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Non-Parametric Object-Based Approaches to
Carry Out ISA Classification From Archival Aerial

Orthoimages
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Abstract—In order to map the impervious surfaces for a coastal
area, three non-parametric approaches: Classification and Regres-
sion Trees, Nearest Neighbor (NN), and Support Vector Machines
(SVM)- were applied to a dataset of very high resolution archival
orthoimages which had poor radiometry, with only red, green and
blue spectral information. An object-based image analysis was car-
ried out and four feature vectors were defined as input data for the
classifier: 1) red, green and blue spectral information plus four rel-
ative spectral indices; 2) Dataset 1 plus texture indices based on the
grey level co-occurrence matrix (GLCM); 3) Dataset 1 plus texture
indices based on the local variance; and 4) the vector defined by
1), 2) and 3). Two classification strategies were developed in order
to identify the pervious/impervious target classes (aggregation of
all the subclasses and binary classification). The separability ma-
trix was used to present the statistical comparative results clearly
and concisely. The results obtained from this work showed that
1) “GLCM” texture indices did not lead to more accurate results;
2) the incorporation of the local variance texture index significantly
increased the accuracy of the classification; 3) the classification re-
sults were not significantly affected by the classification strategy
employed; 4) SVM and NN achieved statistically more accurate
classification results than CARTs; 5) the SVM classifier was more
efficient than the NN classifier, while NN was less dependent on
the feature vector, and 6) suitable accuracy results were obtained
for the most accurate approaches (SVM) which achieved a 89.4%
overall accuracy.

Index Terms—Archival orthoimages, impervious surface area
(ISA), nearest neighbor (NN), non-parametric classifiers, object
based image analysis (OBIA), support vector machines (SVMs),
texture features.

I. INTRODUCTION

I MPERVIOUS areas are defined as anthropogenic features
through which water cannot infiltrate into the soil [1], [2]

such as rooftops, pavements, roads, sidewalks, thus being a
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good indicator of the degree of urbanization in an area. The
impervious surface areas (ISA) influence the hydrology of a
watershed and have an impact on the potential volume increase,
duration, and intensity of runoff and also affect the quantity of
groundwater and increase stormflow [3]. An often overlooked
environmental problem which is caused by ISA is the increase
in runoff volume and discharge rate, in conjunction with
non-point source pollution, which alter in-stream and riparian
habitats [4]. Additionally, it increases the risk of erosion and
habitat degradation. Those are the reasons why the percentage
of ISA in a watershed is considered to be a basic indicator for
the evaluation of non-point runoff and an estimate of the future
available water quality [4]. Moreover, ISA show different
thermal properties compared to pervious ones [1], [5], since
they retain more heat than natural surfaces and therefore the
stream temperature could potentially increase up to 6.5 degrees
Celsius [6]. According to [6] and [7] the percentage of imper-
vious surface area in a watershed is frequently correlated with
the health of the ecosystem which the stream flows through.
In this sense the ecosystem can be classified as stressed (up to
10% of the total surface area is impervious), impacted (between
11 and 25%) and degraded (more than 25%).
Taking into account all the aforementioned reasons, efficient

techniques to accurately determine and map ISA should be de-
veloped. In this context, a remote sensing approach offers an
appropriate and efficient alternative to identify impervious/per-
vious surfaces instead of using other labor-intensive approaches
such as manually digitizing digital orthoimages [5], [8] or land
surveying using GPS receivers. During the first decade of the
21st century, there has been an increase in studies related to both
very high spatial resolution imagery and classification methods
based on texture. According to [1], the considerations to keep
in mind when implementing an ISA classification using digital
images are: 1) spatial resolution; 2) geometric characteristics of
urban features; 3) spectral resolution; and 4) temporal resolu-
tion.
The very high spatial resolution of images from satellites such

as IKONOS, QuickBird, GeoEye-1 or WorldView-2 have en-
abled the accurate classification of relatively small size elements
and the suitable extraction of ISA [9]–[11]. Furthermore, the or-
thoimages acquired from airborne platforms are regularly pro-
duced by government programmes (e.g., National Plan of Aerial
Orthoimage, Spain, or National Digital Orthophoto Program,
USA) constitute an archival data source which enables mul-
titemporal land-use change studies and/or ISA detection [12]
without the need for new data acquisition. While the current
orthoimages usually include additional information such as the
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near infrared band [2] or ancillary data (e.g., LiDAR data [13]),
most of the archival orthoimages offered by the administration
provide only information for the three regions of the visible
spectrum red, green and blue (RGB). Additionally, archival im-
ages can have some artefacts, sometimes due to them not being
carefully preserved. Therefore, since little spectral information
is available, the identification of ISA from archival orthoimages
is challenging. In order to obtain accurate results, the use of ad-
ditional or ancillary information from GIS databases or image
data fusion [1] is needed.Moreover, contextual information [14]
and image texture analysis [15] have been considered helpful.
The development of an efficient and accurate ISA classification
method from very high spatial resolution RGB imagery would
add value to the available archival data as a source of informa-
tion for land-use change detection, coastal areas evolution, or
urban monitoring.
Since the spatial resolution of the orthoimagery derived from

photogrammetric flights is usually very high (0.20 – 1 m), it
is appropriate to use an OBIA (object-based image analysis)
approach. In fact, a higher local variance of urban land cover
classes is found when the resolution of the input image is
increased [16], and therefore, the accuracy of the traditional
pixel-based classification approaches is reduced and the results
could show a “salt and pepper” effect [17], [18]. Classification
accuracy is particularly problematic in urban environments,
which typically consist of mosaics of small features made up
of materials with different physical properties. To overcome
this problem, OBIA has been recognized as an approach that
can help improve the performance of supervised classifiers
[16], [19]–[22]. In fact, OBIA is a new paradigm in the field
of geographic information science in which images are seg-
mented into meaningful segments (or objects) according to
different criteria before classification is carried out. The OBIA
methodology is based on aggregating similar pixels in order
to obtain homogenous objects, which are then assigned to a
target class. Using objects instead of pixels as a minimum unit
of information minimizes the “salt-pepper” effect due to the
spectral heterogeneity of individual pixels. Furthermore, and
unlike traditional pixel-based methods which only use spectral
information, object-based approach can use shape, texture and
context information associated with the objects and thus it has
the potential to efficiently handle more difficult image analysis
tasks. Moreover, this object-oriented approach enables the use
of hierarchical classifications at different scales [23]. In this
way, the amount of available OBIA works is increasing rapidly
and there are numerous empirical studies published in peer-re-
viewed journals which have provided sufficient evidence of
the advantages of object-based classification over traditional
pixel-based classification (e.g., [16], [20], [21], [24]–[28]). A
comprehensive review of the advantages and the disadvantages
of using OBIA approach for image classification as well as the
state of the art of these methods can be found in [22].
Taking into account all the aforementioned explanations

regarding the application of OBIA methodology on high reso-
lution images, the main goal of this work was to identify and
map impervious and pervious surfaces of a coastal area using
an OBIA approach and RGB archival orthoimages from a pho-
togrammetric flight without any other ancillary information.
Three non-parametric classification methods—Classification

and Regression Trees (CART), Nearest Neighbor (NN) and
Support Vector Machines (SVM)—were tested in order to
avoid assumptions about the distribution of the data. The three
methods, which will be described in the following section,
are widely known and used for image classification in remote
sensing [29]–[32]. Furthermore, four different features sets
were used in the classification in order to determine the most
suitable feature combination (Section III). Finally, and as a
relevant contribution from this work, these non-parametric
classifiers were tested for the classification of impervious
surfaces using two strategies: 1) a binary classification where
pervious/impervious objects were directly classified; and 2)
by defining and classifying subclasses (roads, rooftops, etc.)
which were later on aggregated into the corresponding final
pervious/impervious classes. Summing up, this study tried to
find out the most appropriate combination of non-parametric
classification method, feature set, and strategy in order to
target pervious and impervious areas on RGB archival aerial
orthoimages (which had poor radiometry and many artefacts
due to poorly-preserved positives).

II. STUDY AREA AND DATA SETS

The study area comprised of a rolling terrain and the heavily
developed coastal fringe of Almería (Mediterranean coast,
Southern Spain), approximately 11,000 m long and 775 m
wide. The target area was situated between the harbors of
Garrucha and Villaricos (Fig. 1). This area has suffered from a
significant and persistent sealing process since the mid-1960s
due to urban development, derived from touristic activities,
which has led to an increase in impervious surfaces in this area.
The classification approaches tested in this work were ap-

plied to the archival RGB aerial orthoimages obtained from a
photogrammetric flight carried out on April 9, 2001. The orig-
inal photographs were acquired by the Coastal Board (Spanish
Government) by using a RC30 ( )
analogical camera at an approximate scale of 1:5000. The rel-
atively poorly-preserved positives which had poor radiometry
and many artefacts (scratches, fingerprints, etc.) were digitized
by a photogrammetric scanner resulting in a Ground Sample
Distance (GSD) close to 0.10 m, with a resolution of 20 in
the RGB channels (8 bits). The final RGB orthoimages were ob-
tained through a standard digital photogrammetry process car-
ried out with the software SOCET SET©, and the final spatial
resolution, or GSD, was 0.20 m.
A high spatial variability in the radiometric values was de-

tected. In fact, atmospheric haze variations, poor conservation
of the original positives and, mainly, the so-called “hot-spot”
effect, which makes most landscapes appear brighter when the
viewing direction in the image gets closer to the lighting direc-
tion of the sun, are well-known sources of radiometric hetero-
geneities in aerial images [33]. Thus, since the orthoimagery
was obtained from different aerial images which were radiomet-
rically heterogeneous, the resulting orthoimages showed areas
with different radiometry. It should be noted that a radiometric
correction was not carried out on the images. This was not done
so that the original digital numbers were preserved and because
the input data required to perform an atmospheric correction
were not available, which happens for most of the aerial archival



2060 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 6, NO. 4, AUGUST 2013

Fig. 1. Location of the study site on the Almeria coast, Southeastern Spain.

Fig. 2. Orthoimage corresponding to the central area of the study site.

data [33]. Moreover, relative or absolute atmospheric correc-
tions were not required [34], since the main goal of this work
was not to estimate biophysical variables (where radiance and
reflectance are needed), but to classify pervious and impervious
areas using the digital numbers from the RGB bands as input. In
order to take into account the radiometric heterogeneity, two ra-
diometrically different areas (North and South) were identified
in the study area, as shown in Fig. 2. This kind of radiomet-
rical irregularity is a common drawback of mosaicked archival
or historical images, and suggests that the introduction of ra-
diometrically independent features, (e.g., RGB ratios and tex-
ture indices) can be suitable for image classification [35], [36].
In order to overcome the radiometric artefact, the classification
process should be independently applied to each of the radio-
metrically homogeneous areas, thus the study area was divided
into two data sets.
Although the main goal was to find a suitable approach for the

entire study area, a pilot area was first selected in order to carry

Fig. 3. Distribution of the three study areas.

out the initial tests. The pilot area that was chosen was located
in the northern part of the image since it had a good representa-
tion of most of the land uses that were in the whole study area
(e.g., sea, urban, agricultural, forest). The size of the pilot area
was 162.5 ha, covering around 25% of the total area. The final
workflow obtained from the pilot area was eventually tested on
the entire image. The rest of the study area was divided in two
additional regions because of the previously mentioned radio-
metric discontinuity. Thus, the northern part of the study area
(pilot area was not included) was identified as area A, and the
southern part as area (Fig. 3). In order to validate the classifi-
cation method, the spatial distribution of the target classes had
to be taken into account. In this sense, the pilot area had a class
distribution similar to the class distribution in area (large per-
centage of urban area), while the non-urban class was the pre-
dominate class in area .
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TABLE I
TARGET CLASSES AND CORRESPONDING SUBCLASSES. NUMBER OF TRAINING AND VALIDATION SAMPLES USED FOR THE CLASSIFICATION AND ACCURACY

ASSESSMENT OF THE PILOT AREA.

III. METHODS

A. Minimum Classification Unit

The analysis carried out in this study was based on the OBIA
approach, so the object (a set of pixels which are homogeneous
regarding certain features) constitutes the minimum classifica-
tion unit and also the unit used for validation purposes. The seg-
mentation algorithm used was the multiresolution segmentation
[23] implemented in eCognition 8. This approach requires the
following input data: 1) quantitative information (e.g., spectral
bands) used for the segmentation and its weight on the process;
and 2) scale, shape and compactness parameters. For a compre-
hensive explanation of the algorithm and parameters see [23].
In the present study, the segmentation was carried out using the
RGB digital numbers as inputs (same weight), a scale parameter
of 50, and shape and compactness parameters of 0.3 and 0.7, re-
spectively. The final values of the parameters were fixed after
several tests, in order to select the combination of final segments
which fit the actual field plots the best.

B. Classes to Extract and Classification Strategies

The aim of this work was to classify pervious and ISA, which
were identified as target classes. These two classes were not de-
fined by their own spectral characteristics, so they were defined
by spectrally homogenous land cover (subclasses), which were
classified and added to the target classes according to their per-
viousness/imperviousness. A classification method which tried
to identify each visually recognizable class was proposed and
those classes were additionally aggregated according to their

perviousness as a pervious or an impervious class. The descrip-
tion of the subclasses and the target class that they belong to are
shown in Table I.
Regarding the classification strategies workflow, two main

approaches were carried out. The first one, which was called
Aggregation, involved two steps: 1) classification of each sub-
class (land cover) using the different classification approaches;
and 2) aggregation of each subclass to its corresponding target
class, so the final classes were Pervious and Impervious. The
second classification method was called Direct Classification,
since the subclasses were not identified separately, and the two
target classes were directly obtained by using the training sam-
ples corresponding to the land cover that was assigned to each
target class. The aims of testing different classification strate-
gies were to find out if there was any impact in the accuracy of
the classification and if the impact depended on the considered
algorithm. Choosing the most suitable strategy could result in
minimizing the effort to identify the training data required for
the classification [37].

C. Features Tested for Image Classification

Since the classification was based on image objects, the ap-
plied features were calculated for each object according to the
pixels that formed the object. Each object was therefore char-
acterized by using the RGB information. Unfortunately, valu-
able information commonly used in this sort of studies such as
LiDAR data, GIS ancillary data, or vegetation indices which
use the infrared part of the spectrum (e.g., Normalized Dig-
ital Vegetation Index (NDVI) or Soil-Adjusted Vegetation Index
(SAVI)) were not available for their application. Nevertheless,
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additional features were calculated and used in the analysis.
First, a simple set of ratios were derived from the original RGB
bands in order to evaluate their potential as input features for the
classification process. The computed features were: the green
ratio ( ), the red ratio ( ), the
blue ratio ( ) and the green-red ratio ( ). The
green, red and blue ratios are three chromaticity color transfor-
mations which provide additional spectral information. These
transformations are useful for images were data are strongly
correlated (e.g., RGB images, since correlations between blue,
green and red digital numbers are often larger than 0.9), because
they decorrelate the image so that the weakly correlated com-
ponents of the data (i.e., the chromatic information) can be en-
hanced independent of the correlated intensity component [38].
The use of the green-red ratio is based on the three groups of
spectral patterns for major components of land cover which can
be found by using the information provided by the green and
red regions of the spectrum [39]. Thus, in the case of green
vegetation, green reflectance is higher than red reflectance (i.e.,

, expressed in digital numbers for archival aerial pho-
tographs), while for roofs or concrete, green reflectance is lower
than red reflectance (i.e., ). Regarding water or snow,
green and red reflectance are similar (i.e., ). There-
fore the index can be used as a surrogate of red-infrared
ratio ( ) to distinguish vegetation from other land cover,
and to differentiate types of vegetation [40]. Moreover, the use
of band ratio images that include short wavelength bands has
been proved to be effective for lithological mapping [41], since
they contribute to suppress the topographic variation and the
brightness difference related to grain size variation.
Moreover, texture features (e.g., variance) have been found

to be essential in order to provide better results when very high
spatial resolution orthoimages are used [42]. Texture features
are considered to be more suitable than absolute radiometric
values which can vary artificially along the entire data set,
particularly when working with archival imagery (see Fig. 2).
Finding the most suitable texture indicator was beyond the
scope of this work (for more information about finding the
most suitable texture indicator please refer to [43] and [44]), so
only two widely used texture measurements were tested. The
first one was the local variance, which was computed using a
7 7 window size [45] using the formula:

(1)

where represents the digital number of the pixel located
at row and column and being the mean digital number
for the that belong to the mobile window.
The window size was considered large enough to satisfacto-

rily capture the textural patterns of the objects according to the
land-use class that needed to be identified. The local variance
was computed for each RGB band as a raster image and added
to the feature space, so that the mean and the standard deviation
could be calculated for each object.
The second type of texture feature was based on the Gray

Level Co-occurrenceMatrix (“GLCM”) descriptors available in

eCognition, i.e., an object-based version of the original features
proposed by [46]. Among all of the available features, homo-
geneity and correlation were chosen since they have been tested
and recommended by different authors. [47] and [48] pointed
out that homogeneity is the most suitable texture measurement
that can be used to differentiate urban land uses, while correla-
tion was suggested by [48] and [49] as one of the most suitable
“GLCM” statistics. Furthermore, homogeneity and correlation
are not linear dependent features [50].
The computed features were grouped into different subsets or

feature vectors (Table II) in order to know the impact of the dif-
ferent features on the classifiers, as well as their performance for
the whole classification process. Thus, the feature vector called
“Basic” grouped the RBG bands into derived features including
the mean value of each band and the four band ratios as previ-
ously described. The “Basic” feature vector including the band
ratios was preferred over the simple RGB feature vector after
comparing the results of using each one as input data. It was
found that using the “Basic” feature provided a significantly
better classification (overall accuracy and Kappa) for two of the
three classification methods that were tested (i.e., CART, NN),
while for the other classifier (SVM) the differences were not sta-
tistically significant at a 95% confidence level.
The group “Variance” was comprised of all the “Basic” fea-

tures plus the mean and standard deviation of the local variance
texture, which was estimated according to (1). The “GLCM”
group had the “Basic” features plus the “GLCM” texture fea-
tures used in this work. All the previously mentioned features
were included in the feature vector called “Total”, which re-
sulted in a vector which was defined by 19 features.

D. Non-Parametric Classification Methods Tested

Classification and Regression Tree (CART) analysis was the
first tested method. CART is a non-parametric method widely
used in remote sensing for image classification [49], [51], and
[52]. The most explanatory variables are detected by this kind
of analysis and a prediction of response values can be carried
out. CARTs use a sequential method for class assignment issues
in which tree construction requires a recursive partitioning of
the training data set, which is divided into subsets, increasing
their internal homogeneity according to one or more features
[53]. The decision tree model that was used in this work cor-
responded to the univariate CART described by [54], with no
pruning algorithm being applied [55].
The Nearest Neighbor (NN) method was the second tested

method. NN is a non-parametric supervised classification ap-
proach which stands out because of its simplicity and flexibility
[32], [56]. It is characterized by achieving suitable results when
the number of required training samples is not very high [57].
The nearest neighbors in the feature space are searched for in
order to determine which class the element being classified be-
longs to. Although -NN methods benefit the outlier effect re-
moval, they also involve a large computational effort [58]. How-
ever, OBIA approaches enable -NN methods to be applied in
a more efficient way, since the use of objects can significantly
reduce the number of elements that need to be classified, when
compared to using pixels as minimum classification unit [59]. In
this work, the 1-NN approach was used [60] as implemented in
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TABLE II
FEATURE VECTORS.

the eCognition software. This approach allows the membership
probability value of every object belonging to each target class
to be computed [51], [57] according to the description in [61].
The third method that was tested was Support Vector Ma-

chine (SVM), which is a non-parametric supervised learning
technique used for classification and regression analysis. The
application of SVM on remote sensing image classifications
has increased extraordinary recently mainly because: 1) it does
not rely on the assumption that the data are drawn from a
given probability distribution; and 2) it requires a relative small
number of training samples [30], [62], which is an advantage
due to the difficulty in obtaining ground truth samples. SVM
has been previously used for impervious surface mapping or
urban area classification [63], [64] using hyperspectral data
[65] or high resolution satellite imagery [66]. However, few
applications have been carried out on archival aerial RGB
photography [67]. Therefore the successful application of an
object-based classification using SVM on the dataset used in
this work could boost the use of these techniques for long-term
land-use evolution studies.
In short, SVM methods try to find a hyperplane which splits

a data set into two subsets during the training phase, using a set
of samples where the classification is previously known [68].
The training phase tries to find the optimum boundary decision
solution that minimizes misclassifications [30]. A crucial aspect
of SVM is that not all samples are used to define the final hy-
perplane. Only those samples which are in the margin between
classes are used to define the hyperplane and they are called
Support Vectors [64]. To obtain that hyperplane, a kernel func-
tion needs to be used. The radial basic function (RBF) is the
most commonly used approach and therefore it was used, fol-
lowing the formula expressed in the equation [69], [70]:

(2)

where the kernel parameter , together with the penalty param-
eter of the error term (usually denoted by , with ) are es-
timated from the training data set through cross validation [69].
In the present work, the free-distribution library LIBSVM

[69] was used for the application of SVM classifier. The gen-
eral methodology proposed by the authors was also applied.
This methodology consists of the following steps: 1) a simple
scaling is applied to the training data (in order to avoid the
over-weighting due to the features presenting the highest abso-
lute values); 2) the applied kernel is RBF. The determination of
parameters and is solved by cross validation and grid search
on the training data set. Then, 3) the estimated parameters are
applied to the dataset used for testing (previously scaled), and
the error matrix is computed. Finally, 4) the computed SVM pa-
rameters are applied to the set of objects that are within the entire
image.
Each non-parametric classifier previously described (CART,

NN and SVM) was applied, using as an input each of the four
feature vectors (“Basic”, “Variance”, “GLCM” and “Total”).
Both classification strategies (i.e., Aggregation and Direct
Classification) were carried out for each combination of classi-
fier and feature vector, which led to 24 different classifications
being undertaken (3 classifiers 4 feature vectors 2 strate-
gies). However, taking into account the description of NN
approach, it has to be clarified that both strategies have been
proved to achieve the same classification results since the
nearest sample in the feature space will be the same for both
strategies, e.g., if the nearest sample corresponds to “Forest”
for the Aggregation strategy, it will necessarily correspond to
“Pervious” for the Direct Classification. Thus, the number of
combinations is reduced to 20 final classifications.

E. Validation and Comparison

The sampling design, both for the training stage and the ac-
curacy assessment, is a crucial task in the image classification
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process. Since the homogeneous object was established as the
minimum classification unit in this work, they were also chosen
as the unit used for the training and testing samples, instead of
using single pixels. A randomly stratified sampling method was
followed, so that well distributed random samples were identi-
fied for each subclass. The samples were located on the orthoim-
ages and each sample was assigned to the corresponding sub-
class (Table I). The high spatial resolution of the orthoimages
enabled each class to be identified visually with no detectable
errors.
It has been widely proven in previous works that classifica-

tion accuracy can be affected by training sample size [70]–[72].
It is also known that the number of required samples depends
on both the classifier [71] and the number of classes to be la-
belled [70]. On the other hand, the number of validation samples
that are needed to carry out the accuracy assessment needs to be
larger than the training dataset in order to achieve narrow confi-
dence intervals for the accuracy estimation. [73] suggested that
50 could be a proper number of samples per class when the scene
is not too extensive, while a number from 75 to 100 would be ad-
visable for vast areas or predominant classes. Otherwise, some
statistically-based formulas such as binomial distribution [74]
or multinomial distribution [75] are suggested. These methods
utilize the expected precision per cent and the toleration error
in order to estimate the testing sample size. According to [75],
the validation sample size for the pilot area (739, see Table I)
can be considered suitable, and slightly higher than necessary
to achieve an overall accuracy of 85% ( ).
Error matrices were calculated for each classification and

overall accuracy (OA), user’s accuracy (UA), producer’s accu-
racy (PA) and KHAT statistic were derived [73]. Additionally,
in order to offer significance to the given results, intervals of
confidence by Exact method [76] were calculated ( ),
because it corresponds to the maximum likelihood estimate
(i.e., the actual value of the estimated accuracy OA, UA or
PA) even when it is not symmetrical (the values above and
below are reported). The result of performing a Kappa analysis
is a KHAT statistic ( ), an estimate of Kappa. Additionally,
the variance of , and the statistic can be calculated to test
the significance of a single error matrix (see [75] for further
information). The Kappa test was applied [75] at a statistical
level of significance , in order to estimate whether
the error matrix was statistically different from another one. In
order to compare two independent error matrices (i.e., 1 and 2),
the following statistic is calculated:

(3)

This statistic is also standardized and normally distributed.
Thus, the null hypothesis ( ) will be rejected if

( ). That rejection would mean that the error
matrices 1 and 2 are considered significantly different at a 95%
confidence level.
190 different comparisons between methods were made by

applying the Kappa test. In order to help understand the results,
a separability matrix (SM) was computed (see Section IV). The

matrix was defined by the statistics used to compare the different
classification approaches, so the statistics given by (3) were cal-
culated for each approach versus the other 19 approaches.

IV. RESULTS AND DISCUSSION

As previously mentioned, the main goal of this paper was to
address three issues: (i) what non-parametric classifier yielded
the most accurate output; (ii) what feature set led to the most
accurate classification and; (iii) if the application of Aggrega-
tion orDirect Classification strategies affected the accuracy. On
one hand, this section shows and discusses the accuracy values
obtained by each approach and the statistical comparison be-
tween the different approaches (Section IV-A), to determine if
they were statistically different. On the other hand, once the
most accurate method was selected, this section establishes a
protocol (Section IV-B) and tests it in an operational context
(Section IV-C).

A. Accuracy Assessment Results and Comparisons

A summary of the results of the accuracy assessment, showed
as the 95% confidence intervals, are presented in Table III for
each target class. The highest overall accuracy was achieved
with the SVM and NN approaches in those cases in which
“Total” or “Variance” feature vectors were used, i.e., when the
local variance texture feature was included. Those results were
considered to be suitable since the OA was higher than 85%,
which has been established as the minimum acceptable value
for the classification results by [75]. That minimum seemed
to be a reasonable reference for the required accuracy in this
work, since there was a large variability within the classes that
were labelled and the radiometric quality of the archival data
set was relatively poor. The results obtained in our work could
be considered more accurate than those in previous work with
basic comparative information (no infrared band and high spa-
tial resolution) which achieved an OA of around 80% for ISA
detection [27]. Another comparable study carried out by [16]
achieved an OA of 90%with a high spatial resolution Quickbird
image, which included the near-infrared band. [2] obtained an
OA of 81% for urban classification with digital 1-m spatial res-
olution orthoimagery. On the other hand, the CART approaches
provided the lowest classification accuracies. Regarding the
Producer’s accuracy (PA), it was systematically higher for the
pervious class than for the impervious class, which meant that
the impervious objects had a larger omission error than the per-
vious objects, especially for the CART approaches. Generally,
the same occurred for the User’s accuracy (UA). As a result,
it can be said that the pervious class was better classified than
the impervious class, being more noticeable in the case of the
PA results. Taking into account that the sample design was
balanced (33% of classified objects were impervious while the
37% of validation and training samples were from the same
target class), the differences between the results of impervious
and pervious classes happened because objects in impervious
class were made by different kinds of construction materials,
which leads to a spectrally heterogeneous class [77]. In order to
prove the latter, the error matrix corresponding to the subclasses
was computed (not shown). As an example, the classification
of impervious subclasses such as roads, paths and harbor dam
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TABLE III
CONFIDENCE INTERVAL OF ACCURACY ASSESSMENT RESULTS FROM THE CORRESPONDING ERROR MATRICES. THE FEATURE VECTORS ARE DENOTED AS BASIC
( ), GLCM ( ), VARIANCE ( ) AND TOTAL( ),WHILE THE CLASSIFICATION STRATEGIES ARE CODED AS AGGREGATION (1) AND DIRECT CLASSIFICATION (2).

yielded, respectively, an omission error of 23.53%, 33.33%
and 59.09% with the pervious subclasses. Note that SVM with
the feature sets “Variance” and “Total” and NN with all feature
sets, presented very similar values of PA and UA for both target
classes, while SVM with the feature sets “Basic” and “GLCM”
and especially CART with all the feature sets, yielded larger
differences between PA and UA.
As a measure of agreement or accuracy, KHAT is considered

to show strong agreement when it is greater than 0.75 [78], while
values lower than 0.40 indicate poor agreement [75]. According
to Table IV, the SVM approach with the “Variance” and “Total”
feature vectors and NN with “Total” could be considered results
that have strong agreement. However, the CART approaches
were showed to be the least accurate, especially when the di-
rect classification approach was applied, since the internal het-
erogeneity [77] made it difficult to achieve a suitable separation
using regression trees. Thus, the CART classifier was capable
of identifying the most explanatory variables that were needed
to classify the most abundant subclasses, increasing the internal
homogeneity and improving the final overall accuracy when the
Aggregation strategy was applied. Noticeably, those subclasses
(i.e., dark sea, bright sea or individual trees as pervious classes,
and red buildings or greenhouses as impervious surfaces) had
the largest weights over the entire scene. On the contrary, when
only two highly heterogeneous subclasses were considered, i.e.,
pervious and impervious, the variables which improved the ho-
mogeneity were not as easy to obtain and consequently, the ac-
curacy achieved was significantly lower for Direct Classifica-
tion strategy.

In order to determine the influence of the two different
classification strategies (Aggregation and Direct Classification)
as well as to carry out a statistical comparison between the
two methods, KHAT values were computed both for all the
error matrices and for each target class, pervious and imper-
vious. The results shown in Table IV, pointed out that only the
CART approaches with all feature vectors were significantly
affected ( ) by the classification strategy. Otherwise,
from the results of SVM approaches can be inferred that the
classification agreement was not statistically sensitive to the
use of subclass aggregation or the application of a direct binary
classification. It should be noted that only when pervious sub-
classes were confused with impervious ones (and vice versa)
(e.g., bare soil was misclassified as roads or paths, and roads
were misclassified as scrubland), the accuracy results were
affected. Therefore, although some subclasses were difficult to
classify, the most common misclassifications were commonly
with other subclasses of the same target class (e.g., scrubland
was misclassified mostly with agricultural fields) so the final
accuracy was not affected. It is relevant to highlight that, since
the training samples were acquired through a balanced random
stratified sampling for each subclass, most of the spectral
variability of the final target classes were successfully captured
from the subclass-based training. Only when this kind of sam-
pling is carried out—extracting samples from every significant
subclass, a successful classification of the target classes can be
expected. Otherwise, the expected results when using the direct
classification approach could be different.
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TABLE IV
KHAT STATISTIC FOR EACH COMBINATION OF CLASSIFIER, FEATURE VECTORS
AND CLASSIFICATION STRATEGY AND STATISTIC CORRESPONDING TO THE
DIFFERENCES BETWEEN THE TWO TESTED CLASSIFICATION STRATEGIES

REGARDING OVERALL ACCURACY. SIGNIFICANT DIFFERENCES ( ) IN
CLASSIFICATION OVERALL ACCURACY ARE HIGHLIGHTED IN BOLD LETTERS.

In order to determine the most adequate combination of
classifier, feature set and strategy, several separability matrices
(SMs) were used (see Tables V–VIII). A SM depicts every
approach to be compared in columns and rows from the highest
KHAT to the lowest one so that the same order is followed.
Every cell of the matrix represents the statistics (3) between
each pair of approaches so the diagonal cells correspond to the
same method and therefore the statistic for those cells is zero.
Therefore, the SM is a valuable tool that can easily identify
which methods are significantly different from the others. In
this work, since the total size of the SM for all the approaches
(20 20 dimension) did not allow a proper display, the results
are shown in order to independently analyze the influence of
every studied variable, i.e., classification strategy, classifier and
feature vector.
Table V shows the separability for all the approaches which

used the Direct Classification. The SVM and NN classifiers
in combination with the feature sets “Variance” and “Total”
yielded the best accuracy results and they were significantly dif-
ferent from the other approaches (although NN with the feature
set “Basic” was not separable from the NN “Total” and “Vari-
ance”). Similar results were found in the SM of Aggregation
strategy approaches. Those results implied that the “GLCM”
feature set was not able to achieve any similar results regarding
the accuracy of the classification and did not add any relevant
information for the classification of ISA in this study area. This
was probably due to the fact that the GLCMmatrices were com-
puted within each object and homogeneity and correlation were

estimated for each independent object (OBIA approach). In-
stead, the texture obtained as local variance has been proved to
have a large influence on the improvement of accuracy, probably
due to the independence of the object limits and the window size
which is large enough to extract a suitable spectral variability
[42]. Moreover, the CART approaches were clearly pointed out
as the least accurate classifiers.
In order to clarify the impact of the different approaches on

each classifier, a SM comprising of all the approaches that used
the same classifier was computed. Table VI shows the SM for
the SVM classifier and highlights two aspects: first, non-sig-
nificant differences existed between the feature sets “Variance”
and “Total” and second, no differences were detected among ap-
proaches which used “GLCM” and “Basic” feature sets either.
However, both blocks (i.e., “Variance” and “Total” vs. “GLCM”
and “Basic”) were clearly distinguished, highlighting that “Vari-
ance” and “Total” feature sets yielded the most accurate results
for the SVM classifier. Similar results were found for NN but
the “Basic” feature set did not achieve significant differences
from “Variance” or “Total” showing that NN was less depen-
dent on the chosen feature set (Table VII). Regarding CART,
the strategy used was the main factor that affected its accuracy,
the Aggregation strategy being the most accurate. The feature
sets played a less important role for the CART classifier.
Finally, a SM of all the approaches that used the same feature

set was displayed. Table VIII shows all the combinations with
the “Total” feature set. It can be pointed out that only CART can
be considered as the least accurate classifier, since its KHAT
statistics were significantly different from all of the other ap-
proaches (the highest KHAT for CART was 0.6038, while for
the other approaches the KHAT values were between 0.7416
and 0.7733). Additionally, the type of strategy employed had
no influence on the approach except for the CART classifier.
Similar behavior was observed for the “Variance” and “GLCM”
feature sets. However, when the “Basic” feature set was applied,
the NN resulted to be significantly more accurate than the other
classifiers and SVM and CART were similar when CART was
applied to the Aggregation strategy.
Therefore, according to the results previously discussed it can

be proved that: (i) the most accurate classifiers were NN and
SVM, (ii) NN was the least dependent classifier on the feature
set employed, (iii) only CART was dependent on the strategy
that was followed; and (iv), the feature sets which allowed the
most accurate results to be obtained were “Total” and “Vari-
ance”. As a result, the CART classifier could have been rejected
as an accurate classifier for this study while it has been proved
that the incorporation of the texture variance was significant in
order to increase the accuracy of the ISA classification using
archival RGB images.

B. Establishment of an Operational Protocol

From both operational and mapping production standpoints,
the efficiency of the classification process is crucial for the se-
lection of the final approach. In that sense, the SVM classifier
was highlighted as being clearly more efficient than the NN
classifier. Table IX shows a comparison of the computational
budget (measured as running time) needed in order to carry
out the ISA classification for the pilot area. The measured time
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TABLE V
SEPARABILITY MATRIX FOR CLASSIFICATION STRATEGY 2 (DIRECT CLASSIFICATION). BOLD TYPE INDICATES SIGNIFICANT DIFFERENCES ( ).

TABLE VI
SEPARABILITY MATRIX FOR SVM CLASSIFIER. BOLD TYPE INDICATES SIGNIFICANT DIFFERENCES ( ).

TABLE VII
SEPARABILITY MATRIX FOR NN CLASSIFIER. BOLD TYPE INDICATES

SIGNIFICANT DIFFERENCES ( ).

was exclusively referred to as the classification task, excluding
the previous segmentation phase. When using the NN classifier
both the number of classes to be classified and, especially, the
feature vector, had an influence on the running time for com-
puting the classification results. The computational cost of pro-
cessing the feature vectors including the texture indices based
on “GLCM” (homogeneity and correlation) turned out to be ac-
tually unaffordable under real operational conditions for current
mapping production, as it has been previously indicated by other
authors [79]–[81]. Comparatively, the texture index, based on
local variance previously computed for a 7 7 window size,
took less than five minutes of additional running time than when
the “Basic” feature vector was used. As a result, the use of
the “GLCM” texture was not efficient, especially taking into
account that the pilot area comprised of only around 25% of

the entire working area. Furthermore, the number of target sub-
classes was a key factor according to the processing time, par-
ticularly when the local variance texture was used, since the re-
quired time was fifteen times longer for the aggregation strategy
than for the direct classification (17 minutes and 1 minute re-
spectively). This fact can be explained because each object is
compared to each subclass in order to be assigned to the nearest
subclass. If only two classeswere being compared (pervious/im-
pervious), the process required less computational effort. The
number of training samples would be another significant factor
related to computational time since each element has to be com-
pared against each object and then finally labelled according to
the corresponding object. Eventually, if a NN classifier is em-
ployed, the use of a previously computed local variance tex-
ture index is suggested. In the same direction, the use of the di-
rect classification (pervious/impervious classes) is also recom-
mended. In that case, an exhaustive training sample is required
in order to feed the classifier the whole spectral variability of
the subclasses composing of the final target classes.

C. Testing the Method in an Operational Context

According to the results discussed in the previous sections,
the SVM classifier is the most efficient choice when the accu-
racy of the results (both the producer’s and user’s accuracy), its
low dependency on the classification strategy and, finally, its
low computational budget are taken into account. Additionally,
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TABLE VIII
SEPARABILITY MATRIX FOR THE APPROACHES USING THE TOTAL FEATURE VECTOR. BOLD TYPE INDICATES SIGNIFICANT DIFFERENCES ( ).

TABLE IX
RUNNING TIME TO CARRY OUT THE PILOT AREA CLASSIFICATION USING THE NN CLASSIFIER AVAILABLE IN ECOGNITION 8, SVM, AND CART. THE RESULTS

HAVE BEEN OBTAINED BY USING A 3.20 GHZ DUAL CORE PROCESSOR WITH 8 GB RAM AND 64 BITS.

TABLE X
CLASSIFICATION ACCURACY ASSESSMENT RESULTS FOR THE ENTIRE AREA BY USING THE SVM CLASSIFIER, VARIANCE FEATURE VECTOR AND DIRECT

CLASSIFICATION STRATEGY.

the use of “GLCM” texture and the aggregated strategy were
proved as not being significant for the accuracy improvement.
Thus, the combination of the SVM method, the “Variance”
feature set, and the Direct Classification strategy was chosen.
Based on this choice, the classification of the entire working
area was carried out and the results are shown in Table X.
The effect of the aforementioned radiometric artefact on the
classification accuracy can be observed when the results are
compared. When the North and South areas (areas and as
described in Section II) were classified using the training sam-
ples extracted from the pilot area (pilot training), the accuracy
of the results were statistically poorer than when the training
samples were collected from a specific area to be classified
(ad hoc training in Table X). According to the statistic, the
accuracy significantly increased for the overall accuracy and
the KHAT statistic. Furthermore, the statistic between both
ad hoc classifications showed that they were statistically similar
( ) and therefore, the feasibility of the method was
proved. These results highlighted the importance of the training
dataset, especially when images which present radiometric
artefacts (such as archival aerial orthoimages) are employed.

Moreover, the subclass distribution can vary from one scene
to another, which implies a different spectral variability for
each specific area. According with the results, it was also found
that although it improved the accuracy of the results, the use
of variance-based features did not seem to contribute to the
elimination of the radiometric artefact, since an ad hoc training
set was needed for each area. Finally, it should be pointed out
that the final classification results obtained from subsets and
led to an appropriate KHAT statistic and an overall accuracy

value above the minimum value of 85% as proposed by [75].

V. CONCLUSIONS

This work showed that RGB archival aerial orthoimagery
can be used as a relevant data source for ISA classification,
even when ancillary data are not available. However, this kind
of archival imagery is usually radiometrically deficient, due to
it being not well preserved (degraded from being stored im-
properly), scanning errors and radiometric variations among the
different aerial photographs covering the working area (which
can be detected when the images are mosaicked). Therefore, an
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adapted workflow which takes into account those characteris-
tics was presented and validated in this work.
A relevant methodological contribution presented in this

work was the exhaustive statistical analysis undertaken in order
to make sure that the results that were obtained were reliable.
The KHAT statistic was used to compare the error matrices
corresponding to each combination (one-against-one), which
indicated whether the accuracies were significantly different
from one another. Because of the high number of combinations
that were compared, the separability matrix (SM) was intro-
duced as a tool to clarify the statistical analysis results. This
matrix was proved to be a useful method in order to make the
obtained results more intelligible and organized.
From the SMs results, some conclusions can be derived. First,

SVM and NN were ranked as the most suitable classifiers, espe-
cially when the local variance texture descriptor was included
in the feature vector. For those cases the overall accuracy was
close to 90% and KHAT was about 0.75. Local variance repre-
sents a simple and easy way to extract texture, so its utiliza-
tion and adaptation to images that have different spatial res-
olutions should be tested in further works. The CART clas-
sifier, based on decision trees, performed the worst regarding
overall accuracy, achieving a score not higher than 82%. The
absence of significant improvement regarding classification re-
sults was remarkable when texture information based on ob-
ject-based “GLCM” (homogeneity and correlation texture in-
dices) was added to the basic spectral features (mean of the
RGB channels and 4 different band ratios for each object). Ad-
ditionally, “GLCM”-based texture indices are computationally
expensive and, therefore, difficult to implement under opera-
tional conditions or mapping production.
Another notable conclusion that can be extracted from this

work is the relative low influence of the classification strategy
(aggregation of subclasses or direct classification) on the
pervious/impervious classification accuracy results. Only the
CART classifier was significantly affected by the classification
strategy used, since the direct classification turned out to be less
accurate than the aggregation strategy for one of the feature
vectors that was tested. It is worth noting that, for the case of di-
rect classification, the target classes, pervious and impervious,
were labelled in a binary way so more errors could be expected
because only two classes could correspond to a large spectral
variability. As opposed to CART, the SVM and NN classifiers
were not sensitive to the large heterogeneity attributed to the
target classes in the case of direct classification since they work
in a more localized feature space (nearest neighbor or support
vectors). On the other hand, the NN classifier used a large
computational budget which, in contrast to SVM, was highly
depended on the number of classes that were to be labelled,
the number of training samples, as well as the support feature
vector. In fact, NN was proved to be a non-efficient method
when it is supported by “GLCM” texture features, especially if
large areas have to be classified.
When the most suitable classification approach was selected,

it was proved that the selection of an ad hoc training set was
needed to accurately classify the remaining study area (aside
from the pilot area) and to achieve a constant level of accuracy
for all of the study area.

Finally, this work showed that the training sample selection
should be carefully planned, because of the spectral varia-
tion, which is typical of archival aerial photographs. It has
been proved that classification accuracy is notably affected
by radiometric variation and also by an incorrect capture of
the class variability for the entire area to be classified (poor
spatial distribution of training samples). Therefore, an ad
hoc training sample, which should be close to the area to be
labelled, is recommended, including a good representation as
well as enough samples for each subclass that constitute the
pervious/impervious target classes.
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