr according to the coast angle Phic 

(given by the normal to the shoreline with respect to the North). Green and Blue lines indicate 

sediment inputs and outputs, respectively, for a particular coastline point (finite element for 

computation). Red line represents the net balance (input-output) for every coastline point. 

Secondly, regarding the human-induced factors, the influence was more 

difficult to estimate. The main anthropic factor was the Cuevas del Almanzora dam 

construction (between 1982 and 1984) which was proved to be the main reason of 

the dramatic sediment supply reduction. Additionally, sand mining until 1986 

could play an important role for the large erosion found in 1989, and the 

Almanzora’s mouth channelling apparently affected the shape of the delta since the 

way the water flow reach the sea changed deeply. The sand nourishment activities, 

although temporary made the beaches accrete, seemed to have exceptional effects 

and the beaches recovered the previous state rapidly. However, the installation of 

the jetties could fix the sediment supply in the northern areas and once the effect 

of wave incidence was corrected by means of making a seaward shoreline. 

Therefore, the remaining factors would only be the power of some events to 

provoke erosion (storms and so on) and the main alongshore transport direction 
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which leads the sediment towards the Garrucha’s harbour and the Palomares 

canyon. Therefore, if no additional sediment is provided in the coastal cell, the 

general evolution would trend to the erosion since the alongshore sediment 

transport has a clear main direction and a sediment sink on the south border or 

the cell exists. 

MEDIUM-TERM SHORELINE CHANGE RATE ASSESSMENT 

According with the previous sections of this chapter, the shorelines to be used 

for medium-term shoreline evolution assessment in the study area were obtained 

from orthoimages digitizing (i.e. HWL was used as a proxy for shorelines from 

own-produced or Spatial Data Infrastructure –SDI- images) or DEM-derived (0.75 

m contour level). The finally extracted shorelines are shown in Table 4.17. In order 

to simplify the process of change rate accuracy assessment, an average slope value 

of 0.10 was used to evaluate the planimetric accuracy for DEM-derived shorelines, 

thus the computed accuracy was independent on the alongshore position. 

Table 4.17. Shorelines used for medium-term changes rate 

Year Source Date 
Shoreline estimated  

accuracy (m) 

1956 Own-produced ortho. 30/09/1956 7.45 

1977 DEM 15/07/1977 5.00 

1984-85 SDI ortho. 31/12/1984 9.10 

1988 DEM 15/09/1989 2.80 

1998-99 SDI ortho. 31/12/1998 9.10 

2001 DEM 09/04/2001 2.70 

2001 SDI ortho. 31/12/2001 7.27 

2004 SDI ortho. 15/06/2004 7.27 

2006 SDI ortho. 15/06/2006 7.27 

2007 SDI ortho. 15/06/2007 7.61 

2008 SDI ortho. 15/06/2008 7.27 

2009 DEM 28/08/2009 0.89 

2011 DEM 30/08/2011 0.82 

Note that, for this study, the longest term evolution is considered in cases 

which the first available data is included (1956) since it constitutes the maximum 

time span available in the study area, although the time span used for this study 

have been considered as medium-term (several decades) for some authors 

(Crowell, Douglas & Leatherman 1997, Galgano, Douglas & Leatherman 1998). 
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Thus, although all datasets would correspond with the longest term evolution as 

possible, medium-term was used in order to be as rigorous as possible. 

In order to check the influence of the data used for medium-term shoreline 

evolution, four different configurations have been taken into account. First, A1 

configuration only considered the 6 own-produced shoreline data (no SDI data 

were included) for the entire time span. Secondly, all the available data (13 

shorelines) were included for the entire time span for A2 configuration. Then, the 

time span was divided in two parts in order to determine the possible influence of 

the installation of the two jetties and the large sand nourishment carried out in 

2007. Thus, the two considered periods were 1956-2007 and 2008-2011, 

including the SDI extracted shorelines in order to count on enough number of data 

for rate regression estimation. Therefore, 10 shorelines for 1956-2007 and 3 

shorelines for 2008-2011 time spans were utilized. The last configurations were 

called B1 and B2, respectively, representing a medium- and short-term shoreline 

evolution. 

Table 4.18. Different homogeneous areas used for shoreline evolution results. 

Zone Alias N° transects Group 

Fábrica del Duro I FD1 52 3 

Fábrica del Duro II FD2 56 4 

Punta Hornicos PH 43 5 

Quitapellejos I QP1 64 6 

Quitapellejos II QP2 66 7 

North jetties NJ 111 8 

Between jetties BJ 114 9 

South jetties SJ 164 10 

Puerto Rey PR 578 12 

Las Marinas LM 155 13 

Furthermore, and for the sake of helping to understand the results, 

homogeneous coastal areas were established and the transects included in those 

areas were used for averaging the final results. The selection of these areas was 

based on geomorphic and evolution features (Table 4.18). For instance, the jetties 

installed between the beaches El Playazo and Quitapellejos made up 3 different 

groups: north part, south part, and the beach located just between both jetties. 

The shoreline change rate estimation methods applied in this study were EPR, 

MDL, OLS, JK, RLS, WLS, RWLS, LAD, and WLAD (see Shoreline change rates 

methods section). However, JK and MDL methods were not included in the final 

analysis since those results were highly dependent on the number of shorelines 
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used and they were not applicable for every configuration, especially for the B2 

(only 3 shorelines).  

Influence of adding SDI-derived shorelines 

Although shorelines digitized from SDI orthoimages were the less accurate, 

they increase the number of observations and, then, their influence on the results 

should be estimated. Therefore, the results obtained from configurations A1 and 

A2 must be compared. The largest differences between both configurations 

occurred for RLS method while RWLS, LAD, and WLAD presented some significant 

differences for some groups, OLS and WLS being considered similar for every 

group and both configurations. The differences for RLS method are shown in Table 

4.19. It is highlighted that the differences for groups FD1, FD2, QP1, QP2, NJ, and BJ 

cannot be considered appropriate, indicating that the number of shorelines 

involved in the calculation played a key role. 

Table 4.19. Difference between A1 and A2 configurations for RLS method (expressed in m/yr) 

Area A1 A2 
Difference 

(A2-A1) 

FD1 -0.32 -1.12 -0.80 

FD2 -1.70 -1.25 0.45 

PH -1.36 -1.41 -0.05 

QP1 0.67 -0.02 -0.70 

QP2 -0.35 -1.26 -0.91 

NJ -0.95 -2.35 -1.40 

BJ -1.51 -2.26 -0.75 

SJ -0.94 -0.97 -0.04 

PR 0.37 0.38 0.01 

LM 0.51 0.73 0.21 

As previously detailed, RLS is based on removing outliers before fitting the 

regression line, not including the corresponding shoreline uncertainty. When the 

group in which the largest difference is analysed and the removed shorelines were 

accounted, it was found that 1956 shoreline (the oldest) was removed 109 times 

for both A1 and A2 configurations. However, while for A1 no more shorelines were 

generally removed, for A2 configuration (with SDI shorelines) 2008, 2009, and 

2011 shorelines were eliminated in 77, 109, and 98 transects respectively. Those 

observations perfectly matched with the period after jetties installation (2007). 

Therefore, RLS method treated those shorelines as outliers (Figure 4.23). It was 

proved that the influence jetties area (QP2, NJ and BJ groups) had the largest 
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difference between both configurations. For FD1 area, A2 configuration trended to 

remove the oldest shoreline since the concentration of the newest ones had a large 

influence. That implied that the equally time spaced data was preferable for 

shoreline change rate estimation. 

 

Figure 4.23. RLS results for A1 and A2 comparison in one transect of the group NJ. Note that 

1956 shoreline has not been included for both regressions while 2008, 2009, and 2011 

shorelines were not included for A2 configuration. 

Influence of including shoreline uncertainty 

Some of the estimated rates were proved to significantly vary regarding 

whether the data were weighted or not. When homologous methods were 

compared larger differences were found in the case of the A2 configuration for 

RLS-RWLS and LAD-WLAD comparisons, while both configurations yielded similar 

differences when OLS-WLS were compared (Figure 4.24). The areas affected by 

those differences were FD1, QP1, QP2, NJ, and BJ. Therefore, the effect of the jetties 

installation was clear. Regarding those results, an overweighting effect was found 

mainly due to two reasons: first, the last shorelines had a much higher accuracy 

than the others and this made the erosion rate smaller (e.g. the erosion rates 

computed from WLS and RWLS were much smaller than those obtained from OLS 

and RLS respectively, as can be seen in Table 4.20); and second, most of the 

shorelines were acquired from 2000 so those data provoked that the influence of 

the oldest shoreline was very little (e.g., that effect provoked that RLS rates were 

smaller than OLS when 1956 was considered as outlier). 
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Table 4.20. OLS and WLS methods comparison for A2 configuration (expressed in m/yr) 

Area OLS A2 WLS A2 
Difference 
(WLS-OLS) 

FD1 -1.45 -0.73 0.72 

FD2 -1.78 -1.55 0.23 

PH -1.61 -1.39 0.22 

QP1 -0.92 0.02 0.93 

QP2 -2.73 -1.23 1.50 

NJ -3.10 -1.30 1.80 

BJ -1.75 -0.52 1.23 

SJ -0.82 -1.13 -0.31 

PR 0.46 0.36 -0.10 

LM 0.55 0.53 -0.03 

 

Figure 4.24. OLS-WLS for the same profile (group NJ). Note that when weights were 

considered, the most accurate shorelines (2009 and 2011) had a large influence while 1956 

shoreline largely influences the OLS result. 

Beach areas with stable change rates 

Those areas in which the jetties installation had less effect showed similar 

shoreline change rates regardless the method applied. For instance, the areas PH, 

SJ, PR, and LM yielded no differences when configurations A1 or A2 were applied 

for every regression method, so the linearity was maintained after the jetties 

installation (Table 4.21). Moreover, the aforementioned areas (and also FD2) did 

not present large differences when unweighted methods were compared against 
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the homologous weighted ones (OLS-WLS, RLS-RWLS, and LAD-WLAD, see Figure 

4.25). Finally, reweighted methods (i.e. outliers are removed) performed similar to 

their homologous non-reweighted methods (OLS-RLS and WLS-RWLS) for these 

areas as well. 

Table 4.21. Regression methods results for areas with stable change rates for configuration A1 

(expressed in m/yr). 

Area OLS WLS RLS RWLS LAD WLAD 

FD2 -1.74 -1.56 -1.70 -1.61 -1.64 -1.69 

PH -1.59 -1.38 -1.36 -1.38 -1.43 -1.42 

SJ -0.80 -1.12 -0.94 -1.15 -0.91 -1.02 

PR 0.56 0.36 0.37 0.29 0.43 0.40 

LM 0.62 0.59 0.51 0.53 0.80 0.64 

 

Figure 4.25. Linear trend estimated in FD2 group by means of WLS and A2 configuration. Note 

that the noise in shoreline positions for the last years did not significantly modify the general 

trend. 

Divided time span 

Previously, the entire time span configurations, A1 and A2, have been 

considered. Here, the results obtained by means of the configurations B1 and B2 

will be presented and discussed. As previously mentioned, both configurations 

were set taking into account all shorelines (SDI data included) but the time span 

was divided into two parts regarding the jetties installation: 1956-2007 (B1) and 
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2008-2011 (B2), meaning 10 and 3 shorelines respectively. Therefore, B1 

configuration was supposed to describe non-human influenced shorelines 

(although that was not completely true) and the results should be comparable with 

those estimated by A1 and A2 configurations. Moreover, these comparisons could 

help to explain the influence of including the newest shorelines. 

First of all, the influence of the regression method should be determined for 

configuration B1 (Table 4.22). Thus, the influence of using weighted and 

reweighted methods was determined. When weighted methods were applied, the 

estimated rates were similar except for areas QP1 and QP2 for OLS-WLS and RLS-

RWLS comparisons, and for areas FD2 and QP1 for LAD-WLAD comparison. The 

largest differences occurred in the case of OLS-WLS comparison. Again, the 

concentration of the newest shorelines and their higher accuracy seem to make the 

change rates smaller (Figure 4.26). Furthermore, the influence of 1956 shoreline 

for OLS could be also too high since rates computed from OLS were always higher 

than those obtained from WLS. However, the differences between both reweighted 

methods were quite smaller since 1956 shoreline positions were estimated as 

outliers in most of the transects. 

Table 4.22. Absolute differences (m/yr) between weighted and non-weighted regression 

methods and between reweighted and non-reweighted methods for B1 configuration. Bolded 

figures represent the highest differences. 

Area OLS-WLS RLS-RWLS LAD-WLAD OLS-RLS WLS-RWLS 

FD1 0.15 0.03 0.11 1.04 1.22 

FD2 0.16 0.03 0.32 0.02 0.16 

PH 0.10 0.03 0.08 0.01 0.08 

QP1 0.47 0.22 0.23 1.29 1.05 

QP2 0.69 0.32 0.09 1.96 1.59 

NJ 0.28 0.17 0.01 1.25 0.80 

BJ 0.16 0.05 0.17 0.43 0.33 

SJ 0.05 0.05 0.03 0.28 0.19 

PR 0.01 0.02 0.01 0.16 0.13 

LM 0.02 0.05 0.15 0.43 0.40 

The influence of removing some shorelines (especially the 1956 shoreline) 

can be tested in OLS-RLS and WLS-RWLS comparisons (Table 4.22). The results 

varied deeply when reweighted regression was applied, being the estimated rates 

much smaller when outliers were removed. In fact, reweighted methods trended to 

perform erosion rates much smaller and even accretion was estimated for the QP1 

area when RWLS was applied (+0.08 m/yr). This effect was due to the fact that the 

1956 shoreline was always removed and 2009 and 2011 high accurate shorelines 

contributed with a high weight on the rate estimation. In the case of QP1 area, the 
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sand nourishment performed in 2001 (DEM-derived shoreline) had also a 

significant effect since produced an artificial and temporal accretion but the 

shoreline was also high accurate. 

The areas in which differences among regression methods were smaller were 

FD2, PH, SJ, BJ, PR, and LM. The rest of the areas, that is FD1, QP1, QP2, and NJ, 

were affected by estimating 1956 shoreline as outlier (reweighted methods) or 

overweighting the more recent shorelines. Moreover, natural morphological 

behaviour had an important effect for FD1, where sediment migration from the 

near delta shaped up a more curved coastline (change observed between 1988 and 

1998). Thus, non-linear but natural behaviour also affected the estimated rates. 

 

Figure 4.26. OLS and WLS comparison for the area QP2. Note the slight shoreline change rate 

reduction when weights were applied. 

Regarding the B2 configuration, it should be noted that a very short-term 

shoreline evolution was assessed and some of the methods tested were not able to 

be estimated since only three shorelines were available (2008, 2009, and 2011). 

For instance, reweighted methods were not applicable to areas FD1, FD2, and NJ 

because of regression cannot be computed when one shoreline had to be removed. 

Moreover, the time span was too little to estimate a change in the estimated rates 

as compared to B1 configuration. However, this short-term changes could help to 

understand the shoreline adaptation to the new situation derived from the jetties 

installation. For instance, it seems to set out an accretion process for the FD1 and 

FD2 areas due to the previously mentioned sand migration process. Furthermore, 

the PH area was confirmed as a no-change zone while for B1 configuration a clear 
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medium-term erosion rate was estimated. In this way, the erosion trend observed 

in Quitapellejos beach (QP1 and QP2) was confirmed despite the large sand volume 

poured on this area in 2008. However, a subtle change on trend was found in NJ, 

BJ, and SJ areas in which erosive process turned to be accretion from 2008. That 

fact highlighted the main alongshore sediment transport direction and the effect of 

retaining the sediment by means of both jetties. Finally, an important accretion 

process was detected in LM area, probably due to the effect of the Garrucha’s 

harbour main dock which worked as a true barrier with respect to the natural 

alongshore flow, therefore accumulating the sediment at the South edge of the 

coastal cell. 

Reducing the number of shorelines 

It has been proved that one of the main problems when linear regression is 

applied for shoreline change rates estimation is related to the overweighting due 

to the concentration of highly accurate shorelines in the last years of the analysed 

period. Then, a test based on two additional configurations C1 and C2 involving 

seven (1956, 1977, 1984, 1988, 1998, own-produced 2001, and 2007) and eight 

(C1+2011) shorelines, respectively, has been carried out. Those configurations 

were supposed to be analogous to B1 (all possible shorelines until 2007) and A2 

(all possible shorelines) configurations. 

Regarding the influence of the weighted and reweighted based methods, it 

should be highlighted that the results for C1 were similar to the B1 ones and also 

between C2 and A2. Therefore, weighted methods still made the rates smaller 

(except for RWLS if compared with RLS) and reweighted methods also had the 

same effect. 

It was also interesting to know about the differences between C1 and C2, 

determining the influence of the last shoreline (2011). Firstly, it should be noted 

that those differences were smaller than the differences between A2 and B1 

configurations, especially for RLS and WRLS methods, indicating that the 

overweighting effect could be solved by means of these methods. Secondly, 

important differences between C1 and C2 existed when WLS and WLAD were 

considered (Table 4.23). Those results were due to the high accuracy of the 2011 

shoreline which trended to reduce the computed erosion rate. Otherwise, RLS and 

LAD yielded the most similar results although some areas presented important 

differences yet. 

When C1 and C2 configurations were faced against their respective 

homologous B1 and A2 configurations, some interesting results came up. Firstly, 

differences between C1 and B1 reflected a good agreement between both 

configurations (Table 4.24) except for FD1 and FD2 areas, in which reweighted 

methods resulted highly sensitive to those shorelines considered as outliers. 
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Table 4.23. Absolute differences between configurations C1 and C2 in m/yr. Bold figures 

indicates the highest differences. 

Area OLS WLS RLS RWLS LAD WLAD 

FD1 0.20 1.29 0.21 0.43 0.00 1.76 

FD2 0.09 0.53 0.35 0.40 0.09 0.79 

PH 0.04 0.16 0.03 0.13 0.05 0.12 

QP1 0.24 0.61 0.07 0.06 0.26 0.17 

QP2 0.43 1.19 0.24 0.26 0.11 0.67 

NJ 0.58 2.05 0.28 0.52 0.28 2.18 

BJ 0.43 1.78 0.03 0.07 0.38 2.21 

SJ 0.11 0.40 0.04 0.07 0.07 0.40 

PR 0.05 0.23 0.10 0.14 0.01 0.23 

LM 0.09 0.09 0.43 0.42 0.11 0.10 

Table 4.24. Absolute differences between configurations C1 and B1 in m/yr. Bold figures 

indicates the highest differences. 

Area OLS WLS RLS RWLS LAD WLAD 

FD1 0.19 0.28 0.40 0.47 0.12 0.37 

FD2 0.01 0.03 0.44 0.51 0.01 0.25 

PH 0.02 0.00 0.21 0.11 0.00 0.03 

QP1 0.13 0.03 0.09 0.12 0.12 0.07 

QP2 0.23 0.08 0.08 0.14 0.08 0.01 

NJ 0.17 0.08 0.09 0.13 0.05 0.05 

BJ 0.07 0.03 0.20 0.21 0.17 0.01 

SJ 0.08 0.05 0.09 0.04 0.10 0.06 

PR 0.06 0.05 0.16 0.14 0.08 0.03 

LM 0.01 0.07 0.24 0.20 0.00 0.10 

If differences between those configurations which included the entire time 

span are considered (C2 and A2, see Table 4.25), it is worth noting that larger 

differences than the previous C1-B1 comparison were attained. However, those 

differences were generally lower than those yielded between B1 and A2 

configurations, both thought to determine medium-term shoreline change rates. 

The main differences were observed in the case of RWLS method since only one 

high accurate shoreline (2011) and less number of recent shorelines were 

included. That fact contributed to the oldest shoreline position (1956) was 
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estimated as outlier much less frequently, leading to computed erosion rates much 

more intense. 

Table 4.25. Absolute differences between configurations C2 and A2 in m/yr. Bold figures 

indicates important differences. 

Area OLS WLS RLS RWLS LAD WLAD 

FD1 0.12 0.01 0.38 0.09 0.23 0.16 

FD2 0.03 0.02 0.68 0.99 0.01 0.19 

PH 0.02 0.01 0.01 0.03 0.02 0.06 

QP1 0.40 0.41 0.04 0.42 0.06 0.25 

QP2 0.62 0.52 0.01 0.51 0.26 0.64 

NJ 0.33 0.27 0.14 1.72 0.35 0.14 

BJ 0.01 0.08 0.19 2.05 0.10 0.31 

SJ 0.15 0.10 0.10 0.28 0.18 0.00 

PR 0.03 0.07 0.13 0.02 0.11 0.09 

LM 0.30 0.21 0.05 0.28 0.19 0.22 

Discussion on the rates variability 

In the results previously presented, a high variability on the estimated rates 

was found and four variables were discussed: (i) the time span used for medium-

term change rate estimation (1956-2007 vs. 1957-2011 based on the highly 

influence human intervention in 2007), (ii) the number of shorelines used (all the 

available shorelines vs. a better time-spaced shorelines), (iii) the influence of using 

weighted data based on the corresponding shoreline accuracy, and (iv) the 

influence of considering some shorelines as outliers (therefore not all the 

shorelines are included in the change rate assessment). 

The main goal of this study was to develop an efficient method to determine 

the underlying medium-term shoreline movement trend in order to estimate 

future shoreline position or determine erosion hazard vulnerability along the 

coastal area under study. The high variation on estimated shoreline change rates 

gave a clear idea about how difficult was the determination of the most 

appropriate regression method. Regression methods generally suppose linear 

behaviour regarding shoreline change, but this fact may not match quite well the 

actual data. For instance, the high grade of human intervention in this coastal cell 

(see Human factors affecting the study site area section) clearly indicated that the 

natural erosion/accretion processes were probably masked. 
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With regard to the time span used for shoreline evolution assessment, 

complete time-span configurations (A1, A2, and C2) generally yielded similar 

results except when applying reweighted methods. Otherwise, if non-complete 

time-span is considered (B1 and C1), results were highly similar except for some 

areas when using RWLS and RLS methods since different shorelines were 

considered as outliers. In general, previous research has proved that, because of 

the variability in the data, the longer the temporal span of the data, the lower the 

uncertainty of the long-term trend (Honeycutt, Crowell & Douglas 2001, Douglas, 

Crowell & Leatherman 1998). In this sense, a minimum time span of 100 years has 

been recommended to estimate long-term rates (Crowell, Douglas & Leatherman 

1997). Therefore, and owing to no older data were available for our coastal area, 

medium-term rates had to be considered in this work (Jiménez, Sánchez-Arcilla 

1993). 

Focus on the number of shorelines, RWLS and RLS methods were especially 

affected by the overweighting effect since too many shorelines were concentrated 

into the most recent decades. Having available evenly distributed shorelines has 

been previously recommended for long-term shoreline rate estimation (Dolan, 

Fenster & Holme 1991, Genz et al. 2007, Bowman, Pranzini 2008). However, the 

number of shorelines used for carrying out the calculation affected the shoreline 

change rate estimation. In fact, it has been proved that making predictions of 

future shoreline position based on small number of temporal samples cannot be 

expected to yield accurate results (Douglas, Crowell & Leatherman 1998). The 

number of shorelines actually involved in the calculation was affected when 

applying the RLS and RWLS methods since they can remove some observations. 

One of the most frequently removed shoreline was the 1956 one due to the fact 

that the 1956-1977 time span did not follow the general linear-trend because 

more intensive erosion was registered during this period. However, some 

researchers have found that the oldest data can play a key role for long-term 

shoreline rate estimation, especially when few old shorelines are included and that 

oldest position also helps to constrain estimates of shoreline location into the 

future (Douglas, Crowell & Leatherman 1998, Honeycutt, Crowell & Douglas 2001). 

Regarding considering some positions as outliers, it emerges the question 

about whether shorelines should be considered as anomalous or not since 

significant differences can appear when using reweighted methods. For areas FD1 

and FD2, the historical sand migration made the shoreline position to move 

differently over the years and the shoreline positions should not be targeted as 

outliers but highly noise data from which a larger time span could reflect better 

the general trend. However, outliers removal was positive for finding the 

underlying trend for A2 and C2 configurations in which most recent shorelines 

were removed in the human-influenced areas since they did not follow that trend. 

Therefore, the need of outlier detection depended on the study area. In previous 

studies, some discussion have been done about including this kind of observations 
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or not, mainly referred to storm events. Some researchers stated that those 

shorelines should be removed from the regression by having a prior knowledge 

about storm events (Douglas, Crowell & Leatherman 1998, Douglas, Crowell 2000) 

and even removal of storm-specific shorelines has been considered one of the most 

important factor in improving erosion forecasts (Honeycutt, Crowell & Douglas 

2001). Thus, these events are considered as inconsistent for long-term evolution 

which is supposed to be dependent on SLR or variation in sediment supply. 

Furthermore, beaches are usually recovered over the next years to decades 

(Douglas, Crowell 2000, Bowman, Pranzini 2008). Otherwise, other authors have 

determined that some coastal areas can be considered as storm-influenced and 

those shoreline positions should not be removed because they are part of the 

entire signal (Fenster, Dolan & Morton 2001). 

In this study two types of outliers can be found. First, natural outliers 

occurred when a natural shoreline position did not match the estimated medium-

term trend. That was the case for 1956 shoreline in many transects since the 1956-

1977 erosion was much higher than the erosion observed from then on. In other 

works, oldest positions were only inconsistent with the general trend where beach 

nourishment or different geologic or sedimentary processes appear (Honeycutt, 

Crowell & Douglas 2001). This matched with different factors affecting this study 

area such as a drastic reduction of sediment supply (see Climatic considerations 

subsection within Study site section) and a significant sand nourishment 

undertaken in 2007. Both facts were supposed to influence for pointing out the 

1956 shoreline as an outlier. Second, artificial outliers turned up when the 

shoreline position was influenced by human interventions. Here, the jetties 

installation and the sand nourishment done in 2007 made that newer shorelines 

did not follow the general trend in some areas afterwards that intervention (at 

least in a short-time period). For some authors, artificial physical changes can 

make data at prior epochs to be misleading (Crowell, Douglas & Leatherman 1997) 

and then, quasiperiodic nature must be considered in evaluating the forecast 

(Douglas, Crowell & Leatherman 1998). In fact, simple linear regression has been 

considered appropriate only for shorelines unaffected by inlets or engineering 

changes (Galgano, Douglas & Leatherman 1998). However, it is understood that 

the medium-term erosion trend affecting the area prior to the 2007 human 

intervention can still determine the general erosive trend existing on the study 

area and the effect of the artificial influence should be performed in the future 

based on that previous medium-term trend. 

Determining the most suitable shoreline change rate method 

The confidence interval (CI) was estimated for the estimated change rate in 

every transect (p<0.05) and the mean value for every group was also assessed by 

using every shoreline configuration. CIs were directly estimated as a secondary 
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result of the regression applied by means of the same software (MATLAB®). In 

other works, error in prediction (EIP) has been used in other works to determine 

the most suitable shoreline change rate method by means of comparing an 

extrapolated shoreline (based on the estimated rates) with an actual shoreline 

(Honeycutt, Crowell & Douglas 2001, Genz et al. 2007). Here, the time span 

utilized, the fact that most of the shorelines were recent, and the high degree of 

human intervention made difficult to use one of the available shorelines as a 

reference for EIP assessment. Therefore, CI was carefully used to determine the 

most suitable shoreline change rate method (Table 4.26). Results showed that 

configuration and, especially, the applied change rate estimation method had an 

important effect on CIs. It was highlighted that reweighted methods (RLS and 

RWLS) achieved the lowest CIs for B1, C1, and C2 configurations, while RLS yielded 

significantly lower CIs for A1 and A2. The reduction of the CI when outliers are 

removed was also demonstrated by Douglas, Crowell (2000). Again, the effects of 

overweighting came up for RWLS when high accurate and recent-time gathered 

shorelines were used (A1 and A2), while the results between RLS and RWLS were 

similar when either not recent shorelines were included (B1 and C1) or just one 

high accurate shoreline was enclosed (C2). Regarding the configuration used, it 

was clear that B1 yielded the less CI for every regression method because it did not 

enclose recent shorelines (as compared to A1 and A2) and the number of 

shorelines involved in the calculation were larger (as compared to C1 and C2 

configurations). 

Table 4.26. Averaged IC results (± m/yr) for the different regression methods tested and every 

configuration. Results from LAS and WLAS were not included since they were similar to OLS 

and WLS. 

 
A1 A2 B1 C1 C2 

IC_OLS 1.19 0.68 0.65 0.98 0.93 

IC_WLS 1.73 0.91 0.76 1.09 0.84 

IC_RLS 0.57 0.35 0.31 0.37 0.37 

IC_RWLS 1.45 0.85 0.31 0.36 0.32 

According to these results, RLS or RWLS could be the shoreline change rate 

estimation method to choose. In this way, the outlier removal seemed to be a key 

stage to improve shoreline change rates accuracy. Moreover, B1, C1, and C2 

configurations yielded similar results for both methods (A2 was also similar by 

using RLS but not RWLS). In general, and bearing in mind that shoreline accuracy 

must be included in the analysis, the largest time span should be also taking into 

account, shorelines should be evenly distributed, and anomalous shoreline 

position (outliers) could exist, RWLS method over C2 configuration should be 

finally chosen (results shown in Table 4.27). In fact, this combination embraced 
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the entire 1956-2011 period with less-gathered and weighted shoreline positions. 

Human-altered positions of 2011 (jetties and Quitapellejos areas) and non-linear 

trend estimated for 1956 (high intense erosion occurred in 1956-1977 period was 

later apparently mitigated) were treated as outlier for most of the transects in QP1, 

QP2, NJ, and BJ areas. 

Table 4.27. Shoreline change rates results for RWLS and C2 configuration (i.e. from 1956 to 

2011). Rates are expressed in m/yr, while the standard deviation and CI are in ±m/yr. R2 

represent the coefficient of determination. 

Area 
Mean 
rate 

Std. dev. 
rate 

Mean CI 
Std. dev. 

CI 
Mean R2 

FD1 -0.56 0.87 0.42 0.22 0.61 

FD2 -1.98 0.50 0.15 0.13 0.99 

PH -1.38 0.83 0.15 0.06 0.92 

QP1 0.14 0.18 0.24 0.11 0.40 

QP2 -0.87 0.27 0.48 0.16 0.74 

NJ -2.10 1.05 0.71 0.13 0.78 

BJ -2.60 0.36 0.44 0.14 0.97 

SJ -0.91 0.61 0.16 0.09 0.88 

PR 0.34 0.39 0.20 0.12 0.69 

LM 0.68 0.77 0.30 0.12 0.65 

Previous results contrasted with those found by Genz et al. (2007) from which 

OLS, RLS, WLS, RWLS, LAD, and WLAD evaluated by EIP were not different each 

other when synthetic data were used. However, they stated that weighted method 

were preferred when major uncertainties are known, underlining that reweighted 

methods should be used when storms effects (outlier positions) are hard to 

identify. The determination of the most suitable method and configuration 

combination through the CI can have some limitations and further research should 

be carried out to estimate EIP for some future shoreline in order to validate the 

estimated rates. Moreover, some results could be inconsistent if linear shoreline 

migration was considered. For instance, the area QP1 yielded a mean R2 too small, 

indicating that linear trend did not exist in this area. Here, two errors can be 

committed: first, the evolution trend is supposed to be linear although some 

shorelines have been proved not to change uniformly (Bowman, Pranzini 2008); 

and second, the reweighted methods were not capable to eliminate the outliers 

positions and large errors were introduced into the long-term determination 

(Honeycutt, Crowell & Douglas 2001). In fact, the previous knowledge of 

climatology and engineering history was recommended to be taken into account 

since non-linear components are likely to be critical factors controlling short-term 
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shoreline change (Galgano, Douglas & Leatherman 1998, Honeycutt, Crowell & 

Douglas 2001, Bowman, Pranzini 2008). Additionally, some transects could lead to 

irrelevant change rate since the CI can be even larger than RWLS rate. However, 

that occurred much more frequently when OLS or WLS were applied since outliers 

significantly increased the yielded CI. 

CONCLUSIONS 

In this Chapter, the long as possible term for shoreline change rate was 

assessed in a Mediterranean coastal area by means of a set of shorelines from 

multitemporal/multisource georeferenced data. Thus, digitized shorelines from 

orthoimages have been used together with automatically-derived shorelines from 

CEMs (both extrapolated 0 m contour level and a stable contour level of 0.75 m). 

Therefore, two different kinds of shoreline indicators were used: HWL and datum-

based shorelines. Comparison between both kinds of indicators proved that HWL 

can lead to more inaccurate erosion/accretion rates since it can be highly variable 

because of natural hydrodynamic. Moreover, non-extrapolated datum based 

indicators (e.g. 0.75 m contour level) was found more suitable than the 

extrapolated one for shoreline extraction due to the frequent mismatching 

between the gradient used for extrapolation and the actual one. 

Regarding the shoreline accuracy assessment, natural phenomena was found 

as the most influent source of uncertainty mainly because of the difficulties to 

precisely estimate the wave runup previously detected by the comparison 

between HWL and 0.75 m contour level shoreline indicators. Therefore every 

digitized shoreline was assigned similar uncertainty regardless its spatial 

resolution or positional accuracy. The estimation of shoreline accuracy for both 

indicators allowed to evaluate what indicator to be used, either HWL or 0.75 m 

contour level. HWL was only used for the oldest photogrammetric dataset and all 

the non-own-produced orthoimages (taken from an official spatial data 

infrastructure), while contour-based shoreline was chosen for all the others 

photogrammetric and LiDAR derived-CEMs, demonstrating that digitized 

shorelines are more accurate than CEMs-derived ones only for very old and small 

scale images (usually archival aerial flights). 

When evolution of shoreline changes over the time span used in the 

calculation was studied, it was found that the changes were highly variable. It was 

also clear that the coastal evolution in this cell was controlled by the sediment-

supply and the wave action along. Thus, it was proved that alongshore sediment 

transport played a key role in sediment migration towards the South. Additionally, 

the most eroded areas match with those that were more angled with respect to the 

incident dominant wave approaching direction (a local climate variable). Finally, 

the estimation of changes was highly difficult to assess since several human 
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impacts (different sand extractions and sand nourishments, jetties installation, and 

so on) have been done over the years. 

In order to analyse the underlying medium-term shoreline change rate, the 

most common regression methods were used to adapt a linear trend for every 

transect. Non-weighted, weighted and reweighted methods were tested regarding 

whether shorelines accuracy was included or not and whether outliers detection 

was performed or not. Six different sets of shorelines were used to test the 

influence of some parameters in shoreline change rate assessment. Thus, it was 

tried to find out the effect of the major human intervention (jetties installation), 

whether SDI shorelines are used or not, how evenly the shorelines would have to 

be, and how the time span used affects the estimated shoreline rates. 

When all shorelines were included, overweighting effect turned up due to 

most of the extracted shorelines acquired from recent years and rates became 

smaller than when the shorelines were more regularly distributed over time. In 

general, reweighted methods (RLS and RWLS) trended to work quite well when 

the entire time span was considered and the shorelines were more evenly 

distributed since human-induced outlier shoreline positions, but also natural 

outliers, were able to be removed from the analysis. Moreover, reweighted 

methods yielded the lowest CIs for estimated rates. Finally, RWLS was 

recommended for medium-term shoreline change rate assessment together with 

an evenly distributed set of shorelines that includes the entire time span for some 

reasons: RWLS method seemed to be able to remove out of trend shoreline points, 

overweighting effects are avoided, and no artificial division of the time span has to 

be done. 

Finally, the medium-term shoreline change rate results matched with those 

observed in the evolution over time. Net erosion was estimated for northern areas 

(Villaricos, Fábrica del Duro, Punta Hornicos, Quitapellejos, and El Playazo), while 

stable and accretion areas were observed at middle (Puerto Rey) and southern 

areas (Las Marinas) respectively. According to Bowman, Pranzini (2008), erosion 

can be classified as extreme (>1 m/yr) for many of the tested coastal areas, 

reaching up to a rate of -2.60 m/yr in an area of El Playazo. 

FURTHER WORK 

Although a general erosive trend has been stated in the study area, some tasks 

remain and deserve to be carried out for a complete understanding of its shoreline 

behaviour. First, it is recommended to perform a complete sediment budget study 

to take into account all the possible sources, sinks and reservoirs. That would 

enable to take the necessary medium-term measures by coupling this sediment 

budget and the estimated shoreline trend. Additionally, the Palomares canyon 

should be proved as the sediment sink that it is supposed to be by means of, for 

example, a bathymetric monitoring of sedimentary processes around the sea bed 
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of the canyon. This could complete the sediment budget by identifying it as the 

main sediment sink of the coastal cell. 

Regarding the shoreline change rate assessment, binning methods should be 

tested in order to remove the intrinsic alongshore variability of the rates. Thus, 

groups of transects should be automatically done and even the CIs of those rates 

will be improved by means of using much more shoreline positions (Genz et al. 

2007, Frazer, Genz & Fletcher 2009). Additionally, polynomial methods which 

include some non-linear shoreline behaviour and acceleration in the evolution 

could be also tested in order to be able to predict short-term shoreline evolution 

(Romine et al. 2009, Romine, Fletcher 2013). 

The digitized shorelines accuracy must be refined by calculating more in 

detail seasonal, tidal, and especially runup uncertainties, since they constituted the 

main source of uncertainty for this kind of shoreline. Additionally, it is 

recommended to develop a method to describe digitizing uncertainty by means of 

more than just one operator. 

Finally, the results presented here should be confirmed in the future through 

the extraction of newest shoreline positions for coping with a reliable medium-

term shoreline evolution forecasting. To do that, error in prediction (EIP) should 

be achieved by comparing forecast shoreline positions and actual ones. Lastly, the 

erosive patterns should be carefully assessed in the defensive structures installed 

to stop those processes in order to check their influence on the shoreline stability. 
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ABSTRACT 

In order to map the impervious surfaces for a coastal area, three non-

parametric approaches -Classification and Regression Trees, Nearest Neighbour 

(NN), and Support Vector Machines (SVM)- were applied to a dataset of very high 

resolution archival orthoimages which had poor radiometry, with only red, green 

and blue spectral information. An object-based image analysis was carried out and 

four feature vectors were defined as input data for the classifier: 1) red, green and 

blue spectral information plus four relative spectral indices; 2) Dataset 1 plus 

texture indices based on the grey level co-occurrence matrix (GLCM); 3) Dataset 1 

plus texture indices based on the local variance; and 4) the vector defined by 1), 2) 

and 3). Two classification strategies were developed in order to identify the 

pervious/impervious target classes (aggregation of all the subclasses and binary 

classification). The separability matrix was used to present the statistical 

comparative results clearly and concisely. SVM achieved the highest accuracy 

through binary classification as well as it was the most efficient method. Then, this 

method was applied on two very high resolution orthoimages from GeoEye-1 and 

WorldView-2 satellites using similar feature sets than those applied to the archival 

orthoimage. The entire study area was independently classified by three subsets 

(using a pilot area training and an ad hoc training) and by means of the total 

training samples. All of the data sources were compared and an estimation of the 

appropriate number of samples was performed. Results showed that texture based 

on local variance was a valuable feature to improve classification accuracy. 

Furthermore, the influence of data source, training size, and training distribution 

was also proved. 

 

Keywords: Archival orthoimages, GeoEye-1, WorldView-2, very high 

resolution (VHR), impervious surface area (ISA), nearest neighbour (NN), non-

parametric classifiers, object based image analysis (OBIA), support vector 

machines (SVMs), texture features, training size, accuracy assessment 
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INTRODUCTION 

Impervious areas are defined as anthropogenic features through which water 

cannot infiltrate into the soil (Thomas, Hendrix & Congalton 2003, Weng 2012) 

such as rooftops, pavements, roads, sidewalks, thus being a good indicator of the 

degree of urbanization in an area. The impervious surface areas (ISAs) influence 

the hydrology of a watershed and have an impact on the potential volume increase, 

duration, and intensity of runoff and also affect the quantity of groundwater and 

increase stormflow (Weng 2001). An often overlooked environmental problem 

which is caused by ISAs is the increase in runoff volume and discharge rate, in 

conjunction with non-point source pollution, which alter in-stream and riparian 

habitats (Gillies et al. 2003). Additionally, it increases the risk of erosion and 

habitat degradation. Those are the reasons why the percentage of ISA in a 

watershed is considered to be a basic indicator for the evaluation of non-point 

runoff and an estimate of the future available water quality (Gillies et al. 2003). 

Moreover, ISAs show different thermal properties compared to pervious ones 

(Slonecker, Jennings & Garofalo 2001, Weng 2012) since they retain more heat 

than natural surfaces and therefore the stream temperature could potentially 

increase up to 6.5 degrees Celsius (Schueler 1994). The percentage of impervious 

surface area in a watershed is frequently correlated with the health of the 

ecosystem which the stream flows through (Schueler 1994, Arnold Jr., Gibbons 

1996). In this sense the ecosystem can be classified as stressed (up to 10% of the 

total surface area is impervious), impacted (between 11 and 25%) and degraded 

(more than 25%). 

Taking into account all the aforementioned reasons, efficient techniques to 

accurately determine and map ISAs should be developed. In this context, a remote 

sensing approach offers an appropriate and efficient alternative to identify 

impervious/pervious surfaces instead of using other labour-intensive approaches 

such as manually digitising digital orthoimages (Slonecker, Jennings & Garofalo 

2001, Brabec, Schulte & Richards 2002) or land surveying using GPS receivers. 

During the first decade of the 21st century, there has been an increase in studies 

related to both very high spatial resolution imagery and classification methods 

based on texture. According to Weng (2012), the considerations to keep in mind 

when implementing an ISAs classification using digital images are: 1) spatial 

resolution; 2) geometric characteristics of urban features; 3) spectral resolution; 

and 4) temporal resolution. 

The very high spatial resolution of images from satellites such as IKONOS, 

QuickBird, GeoEye-1 or WorldView-2 have enabled the accurate classification of 

relatively small size elements and the suitable extraction of ISAs (Goetz et al. 2003, 

Zhou, Wang 2008, Lu, Weng 2009). Furthermore, the orthoimages acquired from 

airborne platforms are regularly produced by government programmes (e.g., 
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National Plan of Aerial Orthoimage, Spain, or National Digital Orthophoto Program, 

USA) and constitute an archival data source which enables multitemporal land-use 

change studies and/or ISA detection (Miller, Nelson & Hess 2009) without the 

need for new data acquisition. While the current orthoimages usually include 

additional information such as the near infrared band (Thomas, Hendrix & 

Congalton 2003) or ancillary data (e.g., LiDAR data (Hodgson et al. 2003)), most of 

the archival orthoimages offered by the administration provide only information 

for the three regions of the visible spectrum red, green and blue (RGB). 

Additionally, archival images can have some artefacts, sometimes due to them not 

being carefully preserved. Therefore, since little spectral information is available, 

the identification of ISAs from archival orthoimages is challenging. In order to 

obtain accurate results, the use of additional or ancillary information from GIS 

databases or image data fusion is needed (Weng 2012). Moreover, contextual 

information and image texture analysis (Laliberte, Rango 2009) have been 

considered helpful. The development of an efficient and accurate ISAs 

classification method from very high spatial resolution RGB imagery would add 

value to the available archival data as a source of information for land-use change 

detection, coastal areas evolution, or urban monitoring. The comparison with the 

results obtained from very high resolution (VHR) satellite orthoimages by means 

of similar approaches can be essential to test the capability of these images to 

carry out this kind of tasks. 

Since the spatial resolution of the orthoimagery derived from 

photogrammetric flights is usually very high (0.20 – 1 m), it is appropriate to use 

an OBIA (object-based image analysis) approach. Similarly, the VHR-satellite 

imagery from GeoEye-1 or WorldView-2 (0.5 m for PAN band) would lead to apply 

the same analysis, especially if both data sources are going to be compared. In fact, 

a higher local variance of urban land cover classes is found when the resolution of 

the input image is increased (Myint et al. 2011), and therefore, the accuracy of the 

traditional pixel-based classification approaches is reduced and the results could 

show a “salt and pepper” effect (Treitz, Howarth 2000, Pu, Landry & Yu 2011). 

Classification accuracy is particularly problematic in urban environments, which 

typically consist of mosaics of small features made up of materials with different 

physical properties. To overcome this problem, OBIA has been recognised as an 

approach that can help improve the performance of supervised classifiers (Carleer, 

Wolff 2006, Im, Jensen & Tullis 2008, Blaschke 2010, Lu, Hetrick & Moran 2010, 

Myint et al. 2011). In fact, OBIA is a new paradigm in the field of geographic 

information science in which images are segmented into meaningful segments (or 

objects) according to different criteria before classification is carried out. The OBIA 

methodology is based on aggregating similar pixels in order to obtain homogenous 

objects, which are then assigned to a target class. Using objects instead of pixels as 

a minimum unit of information minimizes the “salt-pepper” effect due to the 

spectral heterogeneity of individual pixels. Furthermore, and unlike traditional 

pixel-based methods which only use spectral information, object-based approach 
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can use shape, texture and context information associated with the objects and 

thus it has the potential to efficiently handle more difficult image analysis tasks. 

Moreover, this object-oriented approach enables the use of hierarchical 

classifications at different scales (Benz et al. 2004). In this way, the amount of 

available OBIA works is increasing rapidly and there are numerous empirical 

studies published in peer-reviewed journals which have provided sufficient 

evidence of the advantages of object-based classification over traditional pixel-

based classification (Blaschke, Strobl 2001, Yan et al. 2006, Cleve et al. 2008, Im, 

Jensen & Tullis 2008, Lu, Hetrick & Moran 2010, Myint et al. 2011, Whiteside, 

Boggs & Maier 2011). A comprehensive review of the advantages and the 

disadvantages of using OBIA approach for image classification as well as the state 

of the art of these methods can be found in Blaschke (2010). 

Taking into account all the aforementioned explanations regarding the 

application of OBIA methodology on high resolution images, the main goal of this 

work was to identify and map impervious and pervious surfaces of a coastal area 

using an OBIA approach and two types of very high resolution images: RGB 

archival orthoimages from a photogrammetric flight and two different VHR-

satellite images such as GeoEye-1 and WorldView-2. All the data sources were 

used without any other ancillary information. Three non-parametric classification 

methods -Classification and Regression Trees (CART), Nearest Neighbour (NN) 

and Support Vector Machines (SVM)- were tested on the archival orthoimage in 

order to avoid assumptions about the distribution of the data. The three methods, 

which will be described in the following section, are widely known and used for 

image classification in remote sensing (Pal, Mather 2003, Lu, Weng 2007, 

Samaniego, Bárdossy & Schulz 2008, Mountrakis, Im & Ogole 2011). Furthermore, 

different features sets were used in the classification in order to determine the 

most suitable feature space. Then, and as a relevant contribution from this work, 

these non-parametric classifiers were tested for the classification of impervious 

surfaces on the archival orthoimage using two strategies: 1) a binary classification 

where pervious/impervious objects were directly classified; and 2) by defining 

and classifying subclasses (roads, rooftops, etc.) which were later on aggregated 

into the corresponding final pervious/impervious classes. Summing up, this study 

tried to find out the most appropriate combination of non-parametric classification 

method, feature set, and strategy in order to target pervious and impervious areas 

from VHR orthoimages, both RGB archival aerial orthoimages (which had poor 

radiometry and many artefacts due to poorly-preserved positives) and GeoEye-1 

and WorldView-2 satellite imagery. Additionally, the influence of the training 

samples set was tested for every data source in terms of distribution, size, and the 

capability to expand local training to wider areas. 
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STUDY AREA AND DATASETS 

Archival Orthoimage (ArO) 

The classification approaches tested in this work were firstly applied to the 

archival RGB aerial orthoimages obtained from a photogrammetric flight carried 

out on April 9, 2001. The original photographs were acquired by the Coastal Board 

(Spanish Government) by using a RC30 (focal distance = 152.92 mm) analogical 

camera at an approximate scale of 1:5000. The relatively poorly-preserved 

positives which had poor radiometry and many artefacts (scratches, fingerprints, 

etc.) were digitised by a photogrammetric scanner resulting in a Ground Sample 

Distance (GSD) close to 0.10 m, with a resolution of 20 µm in the RGB channels (8 

bits). The final RGB orthoimages were obtained through a standard digital 

photogrammetry process carried out with the software SOCET SET©, and the final 

spatial resolution, or GSD, was 0.20 m. 

A high spatial variability in the radiometric values was detected. In fact, 

atmospheric haze variations, poor conservation of the original positives and, 

mainly, the so-called “hot-spot” effect, which makes most landscapes appear 

brighter when the viewing direction in the image gets closer to the lighting 

direction of the sun, are well-known sources of radiometric heterogeneities in 

aerial images (Chandelier, Martinoty 2009). Thus, since the orthoimagery was 

obtained from different aerial images which were radiometrically heterogeneous, 

the resulting orthoimages showed areas with different radiometry. It should be 

noted that a radiometric correction was not carried out on the images. This was 

not done so that the original digital numbers were preserved and because the 

input data required to perform an atmospheric correction were not available, 

which happens for most of the aerial archival data (Chandelier, Martinoty 2009). 

Moreover, relative or absolute atmospheric corrections were not required (Song et 

al. 2001), since the main goal of this work was not to estimate biophysical 

variables (where radiance and reflectance are needed), but to classify pervious and 

impervious areas using the digital numbers from the RGB bands as input. In order 

to take into account the radiometric heterogeneity, two radiometrically different 

areas (North and South) were identified in the study area, as shown in Figure 5.1. 

This kind of radiometrical irregularity is a common drawback of mosaicked 

archival or historical images, and suggests that the introduction of radiometrically 

independent features, (e.g. RGB ratios and texture indices) can be suitable for 

image classification (Pacirici, Solimini 2007, Chini et al. 2008). In order to 

overcome the radiometric artifact, the classification process should be 

independently applied to each of the radiometrically homogeneous areas, thus the 

study area was divided into two datasets. 
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Figure 5.7. Orthoimage corresponding to the central area of the study site. 

Very High Resolution Satellite imagery 

In order to classify ISAs in the study site, GeoEye-1 and WorldView-2 VHR- 

satellite images were tested apart from the previously described archival 

orthoimage (henceforth, both experiments will be referred to GE1 and WV2 for 

GeoEye-1 and WorldView-2 respectively). Therefore, three different data sources 

could be compared and the differences among them could be tested. The original 

ground sample distance (GSD) for GeoEye-1 imagery at nadir is 0.41 m for 

panchromatic band (PAN), while the GSD for multispectral (MS) product is 1.65 m. 

Otherwise, WorldView-2 has the ability to collect PAN and MS images with pixel 

size of 0.46 and 1.84 m, respectively. However, the final products from both 

satellites have to be down-sampled to 0.5 and 2 m for PAN and MS respectively for 

commercial sales, as a requirement levied by the U.S. Government. The main 

difference between those satellites is the number of bands available. While 

GeoEye-1 counts on the Near infrared (Nir) band in addition to the three color 

bands Red, Green and Blue (R, G, and B), WorldView-2 comprises all the previous 

ones and four additional bands which are Coastal Blue (CB), Yellow (Y), Red Edge 

(RE), and Near infrared-2 (Nir-2). Both images were acquired in August, 2011, 

with only nine days of difference such that no significance land-cover change can 

be supposed between both collections. Both satellites acquired the images under a 

similar off-nadir angle, being 8.50 for GeoEye-1 and 10.00 for WorldView-2. So no 

differences were expected for that reason either. One PAN orthoimage was 

performed using the rational polynomial coefficients (RPCs), refined with 7 
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accurate ground control points (GCPs) by means of a simple translation at the 

image space, and a high accurate LIDAR-derived DEM for both satellite images. The 

final RMSE2D, evaluated on 48 independent check points (ICPs), was 0.41 m for 

GeoEye-1 and 0.46 m for WorldView-2. Therefore no differences in classification 

accuracies were expected due to image misallocation. A second orthoimage was 

generated for both satellites based on the pan-sharpened images with 0.5 m GSD 

and containing the spectral information gathered from the MS image (four or eight 

bands for GeoEye-1 or WorldView-2 respectively). The pan-sharpened orthoimage 

was obtained with the same resolution and accuracy as for the PAN one. For 

further and detailed information about the orientation of the sensor, orthoimage 

generation and quality assessment, the reader is referred to the previous works 

(Aguilar et al. 2012, Aguilar, Saldaña & Aguilar 2013a). 

Study Area Subsets 

Although the main goal was to find a suitable approach for the entire study 

area, a pilot area was first selected in order to carry out the initial tests. The 

chosen pilot area was located in the northern part of the image since it had a good 

representation of most of the land uses that were in the whole study area (e.g. sea, 

urban, agricultural, forest). The size of the pilot area was 162.5 ha, covering 

around 25% of the total area. The final workflow obtained from the pilot area for 

each data source was eventually tested on the entire image. The rest of the study 

area was divided into two additional regions because of the previously mentioned 

radiometric discontinuity in the Archival Orthoimage. Thus, the northern part of 

the study area (pilot area was not included) was identified as area A, and the 

southern part as area B (Figure 5.2). In order to validate the classification method, 

the spatial distribution of the target classes had to be taken into account. In this 

sense, the pilot area had a class distribution similar to the class distribution in area 

B (large percentage of urban area), while the non-urban class was the predominate 

class in area A. The entire study area was then equally separated into the same 

three subsets for both VHR-satellite images so that exactly the same areas were 

classified. Thus, the pilot area will be used for selecting the most suitable feature 

set while the other two areas will be utilized for testing the capability to achieve 

accurate results when the pilot area training (local training) is used. Finally, an ad 

hoc training samples set was extracted for both areas and for the three data 

sources in order to compare the accuracy results in this areas with respect to the 

pilot area training samples accuracy results. 
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Figure 5.8. Distribution of the three study areas. 

METHODS 

Minimum Classification Unit 

The analysis carried out in this study was based on the OBIA approach, so the 

object (a set of pixels which are homogeneous regarding certain features) 

constitutes the minimum classification unit and also the unit used for validation 

purposes. The segmentation algorithm used was the multiresolution segmentation 

(Benz et al. 2004) implemented in eCognition 8. This approach requires the 

following input data: 1) quantitative information (e.g. spectral bands) used for the 

segmentation and its weight on the process; and 2) scale, shape and compactness 

parameters. For a comprehensive explanation of the algorithm and parameters see 

Benz et al. (2004). 

In the case of the Archival Orthoimage, the segmentation was carried out 

using the RGB digital numbers as inputs (same weight), a scale parameter of 50, 

and shape and compactness parameters of 0.3 and 0.7, respectively. The final 

values of the parameters were fixed after several tests, in order to select the 

combination of final segments which fits the actual field plots the best.  
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In the case of the VHR-satellite images, the segmentation was carried out on 

the pan-sharpened orthoimage (GSD = 0.5 m) by equally-weighting the 

corresponding multispectral bands, using the same shape and compactness 

parameters applied to the Archival Orthoimage and selecting the scale parameter 

to approximately maintain the same number of objects segmented in the ArO 

study. Thus, scales of 50 and 40 were used for GeoEye-1 and WorldView-2 

experiments respectively. Both the same parameters and number of objects may 

assure that the possible accuracy differences due to the segmentation stage were 

minimised. 

Classes to extract and classification strategies 

The aim of this work was to classify pervious and impervious areas, which 

were identified as target classes. These two classes were not defined by their own 

spectral characteristics, so they were defined by spectrally homogenous land cover 

(subclasses), which were classified and added to the target classes according to 

their perviousness/imperviousness. A classification method which tried to identify 

each visually recognisable class was proposed and those classes were additionally 

aggregated according to their perviousness as a pervious or an impervious class. 

The description of the subclasses and the target class that they belong to are 

shown in Table 5.1. 

Table 5.21. Target classes and corresponding subclasses. Number of training and validation 

samples used for the classification and accuracy assessment of the Pilot Area for ArO 

experiment. 

Subclass Target class 
No. 

Training 
samples 

No. 
Validation 

samples 

No. 
Validation 

samples 

No. 
Training 
samples 

Dark sea 

Pervious 

23 35 

455 143 

Bright sea 23 31 
Individual trees 16 29 

Bare soil 20 72 
Scrubland 18 71 

Beach 20 68 
Cultivated agricultural field 9 67 

Non-cultivated agricultural field 4 31 
Forest 10 51 

Red building 

Impervious 

20 41 

284 71 

White building 6 28 
Gray building 4 19 

Road 13 51 
Path 8 24 

Harbour dam 2 22 
Sports court 1 5 

Swimming Pool 2 9 
Greenhouse 10 61 

Sidewalk 5 24 
Total sample size  214 739 739 214 
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Regarding the classification strategies workflow, two main approaches were 

carried out. The first one, which was called Aggregation, involved two steps: 1) 

classification of each subclass (land cover) using the different classification 

approaches; and 2) aggregation of each subclass to its corresponding target class, 

so the final classes were Pervious and Impervious. The second classification method 

was called Direct Classification, since the subclasses were not identified separately, 

and the two target classes were directly obtained by using the training samples 

corresponding to the land cover that was assigned to each target class. The aims of 

testing different classification strategies were to find out if there was any impact in 

the accuracy of the classification and if the impact depended on the considered 

algorithm. The strategies comparison was only performed for the ArO experiment 

since the results were supposed to be similar regardless of the data source used. 

Thus, if the accuracy results were dependent on the applied strategy, the most 

accurate one will be finally used for both VHR-satellite orthoimages. Finally, it is 

worth noting that choosing the most suitable strategy could result in minimising 

the effort to identify the training data required for the classification. 

Features Tested for Image Classification 

ArO experiment 

Since the classification was based on image objects, the applied features were 

calculated for each object according to the pixels that formed the object. Each 

object was therefore characterised by using the RGB information. Unfortunately, 

valuable information commonly used in this sort of studies such as LiDAR data, GIS 

ancillary data, or vegetation indices which use the infrared part of the spectrum 

(e.g. Normalized Digital Vegetation Index (NDVI) or Soil-Adjusted Vegetation Index 

(SAVI)) were not available for their application. Nevertheless, additional features 

were calculated and used in the analysis. First, a simple set of ratios were derived 

from the original RGB bands in order to evaluate their potential as input features 

for the classification process. The computed features were: the green ratio 

(G/(R+G+B)), the red ratio (R/(R+G+B)), the blue ratio (B/(R+G+B)) and the 

green-red ratio (G/R). The green, red and blue ratios are three chromaticity colour 

transformations which provide additional spectral information. These 

transformations are useful for images where data are strongly correlated (e.g. RGB 

images, since correlations between blue, green and red digital numbers are often 

larger than 0.9), because they decorrelate the image so that the weakly correlated 

components of the data (i.e. the chromatic information) can be enhanced 

independent of the correlated intensity component (Gillespie, Kahle & Walker 

1987). The use of the green-red ratio is based on the three groups of spectral 

patterns for major components of land cover which can be found by using the 

information provided by the green and red regions of the spectrum (Motohka et al. 

2010). Thus, in the case of green vegetation, green reflectance is higher than red 
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reflectance (i.e. G/R > 1, expressed in digital numbers for archival aerial 

photographs), while for roofs or concrete, green reflectance is lower than red 

reflectance (i.e. G/R < 1). Regarding water or snow, green and red reflectance are 

similar (i.e. G/R = 1). Therefore the G/R index can be used as a surrogate of red-

infrared ratio (R/IR) to distinguish vegetation from other land cover, and to 

differentiate types of vegetation (Gamon, Surfus 1999). Moreover, the use of band 

ratio images that include short wavelength bands has been proved to be effective 

for lithological mapping (Gad, Kusky 2006), since they contribute to suppress the 

topographic variation and the brightness difference related to grain size variation. 

Moreover, texture features (e.g. variance) have been found to be essential in 

order to provide better results when very high spatial resolution orthoimages are 

used (Chen, Stow & Gong 2004). Texture features are considered to be more 

suitable than absolute radiometric values which can vary artificially along the 

entire data set, particularly when working with archival imagery (see Figure 5.1). 

Finding the most suitable texture indicator was beyond the scope of this work (for 

more information about finding the most suitable texture indicator, please refer to 

Agüera, Aguilar & Aguilar (2008) and Pacifici, Chini & Emery (2009)), so only two 

widely used texture measurements were tested. The first one was the local 

variance (Nagao, Matsuyama 1979), which was computed using a 7x7 window size 

using the formula: 

          ∑
(        ̅̅ ̅̅ )

 

   

 

   

 (5.1) 

where       represents the digital number of the pixel located at row x and 

column y and   ̅̅ ̅̅  being the mean digital number for the n=49 pixels that belong to 

the mobile window. 

The window size was considered large enough to satisfactorily capture the 

textural patterns of the objects according to the land-use class that needed to be 

identified. The local variance was computed for each RGB band as a raster image 

and added to the feature space, so that the mean and the standard deviation could 

be calculated for each object. 

The second type of texture feature was based on the Gray Level Co-occurrence 

Matrix (GLCM) descriptors available in eCognition, i.e., an object-based version of 

the original features proposed (Haralick, Shanmugam & Dinstein 1973). Among all 

of the available features, homogeneity and correlation were chosen since they have 

been tested and recommended by different authors. Homogeneity is considered 

one of the most suitable texture measurement that can be used to differentiate 

urban land uses (Clausi 2002, Herold, Liu & Clarke 2003), while correlation was 

suggested as one of the most suitable GLCM statistics (Clausi 2002, Yu et al. 2006). 

Furthermore, homogeneity and correlation are not linear dependent features 

(Baraldi, Parmiggiani 1995). 
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The computed features were grouped into different subsets or feature vectors 

(Table 5.2) in order to know the impact of the different features on the classifiers, 

as well as their performance for the whole classification process. Thus, the feature 

vector called Basic grouped the RBG bands into derived features including the 

mean value of each band and the four band ratios as previously described. The 

Basic feature vector including the band ratios was preferred over the simple RGB 

feature vector after comparing the results of using each one as input data, although 

RGB feature set was later used for comparison purposes regarding the satellite 

image classification accuracy. It was found that using the Basic feature provided a 

significantly better classification than that coming from only applying RGB bands 

(overall accuracy and Kappa) for two of the three classification methods that were 

tested (i.e. CART, NN), while for the other classifier (SVM) the differences were not 

statistically significant at a 95% confidence level. 

Table 5.22. Feature vectors for ArO experiment. 

Basic Variance GLCM Total 

Mean Red 

Basic 
 

+ 

Basic 
 

+ 

Basic 
 

+ 

Mean Green 

Mean Blue 

Green Ratio 

Red Ratio 
Blue Ratio 

Green-Red Ratio 

7 features Mean Variance Red Homogeneity Red Mean Variance Red 

 
Mean Variance Green Homogeneity Green Mean Variance Green 

 
Mean Variance Blue Homogeneity Blue Mean Variance Blue 

 
Std. dev. Var. Red Correlation Red Std. dev. Var. Red 

 
Std. dev. Var. Green Correlation Green Std. dev. Var. Green 

 
Std. dev. Var. Blue Correlation Blue Std. dev. Var. Blue 

 
13 features 13 features Homogeneity Red 

   
Homogeneity Green 

   
Homogeneity Blue 

   
Correlation Red 

   
Correlation Green 

   Correlation Blue 

   19 features 

The group Variance was comprised of all the Basic features plus the mean and 

standard deviation of the local variance texture, which was estimated according to 

eq. 5.1. The GLCM group had the Basic features plus the GLCM texture features 

used in this work. All the previously mentioned features were included in the 

feature vector called Total, which resulted in a vector which was defined by 19 

features. 
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Satellite images experiment 

Since one of the main goals was to compare each satellite image with the ArO 

results and both satellites each other, the feature sets should be selected such that 

the comparisons among different sources are meaningful and the feature set 

should be the same for the three sources when that is possible (e.g. the basic 

information of R, G and B bands). Additionally, the feature sets design for both 

satellites should be similar to that performed for ArO experiment. However, GLCM 

texture was not included in the case of VHR satellite images since both irrelevant 

information for improving classification accuracy and a decrease in efficiency 

could be demonstrated from the ArO experiment (see following sections). 

Otherwise the chromatic ratios (red, green and blue ratios), the Green-Red ratio, 

and the local variance used as texture indicator were used for this study. 

Furthermore, since not only RGB information is contained in the satellite images, 

the additional bands have to be included and, thus, three different kind of feature 

sets were designed following an addition scheme in which some features are 

added to the previous feature set (Table 5.3). 

First, the basic feature sets including the average of all the available bands as 

well as some reduction of those for comparison purposes were performed. 

Secondly, the feature sets which include the rates that can be either the same rates 

than those used in the ArO experiment or the Normalized Difference Indexes (NDI) 

were included. NDIs are one of the most common features used in remote sensing 

classification (e.g. Normalized Difference Vegetation Index, NDVI) and they are 

based on the difference between one band and Nir band divided by the sum of the 

same band and Nir band. Therefore, three NDIs for GeoEye-1 (R, G, and B) and six 

for WorldView-2 (R, G, B, CB, Y, and RE) were estimated (Nir-2 band was not 

utilized since a high correlation between Nir-1 and Nir-2 bands was expected). 

The third type of feature sets corresponded with the texture estimated 

through the local variance. Here a key difference with the ArO experiment can be 

noticed since the GSD was largely different (0.20 m for ArO and 0.50 m for VHR 

satellite orthoimages) and the proper window size to determine that variance 

could be different. For instance, while a 7x7 window size was used for the ArO 

experiment, which equals an area of 1.4x1.4 m to estimate the variance, the same 

window size in the case of VHR satellite images represents an area of 3.5x3.5 m, i.e. 

six times larger than the former. For that reason, different window sizes such as 

3x3, 5x5 and 7x7 were tested for both satellite studies (T3, T5, and T7, 

respectively). Thus, the influence of the window size could be tested as well as the 

combination of every of them in terms of classification accuracy. Another 

difference between the ArO and the satellite data experiments was the availability 

of the PAN band which allowed the calculation of variance from it in the case of the 

satellite images whereas the variance was estimated for each band of the visible 

spectrum (RGB) in the case of the ArO experiment. The last difference between 

both feature sets based on variance texture was the use of standard deviation of 
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the variance for the ArO experiment. Those features were not included since no 

improvement in the accuracy results was found for both WV2 and GE1 when 

standard deviation of variance was included. Although the window size and the 

bands from which variance was estimated could somehow affect the classification 

accuracy results, both feature sets were considered similar and directly 

comparable with the feature set called Variance in the ArO experiment. 

Table 5.23. Feature sets used for GE1 and WV2 experiments. * indicates that datasets are 

directly comparable with the ArO study. The number of features used for each feature set is 

indicated in brackets. 

Feature set 
name 

GeoEye-1 WorldView-2 

RGB* R, G, B (3) R, G, B (3) 

Basic1 RGB set + PAN + Nir (5) RGB set + PAN + Nir (5) 

Basic2 - Basic1 set + CB + Y + RE + Nir2 (9) 

Rates1* 
Basic1 set + Chromatic ratios 

(R, G, B) + G/R ratio (9) 
Basic2 set + Chromatic ratios (R, G, 

B) + G/R ratio (13) 

Rates2 
Rates1 set + NDBI + NDGI + 

NDVI (12) 
Rates1 set + NDBI + NDGI + NDVI + 

NDYI + NDREI + NDCBI (19) 

Texture3 Rates2 + T3 (13) Rates2 + T3 (20) 

Texture5 Rates2 + T5 (13) Rates2 + T5 (20) 

Texture7 Rates2 + T7 (13) Rates2 + T7 (20) 

TextureAll* Rates2 + T3 + T5 + T7 (15) Rates2 + T3 + T5 + T7 (22) 

TextureOnly Basic1 set + T3 + T5 + T7 (8) Basic2 set + T3 + T5 + T7 (12) 

Non-parametric Classification Methods Tested 

Similarly to the variable strategy applied for the ISAs classification, the 

different non-parametric classifiers considered in this work were only tested for 

the ArO experiment, since the results were supposed to be similar regardless of the 

data source used. Therefore, the classifiers described along this section were 

tested and compared for the ArO experiment over the pilot area and, then, the best 

combination of strategy and classifier was applied on the areas A and B and also on 

the VHR-satellite imagery. 

Classification and Regression Tree (CART) analysis was the first tested 

method. CART is a non-parametric method widely used in remote sensing for 

image classification (Friedl, Brodley & Strahler 1999, Yu et al. 2006, Mallinis et al. 

2008). The most explanatory variables are detected by this kind of analysis and a 

prediction of response values can be carried out. CARTs use a sequential method 

for class assignment issues in which tree construction requires a recursive 

partitioning of the training dataset, which is divided into subsets, increasing their 

internal homogeneity according to one or more features (Brodley, Friedl 1997). 

The decision tree model that was used in this work corresponded to the univariate 
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CART (Breiman et al. 1984), with no pruning algorithm being applied (Esposito, 

Malerba & Semeraro 1997). 

The Nearest Neighbour (NN) method was the second tested method. NN is a 

non-parametric supervised classification approach which stands out because of its 

simplicity and flexibility (Cover, Hart 1967, Samaniego, Bárdossy & Schulz 2008). 

It is characterised by achieving suitable results when the number of required 

training samples is not very high (Keller, Gray & Givens 1985). The k nearest 

neighbours in the feature space are searched for in order to determine which class 

the element being classified belongs to. Although k-NN methods benefit the outlier 

effect removal, they also involve a large computational effort (Zhu, Basir 2005). 

However, OBIA approaches enable k-NN methods to be applied in a more efficient 

way, since the use of objects can significantly reduce the number of elements that 

need to be classified, when compared to using pixels as minimum classification 

unit (Yu et al. 2006). In this work, the 1-NN approach was used (Duda, Hart 1973) 

as implemented in the eCognition software. This approach allows the membership 

probability value of every object belonging to each target class to be computed 

(Keller, Gray & Givens 1985, Mallinis et al. 2008) according to the description 

provided by the software (Definiens 2010).  

The third method that was tested was Support Vector Machine (SVM), which 

is a non-parametric supervised learning technique used for classification and 

regression analysis. The application of SVM on remote sensing image 

classifications has increased extraordinary recently mainly because: 1) it does not 

rely on the assumption that the data are drawn from a given probability 

distribution; and 2) it requires a relative small number of training samples (Huang, 

Davis & Townshend 2002, Mountrakis, Im & Ogole 2011), which is an advantage 

due to the difficulty in obtaining ground truth samples. SVM has been previously 

used for impervious surface mapping or urban area classification (Zhu, Blumberg 

2002, Huang, Zhang 2009) using hyperspectral data (Melgani, Bruzzone 2004) or 

high resolution satellite imagery (Inglada 2007). However, few applications have 

been carried out on archival aerial RGB photography (Trinder, Salah 2011). 

Therefore the successful application of an object-based classification using SVM on 

the dataset used in this work could boost the use of these techniques for long-term 

land-use evolution studies.  

In short, SVM methods try to find a hyperplane which splits a dataset into two 

subsets during the training phase, using a set of samples where the classification is 

previously known (Vapnik 1995). The training phase tries to find the optimum 

boundary decision solution that minimises misclassifications (Mountrakis, Im & 

Ogole 2011). A crucial aspect of SVM is that not all samples are used to define the 

final hyperplane. Only those samples which are in the margin between classes are 

used to define the hyperplane and they are called Support Vectors (Zhu, Blumberg 

2002). To obtain that hyperplane, a kernel function needs to be used. The radial 

basic function (RBF) is the most commonly used approach and therefore it was 
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used, following the formula expressed in the eq. 5.2 (Foody et al. 2006, Chang, Lin 

2011): 

 (     )   
  ‖(     )‖

 

      (5.2) 

where the kernel parameter γ, together with the penalty parameter of the error 

term (usually denoted by C, with C>0) are estimated from the training data set 

through cross validation (Chang, Lin 2011). 

In the present work, the free-distribution library LIBSVM (Chang, Lin 2011) 

was used for the application of SVM classifier. The general methodology proposed 

by the authors was also applied. This methodology consists of the following steps: 

1) a simple scaling is applied to the training data (in order to avoid the over-

weighting due to the features presenting the highest absolute values); 2) the 

applied kernel is RBF. The determination of parameters C and γ is solved by cross 

validation and grid search on the training data set. Then, 3) the estimated 

parameters are applied to the dataset used for testing (previously scaled), and the 

error matrix is computed. Finally, 4) the computed SVM parameters are used to 

classify the scene. 

Each non-parametric classifier previously described (CART, NN and SVM) was 

applied on ArO, using as an input each of the four feature vectors (Basic, Variance, 

GLCM and Total). Both classification strategies (i.e. Aggregation and Direct 

Classification) were carried out for each combination of classifier and feature 

vector, which led to 24 different classifications being undertaken (3 classifiers x 4 

feature vectors x 2 strategies). However, taking into account the description of NN 

approach, it has to be clarified that both strategies have been proved to achieve the 

same classification results since the nearest sample in the feature space will be the 

same for both strategies, e.g. if the nearest sample corresponds to ‘Forest’ for the 

Aggregation strategy, it will necessarily correspond to ‘Pervious’ for the Direct 

Classification. Thus, the number of combinations is reduced to 20 final 

classifications. 

Validation and Comparison 

The sampling design, both for the training stage and the accuracy assessment, 

is a crucial task in the image classification process. Since the homogeneous object 

was established as the minimum classification unit in this work, they were also 

chosen as the unit used for the training and testing samples, instead of using single 

pixels. A randomly stratified sampling method was followed, so that well 

distributed random samples were identified for each subclass. The samples were 

located on the orthoimages and each sample was assigned to the corresponding 

subclass (Table 5.1). The high spatial resolution of the aerial orthoimages and the 

VHR-satellite images enabled each class to be identified visually with no detectable 
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errors. Once the sampling design was performed for the ArO experiment, 

approximately the same samples were used for both VHR-satellite images, 

obviously changing the class labeled when a change in land use from 2001 to 2011 

was detected. 

It has been widely proven in previous works that classification accuracy can 

be affected by training sample size (Zhuang et al. 1994, Foody, Mathur 2004b, 

Foody et al. 2006). It is also known that the number of required samples depends 

on both the classifier (Foody, Mathur 2004b) and the number of classes to be 

labelled (Foody et al. 2006). On the other hand, the number of validation samples 

that are needed to carry out the accuracy assessment needs to be larger than the 

training dataset in order to achieve narrow confidence intervals for the accuracy 

estimation. It was suggested that 50 could be a proper number of samples per class 

when the scene is not too extensive, while a number from 75 to 100 would be 

advisable for vast areas or predominant classes (Congalton 1991). Otherwise, 

some statistically-based formulas such as binomial distribution (Jensen 1996) or 

multinomial distribution (Congalton, Green 2009) are suggested. These methods 

utilise the expected precision per cent and the toleration error in order to estimate 

the testing sample size. According to Congalton, Green (2009), the validation 

sample size for the pilot area (739, see Table 5.1) can be considered suitable, and 

slightly higher than necessary to achieve an overall accuracy of 85% (p<0.05). 

Error matrices were calculated for each classification and overall accuracy 

(OA , user’s accuracy (UA , producer’s accuracy (PA  and KHAT statistic were 

derived (Congalton 1991). Additionally, in order to offer significance to the given 

results, intervals of confidence by Exact method (Sauro, Lewis 2005) were 

calculated (p<0.05), because it corresponds to the maximum likelihood estimate 

(i.e. the actual value of the estimated accuracy OA, UA or PA) even when it is not 

symmetrical (the values above and below are reported). The result of performing a 

Kappa analysis is a KHAT statistic ( ̂), an estimate of Kappa. Additionally, the 

variance of  ̂,    ̂( ̂) and the Z statistic can be calculated to test the significance of 

a single error matrix (Congalton, Green 2009). The Kappa test was applied at a 

statistical level of significance p<0.05, in order to estimate whether the error 

matrix was statistically different from another one (Congalton, Green 2009). In 

order to compare two independent error matrices (i.e. 1 and 2), the following 

statistic is calculated: 

    
| ̂   ̂ |

√   ̂( ̂ )      ̂( ̂ )

 
(5.3) 

This statistic is also standardised and normally distributed. Thus, the null 

hypothesis (K1 - K2 = 0) will be rejected if        (p<0.05). That rejection would 

mean that the error matrices 1 and 2 are considered significantly different at a 

95% confidence level.  
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190 different comparisons between methods were made by applying the 

Kappa test. In order to help understand the results, a separability matrix (SM) was 

computed (see the next section). The matrix was defined by the statistics used to 

compare the different classification approaches, so the statistics given by eq. 5.3 

were calculated for each approach versus the other 19 approaches. 

RESULTS AND DISCUSSION 

As previously mentioned, the main goal of this chapter was to address three 

issues: (i) what non-parametric classifier yielded the most accurate output; (ii) 

what feature set led to the most accurate classification and; (iii) if the application 

of Aggregation or Direct Classification strategies affected the accuracy. On one 

hand, this section shows and discusses the accuracy values obtained by each 

approach and the statistical comparison between the different approaches, to 

determine if they were statistically different. On the other hand, once the most 

accurate method was selected, this section establishes a protocol and tests it in an 

operational context. 

Accuracy Assessment and Comparisons 

Archival Orthoimage study 

As previously exposed, the ArO study included the determination of the most 

suitable strategy and classifier to be later used for both VHR-satellite experiments 

since they are inherent to the approach and no-dependence on the data source was 

expected. A summary of the results of the accuracy assessment for ArO study, 

showed as the 95% confidence intervals, are presented in Table 5.4 for each target 

class. The highest overall accuracy was achieved with the SVM and NN approaches 

in those cases in which Total or Variance feature vectors were used, i.e., when the 

local variance texture feature was included. Those results were considered to be 

suitable since the OA was higher than 85%, which has been established as the 

minimum acceptable value for the classification results (Congalton, Green 2009). 

That minimum seemed to be a reasonable reference for the required accuracy in 

this work, since there was a large variability within the classes that were labelled 

and the radiometric quality of the archival dataset was relatively poor. The results 

obtained from ArO could be considered more accurate than those in previous work 

with basic comparative information (no near infrared band and high spatial 

resolution) which achieved an OA of around 80% for ISAs detection (Cleve et al. 

2008). Another comparable study achieved an OA of 90% with a high spatial 

resolution Quickbird image, which included the near infrared band (Myint et al. 

2011). Finally, an OA of 81% for urban classification with digital 1-m spatial 

resolution orthoimagery was obtained in other study (Thomas, Hendrix & 

Congalton 2003). On the other hand, the CART approaches provided the lowest 

classification accuracies. 
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Table 5.24. Confidence interval of accuracy assessment results for the ArO experiment from the 

corresponding error matrices. The feature vectors are denoted as Basic (B), GLCM (G), 

Variance (V) and Total (T), while the classification strategies are coded as Aggregation (1) 

and Direct Classification (2). 

 Overall 
accuracy 

Producer’s Accuracy User’s Accuracy 

 
Pervious Impervious Pervious Impervious 

CART_B_1 77.8 - 83.6 87.5 - 93.1 59.3 - 70.7 76.9 - 84.0 75.5 - 86.0 

CART_B_2 69.2 - 75.7 79.6 - 86.6 49.3 - 61.2 70.9 - 78.6 61.0 - 73.4 

CART_G_1 75.6 - 81.7 91.7 - 96.2 47.9 - 59.8 72.9 - 80.1 79.5 - 90.3 

CART_G_2 69.0 - 75.6 82.9 - 89.4 44.0 - 56.0 69.5 - 77.2 62.8 - 75.8 

CART_V_1 78.2 - 84.0 78.6 - 85.8 74.0 - 83.8 82.8 - 89.5 68.5 - 78.6 

CART_V_2 72.9 - 79.2 89.2 - 94.4 44.7 - 56.7 71.2 - 78.5 73.4 - 85.6 

CART_T_1 78.2 - 84.0 80.5 - 87.4 71.0 - 81.2 81.5 - 88.3 69.7 - 80.0 

CART_T_2 71.4 - 77.8 76.3 - 83.8 60.0 - 71.4 75.0 - 82.6 61.7 - 73.0 

NN_B 82.8 - 88.0 85.0 - 91.2 75.9 - 85.4 84.8 - 91.0 76.2 - 85.7 

NN_G 78.9 - 84.6 82.4 - 89.0 69.9 - 80.3 81.4 - 88.1 71.6 - 81.8 

NN_V 83.6 - 88.7 84.6 - 90.8 79.0 - 87.9 86.5 - 92.4 76.3 - 85.5 

NN_T 85.2 - 90.1 87.7 - 93.3 78.2 - 87.3 86.4 - 92.2 80.1 - 88.9 

SVM_B_1 77.9 - 83.7 87.0 - 92.7 60.4 - 71.7 77.3 - 84.4 75.0 - 85.6 

SVM_B_2 76.9 - 82.8 89.5 - 94.6 54.3 - 66.0 75.1 - 82.2 77.2 - 87.9 

SVM_G_1 78.8 - 84.5 83.1 - 89.6 68.4 - 79.0 80.6 - 87.4 72.1 - 82.3 

SVM_G_2 78.2 - 84.0 84.6 - 90.8 64.7 - 75.7 79.0 - 85.9 72.9 - 83.3 

SVM_V_1 85.1 - 90.0 85.0 - 91.2 82.1 - 90.4 88.3 - 93.8 77.5 - 86.4 

SVM_V_2 87.0 - 91.6 89.5 - 94.6 80.2 - 88.8 87.7 - 93.2 82.8 - 91.0 

SVM_T_1 86.1 - 90.8 87.2 - 92.9 81.3 - 89.7 88.1 - 93.6 80.0 - 88.7 

SVM_T_2 86.9 - 91.4 89.0 - 94.2 80.5 - 89.1 87.9 - 93.3 82.2 - 90.5 

Regarding the PA, it was systematically higher for the pervious class than for 

the impervious class, which meant that the impervious objects had a larger 

omission error than the pervious objects, especially for the CART approaches. 

Generally, the same occurred for the UA. As a result, it can be said that the pervious 

class was better classified than the impervious class, being more noticeable in the 

case of the PA results. Taking into account that the sample design was balanced 

(33% of classified objects were impervious while the 37% of validation and 

training samples were from the same target class), the differences between the 

results of impervious and pervious classes happened because objects in 

impervious class were made by different kinds of construction materials, which 

leads to a spectrally heterogeneous class (Lu, Hetrick & Moran 2011). In order to 

prove the latter, the error matrix corresponding to the subclasses was computed 

(not shown). As an example, the classification of impervious subclasses such as 

roads, paths and harbour dam yielded, respectively, an omission error of 23.53%, 

33.33% and 59.09% with the pervious subclasses. Note that SVM with the feature 
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sets Variance and Total and NN with all feature sets, presented very similar values 

of PA and UA for both target classes, while SVM with the feature sets Basic and 

GLCM and especially CART with all the feature sets, yielded larger differences 

between PA and UA. 

As a measure of agreement or accuracy, KHAT is considered to show strong 

agreement when it is greater than 0.75 (Jones, Vaughan 2010), while values lower 

than 0.40 indicate poor agreement (Congalton, Green 2009). 

Table 5.25. KHAT statistic for each combination of classifier, feature vectors and classification 

strategy and Z statistic corresponding to the differences between the two classification 

strategies tested for ArO experiment. Bold letters highlight significant differences (p<0.05). 

Approach 
KHAT (overall 

accuracy) 
Z statistic for the two different 

classification strategies 

CART_B_1 0.5783 
3.8268 

CART_B_2 0.3993 

CART_G_1 0.5175 
2.8617 

CART_G_2 0.3841 

CART_V_1 0.6080 
2.6774 

CART_V_2 0.4816 

CART_T_1 0.6038 
3.2650 

CART_T_2 0.4628 

SVM_B_1 0.5827 
0.7736 

SVM_B_2 0.5538 

SVM_G_1 0.6106 
0.4405 

SVM_G_2 0.5948 

SVM_V_1 0.7423 
0.7656 

SVM_V_2 0.7758 

SVM_T_1 0.7604 
0.2919 

SVM_T_2 0.7734 

NN_B 0.6938 N/A 

NN_G 0.6190 N/A 

NN_V 0.7129 N/A 

NN_T 0.7416 N/A 

According to Table 5.5, the SVM approach with the Variance and Total feature 

vectors and NN with Total could be considered results that have strong agreement. 

However, the CART approaches were showed to be the least accurate, especially 

when the direct classification approach was applied, since the internal 

heterogeneity made it difficult to achieve a suitable separation using regression 

trees (Lu, Hetrick & Moran 2011). Thus, the CART classifier was capable of 

identifying the most explanatory variables that were needed to classify the most 

abundant subclasses, increasing the internal homogeneity and improving the final 

overall accuracy when the Aggregation strategy was applied. Noticeably, those 

subclasses (i.e. dark sea, bright sea or individual trees as pervious classes, and red 
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buildings or greenhouses as impervious surfaces) had the largest weights over the 

entire scene. On the contrary, when only two highly heterogeneous subclasses 

were considered, i.e. pervious and impervious, the variables which improved the 

homogeneity were not as easy to obtain and consequently, the accuracy achieved 

was significantly lower for Direct Classification strategy. 

In order to determine the influence of the two different classification 

strategies for the ArO study (Aggregation and Direct Classification) as well as to 

carry out a statistical comparison between the two methods, KHAT values were 

computed both for all the error matrices and for each target class, pervious and 

impervious. The results shown in Table 5.5, pointed out that only the CART 

approaches with all feature vectors were significantly affected (p<0.05) by the 

classification strategy. Otherwise, from the results of SVM approaches can be 

inferred that the classification agreement was not statistically sensitive to the use 

of subclass aggregation or the application of a direct binary classification. It should 

be noted that only when pervious subclasses were confused with impervious ones 

(and vice versa), e.g. bare soil was misclassified as roads or paths, and roads were 

misclassified as scrubland, the accuracy results were affected. Therefore, although 

some subclasses were difficult to classify, the most common misclassifications 

were commonly with other subclasses of the same target class (e.g. scrubland was 

misclassified mostly with agricultural fields) so the final accuracy was not affected. 

It is relevant to highlight that, since the training samples were acquired through a 

balanced random stratified sampling for each subclass, most of the spectral 

variability of the final target classes were successfully captured from the subclass-

based training. Only when this kind of sampling is carried out (extracting samples 

from every significant subclass), a successful classification of the target classes can 

be expected. Otherwise, the expected results when using the direct classification 

approach could be different. 

In order to determine the most adequate combination of classifier, feature set 

and strategy, several separability matrices (SMs) were used (see Tables 5.6-5.9). A 

SM depicts every approach to be compared in columns and rows from the highest 

KHAT to the lowest one so that the same order is followed. Every cell of the matrix 

represents the Z statistics (eq. 5.3) between each pair of approaches so the 

diagonal cells correspond to the same method and therefore the Z statistic for 

those cells is zero. Therefore, the SM is a valuable tool that can easily identify 

which methods are significantly different from the others. In this work, since the 

total size of the SM for all the approaches (20 x 20 dimension) did not allow a 

proper display, the results are shown in order to independently analyse the 

influence of every studied variable, i.e. classification strategy, classifier and feature 

vector. Table 5.6 shows the separability for all the approaches which used the 

Direct Classification. The SVM and NN classifiers in combination with the feature 

sets Variance and Total yielded the best accuracy results and they were 

significantly different from the other approaches (although NN with the feature set 
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Basic was not separable from the NN Total and Variance). Similar results were 

found in the SM of Aggregation strategy approaches. Those results implied that the 

GLCM feature set was not able to achieve any similar results regarding the 

accuracy of the classification and did not add any relevant information for the 

classification of ISAs in this study area. This was probably due to the fact that the 

GLCM matrices were computed within each object and homogeneity and 

correlation were estimated for each independent object (OBIA approach). Instead, 

the texture obtained as local variance has been proved to have a large influence on 

the improvement of accuracy, probably due to the independence of the object 

limits and the window size which is large enough to extract a suitable spectral 

variability (Chen, Stow & Gong 2004). Moreover, the CART approaches were 

clearly pointed out as the least accurate classifiers. 

In order to clarify the impact of the different approaches on each classifier, a 

SM comprising of all the approaches that used the same classifier was computed. 

Table 5.7 shows the SM for the SVM classifier and highlights two aspects: first, 

non-significant differences existed between the feature sets Variance and Total 

and second, no differences were detected among approaches which used GLCM 

and Basic feature sets either. However, both blocks (i.e. Variance and Total vs. 

GLCM and Basic) were clearly distinguished, highlighting that Variance and Total 

feature sets yielded the most accurate results for the SVM classifier. Similar results 

were found for NN but the Basic feature set did not achieve significant differences 

from Variance or Total showing that NN was less dependent on the chosen feature 

set (Table 5.8). Regarding CART, the strategy used was the main factor that 

affected its accuracy, the Aggregation strategy being the most accurate. The feature 

sets played a less important role for the CART classifier. Finally, a SM of all the 

approaches that used the same feature set was displayed. Table 5.9 shows all the 

combinations with the Total feature set. It can be pointed out that only CART can 

be considered as the least accurate classifier, since its KHAT statistics were 

significantly different from all of the other approaches (the highest KHAT for CART 

was 0.6038, while for the other approaches the KHAT values were between 0.7416 

and 0.7733). Additionally, the type of strategy employed had no influence on the 

approach except for the CART classifier. Similar behaviour was observed for the 

Variance and GLCM feature sets. However, when the Basic feature set was applied, 

the NN resulted to be significantly more accurate than the other classifiers and 

SVM and CART were similar when CART was applied to the Aggregation strategy. 

Therefore, according to the results previously discussed it can be proved that: (i) 

the most accurate classifiers were NN and SVM, (ii) NN was the least dependent 

classifier on the feature set employed, (iii) only CART was dependent on the 

strategy that was followed; and (iv), the feature sets which allowed the most 

accurate results to be obtained were Total and Variance. As a result, the CART 

classifier could have been rejected as an accurate classifier for this study while it 

has been proved that the incorporation of the texture variance was significant in 

order to increase the accuracy of the ISAs classification using archival RGB images. 



 

  

Table 5.26. Separability matrix for classification strategy 2 (Direct Classification). Bold type indicates significant differences (p<0.05). 

 
SVM_V_2 SVM_T_2 NN_T NN_V NN_B NN_G SVM_G_2 SVM_B_2 CART_V_2 CART_T_2 CART_B_2 CART_G_2 

SVM_V_2 0 0.071 0.956 1.644 2.069 4.400 4.653 5.601 7.643 7.904 9.420 10.244 

SVM_T_2 0.071 0 0.887 1.578 2.005 4.326 4.584 5.532 7.568 7.832 9.347 10.165 

NN_T 0.956 0.887 0 0.720 1.161 3.304 3.627 4.559 6.484 6.774 8.245 8.971 

NN_V 
1.644 1.578 0.720 0 0.440 2.398 2.764 3.665 5.459 5.765 7.173 7.802 

NN_B 2.069 2.005 1.161 0.440 0 1.867 2.254 3.140 4.868 5.183 6.559 7.142 

NN_G 4.400 4.326 3.304 2.398 1.867 0 0.517 1.491 3.307 3.674 5.154 5.740 

SVM_G_2 4.653 4.584 3.627 2.764 2.254 0.517 0 0.932 2.634 3.002 4.413 4.929 

SVM_B_2 5.601 5.532 4.559 3.665 3.140 1.491 0.932 0 1.655 2.039 3.438 3.909 

CART_V_2 7.643 7.568 6.484 5.459 4.868 3.307 2.634 1.655 0 0.431 1.873 2.301 

CART_T_2 7.904 7.832 6.774 5.765 5.183 3.674 3.002 2.039 0.431 0 1.415 1.815 

CART_B_2 9.420 9.347 8.245 7.173 6.559 5.154 4.413 3.438 1.873 1.415 0 0.347 

CART_G_2 10.244 10.165 8.971 7.802 7.142 5.740 4.929 3.909 2.301 1.815 0.347 0 

Table 5.27. Separability matrix for SVM classifier. Bold type indicates significant differences (p<0.05). 

 
SVM_V_2 SVM_T_2 SVM_T_1 SVM_V_1 SVM_G_1 SVM_G_2 SVM_B_1 SVM_B_2 

SVM_V_2 0 0.071 0.447 0.961 4.292 4.653 4.927 5.601 
SVM_T_2 0.071 0 0.376 0.889 4.223 4.584 4.859 5.532 
SVM_T_1 0.447 0.376 0 0.514 3.856 4.218 4.493 5.167 
SVM_V_1 0.961 0.889 0.514 0 3.354 3.718 3.994 4.666 
SVM_G_1 4.292 4.223 3.856 3.354 0 0.369 0.645 1.303 
SVM_G_2 4.653 4.584 4.218 3.718 0.369 0 0.276 0.932 
SVM_B_1 4.927 4.859 4.493 3.994 0.645 0.276 0 0.655 
SVM_B_2 5.601 5.532 5.167 4.666 1.303 0.932 0.655 0 
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Table 5.28. Separability matrix for NN classifier. Bold type indicates significant differences 

(p<0.05). 

 

NN_T NN_V NN_B NN_G 

NN_T 0 0.720 1.161 3.304 

NN_V 0.720 0 0.440 2.398 

NN_B 1.161 0.440 0 1.867 

NN_G 3.304 2.398 1.867 0 

Table 5.29. Separability matrix for the approaches using the Total feature vector. Bold type 

indicates significant differences (p<0.05). 

 
SVM_T_2 SVM_T_1 NN_T CART_T_1 CART_T_2 

SVM_T_2 0 0.376 0.887 4.105 7.832 

SVM_T_1 0.376 0 0.521 3.765 7.448 

NN_T 0.887 0.521 0 3.223 6.774 

CART_T_1 4.105 3.765 3.223 0 3.063 

CART_T_2 7.832 7.448 6.774 3.063 0 

Establishment of an Operational Protocol 

From both operational and mapping production standpoints, the efficiency of 

the classification process is crucial for the selection of the final approach. In that 

sense, the SVM classifier was highlighted as being clearly more efficient than the 

NN classifier. Table 5.10 shows a comparison of the computational budget 

(measured as running time) needed in order to carry out the ISAs classification 

from ArO for the pilot area. The measured time was exclusively referred to as the 

classification task, excluding the previous segmentation phase. When using the NN 

classifier both the number of classes to be classified and, especially the feature 

vector, had an influence on the running time for computing the classification 

results. The computational cost of processing the feature vectors including the 

texture indices based on GLCM (homogeneity and correlation) turned out to be 

actually unaffordable under real operational conditions for current mapping 

production, as it has been previously indicated by other authors (Soh, Tsatsoulis 

1999, Maillard 2003, Wang et al. 2004). Comparatively, the texture index, based on 

local variance previously computed for a 7 x 7 window size, took less than five 

minutes of additional running time than when the Basic feature vector was used. 

As a result, the use of the GLCM texture was not efficient, especially taking into 

account that the pilot area comprised of only around 25% of the entire working 

area. Furthermore, the number of target subclasses was a key factor according to 

the processing time, particularly when the local variance texture was used, since 

the required time was fifteen times longer for the aggregation strategy than for the 

direct classification (17 minutes and 1 minute respectively). This fact can be 

explained because each object is compared to each subclass in order to be assigned 
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to the nearest subclass. If only two classes were being compared 

(pervious/impervious), the process required less computational effort. The 

number of training samples would be another significant factor related to 

computational time since each element has to be compared against each object and 

then finally labelled according to the corresponding object. Eventually, if a NN 

classifier is employed, the use of a previously computed local variance texture 

index is suggested. In the same direction, the use of the direct classification 

(pervious/impervious classes) is also recommended. In that case, an exhaustive 

training sample is required in order to feed the classifier the whole spectral 

variability of the subclasses composing of the final target classes. 

Table 5.30. Running time to carry out the pilot area classification from ArO using the NN 

classifier (eCognition8®, SVM and CART). Results have been obtained by using a 3.20 GHz dual 

core processor with 8 Gb. RAM and 64 bits. 

Classifier 
Feature 
vectors 

Aggregation Classification 
Strategy (Running Time) 

Direct Classification 
Strategy (Running Time) 

NN 

Basic 15 min 11 sec 1 min 08 sec 

GLCM 5 h 21 min 15 sec 4 h 22 min 21 sec 

Variance 16 min 50 sec 1 min 20 sec 

Total 6 h 50 min 02 sec 5 h 18 min 19 sec 

SVM All cases < 1 min. < 1 min. 

CART All cases < 1 min. < 1min. 

Summing up, and taking into account the previous results, SVM classifier was 

chosen since the accuracy results did not depend on the strategy used and, 

moreover, the efficiency was higher than in the case of NN, which anyway achieved 

similar classification accuracy results. Therefore, SVM classifier using Direct 

Classification strategy was used for GE1 and WV2 experiments. 

Results from GE1 experiment 

The OA, PA, UA and KHAT results obtained through the error matrices for 

every feature set applied are shown in Table 5.11. Those results highlighted that 

all feature sets yielded accurate classification results ranging from 86.1% to 

90.0%. However, more differences were found for both UA and especially for 

impervious PA (up to 14.7% difference between the maximum and minimum 

classification accuracy figures). On one hand, the results implied that whereas the 

PA for the pervious class was very high, the PA for the impervious class was 

significantly lower (the average of that difference was close to 22%). On the other 

hand, the UA differences were much smaller (differences about 5%). This means 

that pervious class was classified more accurately, especially if omission error 

(related to PA) was considered. It is worth noting that PA was always higher than 

UA (about 9%) for pervious class, while UA was more accurate in all cases for 

impervious class (about 17%). In general, those results highlighted that 
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impervious class was more difficult to classify than pervious class. This fact can be 

perfectly understandable since the impervious class is composed of a higher 

number of spectrally different subclasses and materials, such as roads, buildings or 

paths. 

Table 5.31. General accuracy results for GE1 study. OA, PA, and UA values are expressed in %. 1 

and 2 indicate pervious and impervious class, respectively. 

Feature set Alias OA PA1 PA2 UA1 UA2 KHAT 

RGB RGB 86.1 95.9 69.2 84.4 90.6 0.685 

Basic1 B1 87.8 95.9 73.7 86.4 91.2 0.725 

Rates1 R1 86.8 97.2 68.8 84.4 93.4 0.699 

Rates2 R2 86.3 95.5 70.3 84.8 89.9 0.689 

TextureOnly TOnly 87.4 93.5 76.7 87.4 87.2 0.720 

Texture3 T3 88.6 96.5 74.8 86.9 92.6 0.744 

Texture5 T5 88.9 97.2 74.4 86.8 93.8 0.749 

Texture7 T7 87.5 94.6 75.2 86.9 88.9 0.721 

TextureAll TAll 90.0 93.7 83.5 90.8 88.4 0.781 

The previous results shown that OA was not the most appropriate parameter 

to determine what feature set had to be chosen. In fact, all OA values seemed to be 

quite accurate and they were not very different (from 86.1% to 90.0%). Otherwise, 

although the OA can be similar, the differences between the PA and UA for each 

class can also indicate the goodness of the accuracy results. For instance, whereas 

the Texture5 feature set has a similar OA than the TextureAll set, the latter yielded 

much smaller differences regarding to PA and UA. 

Regarding KHAT results, it is highlighted that every feature set yielded a good 

agreement and some of them were close to obtain strong agreement (>0.80 

according to Congalton, Green (2009)). Those KHAT results were used to check the 

potential significant differences between the tested approaches through different 

Kappa tests which were grouped by means of a separability matrix presented in 

Table 5.12. 

The separability matrix depicted in Table 5.12 clearly highlight that only 

TextureAll feature set made the classification approach statistically different from 

others (i.e. RGB, Rates1, and Rates2). These results were different to a previous 

study for a more reduced urban zone in the same area, in which the NDIs ratios 

achieved more accurate results than the basic feature set (Aguilar, Saldaña & 

Aguilar 2013b), although the classified area was not comparable since the classes 

to be targeted were significantly different. Summing up, only the use of all the 

available features tested in this work achieved a significant improvement on the 

classification accuracy assessment. Additionally, according with the low 
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differences between PA and UA, TextureAll feature set was chosen as the most 

suitable for ISAs classification by SVM approach. 

Table 5.32. Separability matrix of KHAT values for GE1 feature sets. Values above 1.96 (bold 

figures) indicates significant differences for KHAT statistics (p<0.05). 

 
TAll T5 T3 B1 T7 TOnly R1 R2 RGB 

TAll 0 0.91 1.05 1.55 1.65 1.68 2.23 2.57 2.58 

T5 0.91 0 0.15 0.64 0.74 0.77 1.32 1.56 1.67 

T3 1.05 0.15 0 0.49 0.60 0.62 1.18 1.41 1.52 

B1 1.55 0.64 0.49 0 0.10 0.13 0.68 0.92 1.03 

T7 1.65 0.74 0.60 0.10 0 0.03 0.58 0.82 0.93 

TOnly 1.68 0.77 0.62 0.13 0.03 0 0.55 0.79 0.90 

R1 2.23 1.32 1.18 0.68 0.58 0.55 0 0.24 0.35 

R2 2.47 1.56 1.41 0.92 0.82 0.79 0.24 0 0.11 

RGB 2.58 1.67 1.52 1.03 0.93 0.90 0.35 0.11 0 

WV2 experiment results 

The Table 5.13 shows the general accuracy results for WorldView-2 data 

classification. Similarly to the GE1 study, it is clear that the differences between the 

PA values for the pervious and impervious target classes are significantly different, 

being for the former up to 27% better than the latter. Again, UAs yielded fewer 

differences than PAs. In this sense, OA can be also viewed as not the most suitable 

parameter to be considered in order to choose the best feature set. Instead of 

simply OA, the best balance between OA, PA and UA figures should be considered 

and so the feature set TextureOnly should be chosen. When taking into account 

statistical separability (Table 5.14), a higher level of separability can be 

appreciated for WV2 than for GE1. For WorldView-2 data, texture information 

seems to yield a relevant improvement as compared to rates and basic feature sets, 

although no differences could be established among different texture 

combinations. Thus, the feature set TextureAll was chosen in order to be compared 

with the GE1. 

Summing up, the feature set TextureAll was applied to both VHR-satellite 

orthoimages in order to obtain the corresponding ISAs classification over the 

previously described areas A and B. 
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Table 5.33. General accuracy results for WV2 study. OA, PA, and UA values are expressed in %. 

1 and 2 indicate pervious and impervious class, respectively. 

Feature set Alias OA PA1 PA2 UA1 UA2 KHAT 

RGB RGB 85.4 95.2 68.4 84.0 89.2 0.670 

Basic1 B1 86.4 96.5 68.8 84.3 92.0 0.690 

Basic2 B2 87.4 95.5 73.3 86.1 90.3 0.716 

Rates1 R1 86.4 95.5 70.7 85.0 90.0 0.693 

Rates2 R2 88.0 89.6 85.3 91.4 82.5 0.744 

TextureOnly TOnly 90.8 93.5 86.1 92.1 88.4 0.800 

Texture3 T3 89.0 94.2 80.1 89.1 88.8 0.758 

Texture5 T5 90.8 96.3 81.2 89.9 92.7 0.796 

Texture7 T7 91.5 96.1 83.5 91.0 92.5 0.812 

TextureAll TAll 90.8 95.0 83.5 90.9 90.6 0.798 

Table 5.34. Separability matrix of KHAT values forWV2 feature sets. Values above 1.96 (bold 

figures) indicates significant differences for KHAT statistics (p<0.05). 

 

T7 TOnly TAll T5 T3 R2 B2 R1 B1 RGB 

T7 0 0.37 0.44 0.50 1.60 1.99 2.72 3.31 3.38 3.88 

TOnly 0.37 0 0.07 0.13 1.23 1.63 2.36 2.95 3.02 3.53 

TAll 0.44 0.07 0 0.06 1.16 1.56 2.28 2.88 2.95 3.45 

T5 0.50 0.13 0.06 0 1.10 1.49 2.22 2.82 2.88 3.39 

T3 1.60 1.23 1.16 1.10 0 0.38 1.12 1.72 1.79 2.29 

R2 1.99 1.63 1.56 1.49 0.38 0 0.75 1.35 1.41 1.92 

B2 2.72 2.36 2.28 2.22 1.12 0.75 0 0.60 0.66 1.17 

R1 3.31 2.95 2.88 2.82 1.72 1.35 0.60 0 0.06 0.57 

B1 3.38 3.02 2.95 2.88 1.79 1.41 0.66 0.06 0 0.51 

RGB 3.88 3.53 3.45 3.39 2.29 1.92 1.17 0.57 0.51 0 

VHR-satellite imagery vs. Archival Orthoimage comparison 

The feature sets to be compared, which can be considered as quite similar for 

both satellite and archival orthoimage studies, would be RGB, Rates1, and 

TextureAll (Table 5.3). Although TextureAll was similar for GE1 and VW2 

(estimated from panchromatic band and comprising of 3 different window sizes), 

this feature set was slightly different for ArO since panchromatic band was not 

available and only one window size was tested. However, the texture was 

calculated for each colour band (Red, Green, and Blue) and the effect on accuracy 

results was greatly relevant. The comparison between VHR-satellites and ArO 

classification accuracy results according to the application of different feature sets 

was performed only for the pilot area. It should be noted that the classifier (SVM) 

and the strategy (binary classification) were both fixed along these tests. 
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GE1 vs ArO 

The comparison results, based on the Kappa test, can be observed in the Table 

5.15. It is shown that RGB and Rates1 feature sets for ArO were much more 

inaccurate than for GE1 experiment. They also indicated that texture features had 

an improvement effect for both studies but it was quantitatively more important in 

the case of ArO. Furthermore, the results for both experiments by applying texture 

feature sets yielded similar accuracy results. Therefore, a more reliable data 

source (e.g. VHR GeoEye-1 imagery) did not imply significant improvement as 

compared to the results achieved from higher spatial resolution archival 

orthoimage, which included some artefacts and had poor radiometry, when 

texture features were applied. However, regarding basic information and ratios, 

the GeoEye-1 imagery yielded significantly higher classification accuracy, which 

could mean that this kind of images may have better radiometric conditions for 

image classification due to the absence of irregularities or artefacts that can be 

common in archival orthoimages. 

Table 5.35. Separability results between ArO and GE1 experiments. Values above 1.96 (bold 

figures) indicates significant differences for KHAT statistics between both accuracy figures 

(p<0.05). 

 
KHAT Z statistic 

GE_RGB 0.685 
4.11 

ArO_RGB 0.507 

GE_Rates1 0.699 
3.45 

ArO_Rates1 0.554 

GE_TextureAll 0.781 
0.16 

ArO_Variance 0.776 

WV2 vs. ArO 

The classification accuracy results for WorldView-2 imagery, depicted in 

Table 5.16, were similar to those shown in the GE1-ArO comparison. Again, larger 

differences were found were RGB or rates feature sets were used. However, the 

results were not statistically different when the classification was carried out by 

means of the texture-based feature set. 

Summing up, the results for both satellites underlined the importance of using 

invariable features for image classification, such as local variance texture. 

Moreover, it seems to be some limit on the classification accuracy around 90% of 

OA (close to 0.80 of KHAT) inherent to the used approach. That could be related to 

the known shortcomings of object-based analysis. For example, under-

segmentation errors could occur if the applied scale parameter was not the most 

appropriate for these images (Liu, Xia 2010). In fact, other experiment carried out 

through SVM classifier and OBIA approach over a QuickBird image obtained a 

maximum overall accuracy of about 90% for the most suitable scale parameter 



Geomatics techniques for coastal monitoring 

248 
 

(Liu, Xia 2010). In other work that used OBIA approach and a true-color aerial 

photography, a value of 92% OA was achieved (Kampouraki, Wood & Brewer 

2008). However, the determination of the scale parameter which would lead to the 

most accurate classification (optimal segmentation) was beyond the scope of this 

work and, thus, a certain point of error due to image segmentation has to be taken 

into account. 

Table 5.36. Separability results between ArO and WV2 experiments. Values above 1.96 (bold 

figures) indicates significant differences for KHAT statistics between both accuracy figures 

(p<0.05). 

 
KHAT Z statistic 

WV2_RGB 0.670 
3.729 

ArO_RGB 0.507 

WV2_Rates1 0.693 
3.288 

ArO_Rates1 0.554 

WV2_TextureAll 0.798 
0.669 

ArO_Variance 0.776 

GE1 vs. WV2 comparison 

In order to check the influence of the satellite imagery source for ISAs 

classification, the classification accuracy results achieved in the pilot area from 

GE1 and WV2 experiments were compared (Table 5.17). Those results showed 

that the differences between both image sources were very small. Actually, they 

were statistically significant only for the feature sets Texture7 and TextureOnly, 

being more accurate for WorldView-2 image. Although the differences were no 

significant, WV2 achieved more accurate classification accuracy results when 

additional bands (Yellow, Coastal Blue, Red Edge and Nir-2), and the ratios derived 

from those bands (Rates2), were used. Leaving aside these additional bands, GE1 

yielded slightly more accurate classification results than WV2. Note that difference 

between using additional bands or not (Basic 1 and Basic 2 feature sets) was not 

significant for WV2 so the effect of adding those bands was not clear, at least until 

texture indices were included (Texture7 and TextureOnly). 

It is worth noting that these results are slightly different from those achieved 

in a previous study carried out in a smaller urban area of the same study site 

(Aguilar, Saldaña & Aguilar 2013b) in which GeoEye-1 image leaded to more 

accurate results than WorldView-2. Although not exactly the same feature set was 

used (e.g. variance texture was not considered for the previous study), and also a 

different classifier was tested, it seems to be clear that the classes to be targeted 

and the use of a larger and more heterogeneous area may affect the satellite 

images comparison. 
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Table 5.37. Separability results between GE1 and WV2 experiment. Note that Basic1 and 

Basic2 feature sets for WV2 were compared with Basic 1 set for GE1. Values above 1.96 (bold 

figures) indicates significant differences for KHAT statistics between both accuracy figures 

(p<0.05). 

 
KHAT Z statistic 

GE_RGB 0.685 
0.38 

WV2_RBG 0.670 

GE_Basic1 0.725 
0.90 

WV2_Basic1 0.690 

WV2_Basic2 0.716 0.24 

GE_Rates1 0.699 
0.15 

WV2_Rates1 0.693 

GE_Rates2 0.689 
1.43 

WV2_Rates2 0.744 

GE_Texture3 0.744 
0.39 

WV2_Texture3 0.758 

GE_Texture5 0.749 
1.35 

WV2_Texture5 0.796 

GE_Texture7 0.721 
2.58 

WV2_Texture7 0.812 

GE_TextureOnly 0.720 
2.25 

WV2_TextureOnly 0.800 

GE_TextureAll 0.781 
0.51 

WV2_TextureAll 0.798 

Classification of the areas A and B 

Once the most suitable combination of classifier, strategy, and feature set was 

chosen for each experiment, i.e., using Variance feature vector for ArO and 

TextureAll for GE1 and WV2, and by applying SVM classifier and Direct 

Classification strategy, the areas A and B were classified through two different 

training sets: (1) the previously validated pilot area training, and (2) an ad hoc 

training set for each area and image source referred to a new training set extracted 

just from the same area to be classified (A or B) by using the feature set which 

yielded the best results in the pilot area training set (Variance or TextureAll 

depending on the kind of orthoimage). Thus, the ability to extrapolate a local 

training to the entire area will be tested through this experiment by comparing if 

the training of the classifier limited on a localized subset within the entire image is 

capable to achieve accurate classification results beyond the area of training. 
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Therefore, the influence of the area to be classified and the training samples will be 

estimated. 

ArO experiment 

The results for ArO study are shown in Table 5.18. When the areas A and B 

were classified using the training samples extracted from the pilot area (Pilot area 

training in Table 5.18), the accuracy of the results was statistically poorer than 

when the training samples were collected from a specific area to be classified (ad 

hoc training in Table 5.18). According to the Z statistic, the accuracy significantly 

increased when ad hoc training was applied. Furthermore, the Z statistic between 

both ad hoc classifications showed that they were statistically similar (Z = 0.033) 

and, therefore, the feasibility of the method was proved. These results highlighted 

the importance of the training dataset, especially when images presenting 

radiometric artefacts (such as archival aerial orthoimages) are employed. 

Moreover, the subclass distribution can vary from one scene to another, which 

implies a different spectral variability for each specific area. It was also found that 

although it improved the accuracy of the classification results, the use of variance-

based features did not seem to contribute to the mitigation of the radiometric 

artefacts, since an ad hoc training set was needed for each area. Finally, it should 

be pointed out that the final classification results obtained from subsets A and B 

for the ArO study led to an appropriate KHAT statistic and an overall accuracy 

value above the minimum value of 85% recommended by some authors 

(Congalton, Green 2009). 

Table 5.38. Classification accuracy assessment results for ArO experiment in the entire area by 

using the SVM classifier, Variance feature vector and Direct Classification strategy. 

Area 
Training 

set 
Overall 

Accuracy 
KHAT 

Z 
statistic 

Class 
Producer’s 
Accuracy 

User’s 
Accuracy 

A 

Pilot area 
training 

73.14% 0.4705 

5.286 

Pervious 89.16% 66.07% 

Impervious 58.70% 85.71% 

Ad hoc 
training 

86.10% 0.7195 
Pervious 79.12% 90.37% 

Impervious 92.39% 83.06% 

B 

Pilot area 
training 

77.63% 0.5539 

3.591 

Pervious 90.49% 71.69% 

Impervious 65.06% 87.50% 

Ad hoc 
training 

85.90% 0.7181 
Pervious 86.69% 85.07% 

Impervious 85.13% 86.74% 

VHR-satellite images (GE1 and WV2 experiments) 

Similarly to the ArO experiment, the most appropriate feature set chosen for 

GE1 and WV2 experiments (TextureAll) was used in order to classify the A and B 

areas by means of the pilot area training and the ad hoc training sets. As shown in 

Table 5.19, some important variations in KHAT values exist when GeoEye-1 image 

was used. Whereas the KHAT statistic yielded a good agreement for ad hoc training 
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in both areas, the pilot area training led to inaccurate results close to a poor 

agreement. Regarding the training samples, two different sections can be 

differentiated. First, both ad hoc classification results are not statistically different 

each other, and second, the classification results from the pilot area training in 

areas A and B are also statistically similar each other. However, it is worth noting 

that the differences between ad hoc training and the pilot area training were 

strongly important and highlighted that a suitable design of the sampling method 

constitutes a key factor for image classification through this approach. It is also 

important to note that, although not statistically relevant, both ad hoc trainings 

yielded important differences and some additional tests about the sampling 

method or the feature sets could be taken into account. 

Table 5.39. Separability matrix for areas A and B in GE1 and WV2 experiments. The training 

sample sets are denoted as P and AH for Pilot Area and ad hoc training sets, respectively. 

Values above 1.96 (bold figures) indicates significant differences for KHAT statistics (p<0.05). 

 GE1 experiment  WV2 experiment 

  
B_AH A_AH B_P A_P   B_AH A_AH B_P A_P 

 
KHAT 0.804 0.732 0.515 0.505  KHAT 0.725 0.713 0.689 0.670 

B_AH 0.804 0 1.84 6.55 6.66  0.725 0 0.28 0.83 1.24 

A_AH 0.732 1.84 0 4.67 4.81  0.713 0.28 0 0.55 0.96 

B_P 0.515 6.55 4.67 0 0.20  0.689 0.83 0.55 0 0.41 

A_P 0.505 6.66 4.81 0.20 0  0.670 1.24 0.96 0.41 0 

The classification results for the WV2 experiment are also shown in Table 

5.19. Although ad hoc results were more accurate than those from pilot area 

training, it is worth noting that no significant differences between both training 

sets were found for this study in any of the considered areas. Thus, WV2 data set 

seemed to be more consistent since a local training set of that image was able to 

accurately classify the separated areas A and B. However, less classification 

accuracy was achieved for ad hoc training, mainly in the case of the area B. In fact, 

if the separability matrices of the three experiments were merged (table not 

shown), three groups of results could be distinguished: (1) the pilot area training 

in both areas performed significantly inaccurate results for ArO and GE1 

experiment; (2) the ad hoc training for ArO and WV2 are not significantly different 

with respect to the pilot area training for WV2; and (3) only the area B classified 

on GE1 by means of ad hoc training was statistically more accurate than the WV2 

and ArO experiments. 

Those results strengthen the importance of a suitable sampling method for 

both training and validation phases according to the data set used, showing that it 

may not be appropriate the use of training samples of a relatively small area for 

classifying external areas. Of course, that will depend on the variability of the 
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classes to be targeted as well as the radiometric conditions of the images used. In 

this case, WorldView-2 imagery has been proved as more appropriate for 

extrapolating training samples from a subset of the total area, maybe due to its 

additional information content (Yellow, Red Edge, Coastal Blue, and Nir-2 

additional bands). 

This experiment was carried out in order to check the capability of 

extrapolate training samples to classify external areas. It has been proved that this 

ability depends on the image to be classified and also the training and testing set 

designed. However, a general classification approach would take into account the 

entire area for both, training and testing phases. The next section was performed 

in order to check the capability of classifying ISAs using all the available testing 

and training samples from the three areas. Additionally, since a large number of 

samples were used to train the classification algorithm, a reduction of training 

samples approach was carried out in order to determine the most suitable training 

sample size. 

Classification of the entire area 

Once the influence of the training area has been proven, the classification 

accuracy results by using all the training and testing samples was tested. The 

general results are shown in Table 5.20. Notice that all the data sources achieved 

very accurate results. For instance, the OA was close to 90% for every image. 

Furthermore, PA and UA figures were balanced for both classes since the 

differences between them were lesser than 1.1%. 

Table 5.40. General accuracy results for ArO, GE1 and WV2 experiment when all training and 

testing samples were included. OA, PA, and UA expressed in %. Significant differences (p<0.05) 

between KHAT values are indicated by different letters. 

 
Archival 

Orthoimage 
GeoEye-1 WorldView-2 

OA 88.1 90.4 89.7 

PA1 88.6 90.5 90.9 

PA2 87.5 90.1 88.3 

UA1 89.2 91.5 90.1 

UA2 86.8 89.0 89.2 

KHAT 0.760b 0.806a 0.792ab 

Training size 
(no. objects) 

576 583 583 

Testing size 
(no. objects) 

1796 1783 1783 
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Those results proved that a well-distributed and large training set could reach 

a suitable classification for every type of image used. In fact, when statistical 

significance was performed by means on Kappa test, only GE1 classification 

accuracy can be considered as more accurate than that estimated for the ArO 

study. Therefore, WV2 classification accuracy was not statistically different than 

that yielded from the other image sources. In fact, the high number of validation 

samples enabled the statistical separability to be much more powered. In this 

sense, some of these complete area classifications were statistically more accurate 

than some separated parts. For instance, the complete area classification was more 

accurate than the areas A and B for WV2, and it was also more accurate than area A 

for GE1. Regarding the classifications performed over the pilot area, only ArO 

classification accuracy was statistically different with respect to the one coming 

from GE1 entire area. Therefore, the entire area classification accuracies for both 

satellite images were statistically similar to those achieved in the pilot area. Since a 

relatively large training size was used, which is not a common feature for this kind 

of experiments, in the next section it is tried to reveal how the accuracy results for 

the entire area varies when training size is reduced. 

Estimation of the appropriate training size 

It is clear that the number of training samples used in this work could be 

unaffordable for a practical classification approach. Furthermore, it would be 

interesting to find out how reducing the number of training samples affects the 

final classification accuracy results. However, the classification method should be 

taken into account. According to Foody et al. (2006), the classifier used in this 

study, Support Vector Machines (SVM), “seeks to find the optimal separating 

hyperplane between classes by focusing on the training cases that lie at the edge of 

the class distributions, the support vectors”. That means that the accuracy will be 

affected when the most appropriate support vectors or samples to differentiate 

pervious and impervious classes are to be included in the training phase. That is 

different as compared to usual parametric methods such as Maximum Likelihood 

Classifier (MLC), which is based on the mean and variance of the population. If the 

number of samples was the appropriate, those parameters may not vary and the 

population would be well represented. For instance, if the 10% of the samples are 

removed from the total set, and key support vectors were also removed, the final 

classification accuracy would be significantly lower while the mean and variance 

could not significantly vary and so the results of using MLC would not differ. 

Additionally, and taking into account the sample design of this study (pervious and 

impervious class are targeted from several heterogeneous subclasses), a poor 

representation of the actual land cover could be performed if the number of 

samples was too small and some subclasses were poorly represented on the 

remaining training set. 
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In order to check the influence of the training sample size on SVM 

performance, a training sample reduction was undertaken. Nine different levels of 

training sets were produced by randomly reducing the total samples in discrete 

steps of 10% ranging from 10% to 90% of the total samples. Additionally, four 

repetitions for every sampling level were performed also through random 

methods so the final number of different samples sets was 36. Therefore, the 

relationship between the classification accuracy and the training size, the 

variability for every training size, and the suitable number of samples could be 

estimated. 

h. ArO study 

The results can be checked in Figure 5.3. It is important to note that the OA 

average increased when more training samples were used. The OA average 

seemed to stabilize when 50% of the available samples were used. It is also worth 

noting that the estimated variability of the OA values for the same training size was 

reduced when higher training sizes were employed. That variability was clearly 

lower when the 60% of the available samples were reached. For PA and UA values, 

the results were similar regarding OA average trend, although the estimated 

variability was even higher than for OA. 

 

Figure 5.9. Overall accuracy (so much per one expressed) for each repetition and the average 

value, symbolized as a cross, for each training size. Archival Orthoimage  experiment. 

When separability matrix was statistically performed by means of Kappa test, 

it was proved that a value of 50% meant the higher percentage of training samples 

in which there was significant differences between consecutive training sizes (data 

not presented). Furthermore, the OA averages from 50% training size and higher 

were not statistically less accurate than the classification based on the whole 

samples. In conclusion, a training size around the 60% of the total samples (346 

out of 576) could be recommended in the case of the Archival Orthoimage to 
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extract ISAs through SVM approach without any significant affection on the final 

accuracy. 

i. GeoEye-1 study 

The classification accuracy results for GE1 experiment are presented in Figure 

5.4 Similarly to the ArO study, the OA increased and the variability of the results 

decreased when more samples were included. In this case the OA seemed to 

achieve accurate results when only the 30% of the available samples were 

included, although the OA keeps a growing trend when the number of samples was 

increased. In this case the OA variability for every training size was not statistically 

significant for the 70, 80, and 90% training sizes, so more training samples than for 

ArO study were needed to achieve that. Again, the variability for the PA and UA 

values was significantly larger than that for OA up to the 70% of the available 

samples were included. Anyway, the averages for those per-class accuracies 

followed a similar trend than OA. 

 

Figure 5.10. Overall accuracy (so much per one expressed) for each repetition and the average 

value, symbolized as a cross, for each training size. GE1 experiment. 

The estimation of the statistical separability between the different training 

sizes leaded to consider that using 60% or more samples had no significant 

influence. Thus, the less number of samples that should be considered in order to 

maintain the classification accuracy figures was the 70% of the total samples (408 

out of 583) since the accuracy results were not statistically different of those 

obtained from applying the total sampling set and, moreover, the variability among 

the repetitions was not significant either. This fact involved that GeoEye-1 study 

required over 60 additional samples as compared to ArO study. 
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j. WorldView-2 study 

Figure 5.5 depicts the results for the WV2 sampling reduction study. It is 

shown again the progressive increase of the OA when more samples were used to 

train the classifier. Similarly to previous experiments, it is also clear that the 

variability for every training size generally decreased when more training samples 

were added. In this case, the variability in the estimated accuracy figures did not 

present significant differences for the 60% training size and the statistical 

separability of the OA averages indicated that a training size ranging from 40% to 

90% was not separable (p<0.05) from the total training classification accuracy 

results, except for the case of 50% training size. Those results leaded to choose the 

60% of available samples as the most appropriate training size for ISAs 

classification over the WorldView-2 image (i.e. 350 out of 583). 

 

Figure 5.11. Overall accuracy (so much per one expressed) for each repetition and the average 

value, symbolized as a cross, for each training size. WV2 experiment. 

Data source comparison 

In order to compare the effect of applying each different data source, the 

average of the overall accuracy for each tested training size was calculated. Then, 

the statistical separability (p<0.05) was estimated through the differences 

between both proportions following the eq. 5.4 (Foody 2009), where   represents 

an averaged proportion for every percentage level (averaged overall accuracy for 

the data source 1 or 2),  ̅ is the average of both proportions to compare, and   is 

the number of validation samples used (also for data source 1 or 2). In this case the 

comparison was performed by means of this approach instead of the Kappa test 

since the use of the averaged KHAT and its variance could be problematic. 

Similarly to the Kappa test, a difference is taken to be statistically significant 

(p<0.05) if   |    | 
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According to the Figure 5.6, the ArO experiment was clearly the less accurate 

as compared to both satellite images when the 20% of available samples or more 

was utilized. Using the hypothesis test explained previously, the ArO experiment 

was only significantly more accurate for the 10% training size. However, that 

training size did not yield accurate enough results for any data source since the 

minimum required 85% was not achieved. For all the other training sizes, ArO 

yielded statistically less accurate results than those achieved from both satellite 

images (except for the 70% case in which ArO could not be separated from WV2 

results). Furthermore, GE1 results were significantly more accurate for the 

training sizes 30, 70 and 90%, while the WV2 results were more accurate than GE1 

only for the case of 40% training size. 

 

Figure 5.12. OA average for each data source and every training size tested. 

According to the previous results, the SVM classifier used to classify 

impervious areas has been proved as a suitable approach for all the image sources 

tested. The relationship between the number of training samples employed to 

train the classifier and the final accuracy results was clearly positive although it 

was not a perfect linear relation because of the basis of the SVM classifier. It was 

also found an inherent relationship between the accuracy results and the sample 

size for SVM approach (Foody, Mathur 2004a); although it was reported that SVM 

achieved better accuracies with a smaller number of samples than other methods. 

In the present study, all the data sources achieved an accurate classification when 

the 60 or 70% of the total samples were taken into account. It was also proved that 

the sampling design or distribution can have a large affection on the accuracy. For 

instance, using a half of samples for WV2 (292 samples) and having two different 

samples distribution, a difference of up to 5% in OA was estimated. Thus, if this 
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kind of study was not performed the same approach with the same number of 

training samples could yielded, for instance, an accuracy result from 80 to 85% if 

the distribution of samples was different. This fact would be critical whether a 

minimum acceptable accuracy was previously established (e.g. the most common 

85% OA considered) and the lowest results were achieved, leading to the analyst 

to reject the applied approach. However, the approach would have been perfectly 

suitable if more samples had been collected or a different distribution had been 

chosen. 

Regarding the specific approach used in this work, it is worth noting that the 

classifier and the strategy of sampling can play a key role. Concretely, the sampling 

of this approach was based on the direct classification of pervious and impervious 

areas. However, these superclasses were composed of several subclasses and, 

therefore, they can be considered as highly heterogeneous. The original sampling 

(the 100 per cent set) was carried out through a stratified strategy and so a 

significant number of samples for each subclass was considered. Otherwise, the 

reduction on the number of samples was performed with no stratified 

consideration and only the superclasses were considered for removing samples. 

That means that when few samples were considered (10 to 30%) the probability of 

removing key samples for some subclasses was probably high and, therefore, the 

final accuracy would be negatively affected. Furthermore, since non-special 

training selection was carried out (Foody, Mathur 2004b), the less number of 

samples, the higher likelihood of removing meaningful support vectors to 

effectively separate pervious and impervious classes. Thus, and similar to the 

findings of Foody, Mathur (2004a), although a small training set can be suitable for 

SVM classifier, a large sample size could be required in order to ensure that 

appropriate training data are included, especially if no classifier-oriented selection 

of sample sites was carried out (Mathur, Foody 2008). Since the comparison 

against different classifiers was an aim in a first stage, no differences in sampling 

design were estimated. 

CONCLUSIONS 

This work showed that RGB archival aerial orthoimagery can be used as a 

relevant data source for ISAs classification, even when ancillary data are not 

available. However, this kind of archival imagery is usually radiometrically 

deficient, due to it being not well preserved (degraded from being stored 

improperly), scanning errors and radiometric variations among the different aerial 

photographs covering the working area (which can be detected when the images 

are mosaicked). Therefore, an adapted workflow which takes into account those 

characteristics was presented and validated in this work. 

A relevant methodological contribution presented in this work was the 

exhaustive statistical analysis undertaken in order to make sure that the results 
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that were obtained were reliable. The KHAT statistic was used to compare the 

error matrices corresponding to each combination (one-against-one), which 

indicated whether the accuracies were significantly different from one another. 

Because of the high number of combinations that were compared, the separability 

matrix (SM) was introduced as a tool to clarify the statistical analysis results. This 

matrix was proved to be a useful method in order to make the obtained results 

more intelligible and organised. 

From the SMs results on ArO, some conclusions can be derived. First, SVM and 

NN were ranked as the most suitable classifiers, especially when the local variance 

texture descriptor was included in the feature vector. For those cases the OA was 

close to 90% and KHAT was about 0.75. Local variance represents a simple and 

easy way to extract texture, so its utilisation and adaptation to images that have 

different spatial resolutions should be tested in further works. The CART classifier, 

based on decision trees, performed the worst regarding overall accuracy, achieving 

a score not higher than 82%. The absence of significant improvement regarding 

classification results was remarkable when texture information based on object-

based GLCM (homogeneity and correlation texture indices) was added to the basic 

spectral features (mean of the RGB channels and 4 different band ratios for each 

object). Additionally, GLCM-based texture indices are computationally expensive 

and, therefore, difficult to implement under operational conditions or mapping 

production. 

Another notable conclusion that can be extracted from this work is the 

relative low influence of the classification strategy (aggregation of subclasses or 

direct classification) on the pervious/impervious classification accuracy results 

from ArO. Only the CART classifier was significantly affected by the classification 

strategy used, since the direct classification turned out to be less accurate than the 

aggregation strategy for one of the feature vectors that was tested. It is worth 

noting that, for the case of direct classification, the target classes, pervious and 

impervious, were labelled in a binary way so more errors could be expected 

because only two classes could correspond to a large spectral variability. As 

opposed to CART, the SVM and NN classifiers were not sensitive to the large 

heterogeneity attributed to the target classes in the case of direct classification 

since they work in a more localised feature space (nearest neighbour or support 

vectors). On the other hand, the NN classifier used a large computational budget 

which, in contrast to SVM, was highly depended on the number of classes that were 

to be labelled, the number of training samples, as well as the support feature 

vector. In fact, NN was proved to be a non-efficient method when it is supported by 

GLCM texture features, especially if large areas have to be classified. 

When the most suitable classification approach was selected, it was proved 

that the selection of an ad hoc training set was needed to accurately classify the 

remaining study area (aside from the pilot area) and to achieve a constant level of 

accuracy for all of the study area. Then, when the entire area was classified by 
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means of all the training samples, accurate results were achieved for the entire 

area and all the data sources and, therefore, the distribution of the samples was 

proved as a key factor for the final classification accuracy. Additionally, the 

reduction of training samples showed that the training size and samples 

distribution plays a key role. In this sense, large uncertainty in the results could be 

obtained whether the number of samples was not appropriate. 

Regarding the data source used, it was proved that VHR-satellite images (WV2 

and GE1) yielded higher accurate results than ArO when feature set which did not 

include variance texture features were used (RGB, and Rates feature sets). 

However, when variance was included, the results obtained by all the orthoimages 

were not statistically different. Therefore, texture indices were highlighted as a 

highly useful feature for ISAs classification. Both satellite orthoimages had only 

significantly different accuracy for 2 out of 7 feature sets tested, being WV2 more 

accurate than GE1. The data source also affected the differences between both 

training sets used (from the pilot area and from ad hoc training). Thus, while ArO 

and GE1 showed high differences, yielding the ad hoc training set the most 

accurate results, WV2 results reflected that the pilot area was capable to achieve 

comparable results to those acquired from the ad hoc training set. 

Finally, this work showed that the training sample selection should be 

carefully planned, because of the spectral variation, which is typical of archival 

aerial photographs. It has been proved that classification accuracy is notably 

affected by radiometric variation and also by an incorrect capture of the class 

variability for the entire area to be classified (poor spatial distribution of training 

samples). Therefore, an ad hoc training sample, which should be close to the area 

to be labelled, is recommended, including a good representation as well as enough 

samples for each subclass that constitute the pervious/impervious target classes. 
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GENERAL CONCLUSIONS AND FURTHER WORK 

 

CONCLUSIONS 

In this Thesis, several geomatics techniques have been applied to both 

produce suitable and accurate georeferenced primary data and extract valuable 

information for coastal monitoring purposes from those primary data. Those 

approaches have been studied, developed, and tested in a high vulnerable coastal 

area of the Spanish Mediterranean located at Almeria province. This coastal area 

or coastal cell has proved to be highly prone to erosive processes which bring out 

the necessity for developing an appropriate and complete monitoring system. It 

has been also demonstrated that, in order to carry out that monitoring, the need of 

knowing what happened in the past in order to understand what may occur in the 

future came up. 

In this Thesis, two kinds of georeferenced data in order to obtain valuable 

information for coastal monitoring purposes have been utilized: images and digital 

elevation models (DEMs). On one hand, a range of image data, from old aerial 

images to the newest very high resolution satellite images or pre-existing data 

available through Spatial Data Infrastructure (SDI), have been employed. The 

range of image features such as scale, accuracy, state of conservation, spectral 

resolution, or scanning resolution, was quite large and, therefore, different 

geomatics approaches were implemented. On the other hand, DEMs were acquired 

by means of stereo-photogrammetric processes or LiDAR data classification. Thus 

the variability both in vertical accuracy or spatial resolution was also quite high. 

Regarding the georeferenced primary data production, the first two chapters 

of this Thesis have been dedicated to discuss the metric accuracy of archival aerial 

flights by exploring their photogrammetric orientation by means of self-calibrating 

bundle adjustment routines, and to develop a new robust surface matching 

technique for georeferencing historical DEMs based on the availability of a more 

recent reference DEM. Therefore, those chapters tried to develop and implement 

suitable geomatics techniques to obtain the most accurate as possible 

georeferenced data for helping in coastal monitoring tasks (e.g. multitemporal 

shoreline change monitoring). 

In Chapter 1, at least a range from six to nine GCPs per stereo pair was 

recommended to apply self-calibrating bundle adjustment routines. Furthermore, 

the self-calibrating model to apply for that should be estimated in every different 

case since each archival aerial flight can present systematic errors of a different 

nature. In this way, it was found that the scale and the particular features of each 
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flight could be the key factors affecting the choice of the more adequate self-

calibration model. The final accuracy results were more heavily influenced by the 

number of GCPs used in the bundle adjustment than the self-calibration model 

employed due to the underlying masking effect coming from higher degree sources 

of error as compared to the sort of systematic errors that can be properly 

modelled by self-calibration. In other words, and focusing on poorly-conserved 

imagery, the magnitude of non-systematic errors could not be faced by self-

calibration methods which have been thought to cope with systematic errors. In 

fact, no significant differences were found between self-calibrating bundle 

adjustment results when compared to no-self calibrated ones (NSC) mainly due to 

the aforementioned masking effect and the high number of GCPs used for NSC case. 

Trying to achieve the same goal, but changing the point of view, some 

promising results were achieved in Chapter 2 since an accurate co-registration 

was obtained between reference and historical DEMs. Additionally, the proposed 

shaded-relief image matching algorithm was proved to accurately perform a 

suitable pre-orientation for the latter surface matching approach. Both approaches 

(image and surface matching) were found to work well together and the accuracy 

achieved was labelled as adequate. The accuracy yielded from robust matching 

approach was totally comparable to that photogrammetrically extracted from the 

NSC and, thus, it can be stated that a new and more efficient technique has been 

developed for historical DEMs orientation headed up to monitoring tasks. 

Furthermore, regarding the extraction of secondary valuable information 

from the primary data, the remaining three chapters were dedicated to develop 

suitable geomatics approaches for shoreline extraction, shoreline rate change 

assessment, and impervious surface areas classification. In Chapter 3, a new 

method based on DEM extrapolation (Elevation Gradient Trend Propagation, 

EGTP) was built since the 0 m contour level was estimated as a desirable reference 

level. However, topographic LiDAR is not usually able to collect information at that 

height because of the microtidal regime of Mediterranean areas. The most widely 

utilized approach to obtain datum-based shoreline, the Cross Shore Profile (CSP) 

method, was also implemented in order to compare both approaches for 

extrapolation purposes. EGTP was found as more robust and less dependent on 

onshore data and the synthetic validation carried out revealed two main 

conclusions: first, the reference elevation from which extrapolation process is 

started had a great impact for CSP; and second, a systematic offset can appear for 

extrapolation methods when the estimated slope does not match with the actual 

one and therefore interpolation method would always be preferred. 

The shoreline evolution assessment was studied in Chapter 4 in order to 

quantitatively determine the erosion or accretion over time as well as to estimate 

the underlying medium-term shoreline change rate. It was found that erosion 

generally occurred from 1956 to nowadays. Two main reasons for erosive 

processes were hypothesized: first, the lack of sediment supply caused for a 
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natural phenomenon by means of an irregularity on the flood events occurred in 

the twentieth century and, second, the human-induced factor represented by the 

installation of a dam in the main supplier river basin. Apart from the drastic 

reduction of sediment supply, the wave approaching incident angle related to the 

shoreline orientation was found as the main reason explaining the spatial 

variability on the intensity of the erosive processes, being the alongshore sediment 

transport quite clear and carrying those sediment to a sink represented by a close 

submarine canyon. In order to assess shoreline changes, datum-based shorelines 

extracted from DEMs were preferred if compared with high water line (HWL) 

digitized on orthoimages because of the natural variability of this proxy when 

medium- and high-accurate DEMs were used. Regarding the method to assess 

medium-term shoreline change rate, reweighted weighted least squares (RWLS) 

method was evaluated as the most appropriate since it was able to detect and 

remove some observations (outliers) which corresponded to human-induced 

artificial changes on shoreline behaviour or extreme but natural shoreline 

positions. Additionally, RWLS yielded the less confidence interval or uncertainty 

for the estimated rate. It was also found that the shoreline selection as data input 

for change rate assessment should be carefully performed since overweighting 

effects can appear because of the high accurate modern shorelines and the high 

number of shorelines available in the last decades. Finally, extreme erosion rates 

were found for some areas along the study site which strongly recommends the 

continuity of the monitoring in this coastal cell. 

Finally, impervious surface areas (ISAs) classification by means of supervised 

non-parametric approaches and high resolution aerial and satellite images was 

explored in Chapter 5. It was determined that colour archival orthoimages were 

suitable for ISA classification by means of using a direct classification of the 

pervious and impervious areas through nearest neighbour (NN) or support vector 

machines (SVM), observing an improvement on the classification results when 

including simple texture features such as the local variance. Moreover, SVM was 

labelled as the most efficient classification method when using the strategy and the 

feature set which achieved the most accurate results. Other conclusions were: first, 

the need of having local training samples in those areas to be classified instead of 

samples from external areas; secondly, similar classification accuracy results were 

obtained from both satellite images (for almost every feature set used) and from 

the archival orthoimages (only when variance was included); and finally, the fact 

that the training sample selection should be carefully performed since it was 

affected by radiometric variations and the incorrect capture of the class variability 

in the entire area to be classified. 
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FURTHER WORK 

Although it is estimated that the goals of this Thesis have been properly 

accomplished, it is however clear that some further work should be done in order 

to refine some of the methods or approaches developed. 

For instance, and regarding the Chapter 2, it would be interesting to test the 

effectiveness and the accuracy of the shoreline extraction from the DEMs 

referenced by the robust surface matching approach developed. In this sense, it 

would be really helpful to define an automatic methodology for shoreline 

recreation of old DEMs. Moreover, the accuracy obtained should be compared to 

that extracted from non-automatically oriented DEMs. 

Regarding the evaluated shoreline extraction methods from DEM 

extrapolation, some approaches for removing the apparently local offset effect 

should be explored. Especially for CSP, an automatic selection of the points 

included in the regression could be performed in order to avoid the so-called berm 

effect. Additionally, those extrapolation methods should be evaluated by means of 

more accurate data (e.g. a DGPS field campaign) instead of the synthetic data used 

in this Thesis. 

Related also to the last issue, a most reliable datum for shoreline extraction 

and erosion rate assessment should be estimated for Spanish Mediterranean 

coasts in order to determine whether the reference height should be geodetic 

(altimetric datum) or may be related to the tidal regime, e.g. mean high water 

estimated over a large time period. In order to do that, it is worth to take into 

account that interpolation methods are usually preferred and, therefore, the datum 

height to be chosen should be included in topographic LiDAR measurements, 

which is actually the most used technique for DEM generation. That datum should 

be evaluated to be used at a regional scale so that it could be useful for the entire 

coast in the country or, at least, in the entire Mediterranean areas. 

In the Chapter 4, some further work has been already pointed regarding to 

have a wider comprehension on shoreline evolution. Thus, a sediment supply 

study and the verification of the canyon influence would be interesting to carry 

out. With regard to the rate assessment approach, binning transects and non-linear 

shoreline trend methods should be tested in order to improve the change rate 

estimation. Additionally, future work should be done to validate the estimated 

rates in order to verify that the shoreline still follows the assessed underlying 

evolution. 

Finally, an important work should be carried out in order to relate the 

historical increase of impervious surface areas along the study site with the 

shoreline erosion processes by means of spatial regression or geostatistic 

approaches. Focusing on the remote sensing approach, it could be interesting to 

test the developed method on every type of image data available: old panchromatic 
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images and very high resolution aerial images. In addition, DEMs or DSMs could be 

included in the classification approaches in order to improve the classification 

accuracy results. 
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APPENDIX 1 

List of acronyms 

ALS: airborne laser scanner 

ANOVA: analysis of variance 

AOR: average of rates 

APs: additional parameters 

ARO: automatic relative orientation 

CART: classification and regression tree 

CB: coastal blue 

CEM: coastal elevation model 

CI: confidence interval 

CP: check point 

CSP: cross shore profile 

DDS: DEM-derived shoreline 

DEM: digital elevation model 

DF: decision factor 

DGPS: differential global positioning system 

DMC: digital mapping camera 

DTM: digital terrain model 

DSM: digital surface model 

nDSM: normalized-digital surface model 

EGTP: elevation gradient trend propagation 

EIP: error in prediction 

EPR: end point rate 

ETRS89: European terrestrial reference system 1989 

FOV: field of view 

GAP: general adjustment program 

GCP: ground control point 

GLCM: grey level co-occurrence matrix 

GPS: global positioning system 



Geomatics techniques for coastal monitoring 

274 
 

GSD: ground sample distance 

HWL: high water line 

ICP: independent check points 

ICZM: integrated coastal zone management 

IDS: image digitizing shoreline 

INS: inertial navigation system 

ISA: impervious surface area 

ISAE: ImageStation automatic elevation 

JK: Jackknifing 

LAD: least absolute deviation 

LAR: least absolute residual 

LiDAR: light detection and ranging 

LMS: least median of squares 

LPS: Leica Photogrammetry Suite 

LZD: least z-difference 

MDL: minimum description length 

MHW: mean high water 

MLC: maximum likelihood classifier 

MLLW: mean lower low water 

MS: multispectral bands 

MSL: mean sea level 

MSA: mean separation analysis 

NDI: normalized digital indexes 

NDVI: normalized digital vegetation index 

NN: nearest neighbor 

NSC: no-self calibration 

NSM: net shoreline movement 

NTDE: national tidal datum epoch 

OA: overall accuracy 

OBIA: object-based image analysis 

OLS: ordinary least square 

OSD: overall standard deviation 
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PA: producer’s accuracy 

PAN: panchromatic band 

RBF: radial basic function 

RE: red edge 

REDIAM: red de información ambiental de Andalucía 

RGB: red, green, blue (referred to chromatic bands of images) 

RLS: reweighted least squares 

RMSE: root mean square error 

RMSEp: planimetric root mean square error 

RMSEz: vertical root mean square error 

RMSE3d: tridimensional root mean square error 

RPC: rational polynomial coefficient 

RSM: robust surface matching 

RTK: real-time kinematic 

RWLS: reweighted weighted least squares 

SAVI: soil-adjusted vegetation index 

SCI: site of community importance 

SDI: spatial data infrastructure 

SIFT: scale invariant feature transform 

SLR: sea level rise 

SM: separability matrix 

SRIM: shaded-relief image matching 

SVM: support vector machine 

TB: Tukey’s biweight 

TWL: total water level 

UA: user’s accuracy 

UTM: universal transverse mercator 

VHR: very high resolution 

WLS: weighted least squares 

WLAD: weighted least absolute deviation 

WMS: web map service 

Y: yellow 
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