Localizing braided fusion categories

Eric Rowell (Texas A&M University, USA) rowell@math.tamu.edu

In this talk I will introduce and discuss a physically-inspired notion of "localization" for braided fusion categories (BFC), which is reminiscent of fiber functors for fusion categories. Given an object X in a BFC one asks when the associated braid group representations can be "realized" via a braided vector space (R,V) in a certain precise sense (localized). Perhaps surprisingly, integrality of the BFC is not necessary for localizability. Time permitting I will describe an application to quantum computing (joint work with Zhenghan Wang) and some generalized types of localization (joint work with César Galindo and Seung-Moon Hong).

Localizing Braided Fusion Categories

Eric Rowell (Texas A&M U.) with Z. Wang (Microsoft) C. Galindo (U. de los Andes) S.-M. Hong (U. Toledo, Ohio)

July 2011 based on arXiv:1009.0241 (to appear CMP) and arXiv:1105.5048

Outline

- 1 Sequences of \mathcal{B}_n -representations and Localizability
 - Sequences
 - Localization
 - Examples
- 2 Speculations and Further Directions
 - Preliminary Results and Conjectures
 - Work with Galindo and Hong
- 3 Motivation: Quantum Computation
 - Quantum Circuit Model
 - Topological Model

Sequences Localization Examples

The Braid Group

A key role is played by the braid group:

Definition

$$\mathcal{B}_n$$
 has generators σ_i , $i = 1, ..., n-1$ satisfying:
(R1) $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

(R2)
$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 if $|i - j| > 1$

Sequences Localization Examples

General Context

Let
$$\iota : \mathcal{B}_n \to \mathcal{B}_{n+1}$$
, $\iota(\sigma_i) = \sigma_i$ for $i \leq n-1$.

Definition

A sequence of braid representations is a family of \mathcal{B}_n -reps (ρ_n, V_n) and *injective* algebra maps τ_n such that the following diagram commutes:

Sequences Localization Examples

Braided Vector Spaces

Definition

(R, V) is a **braided vector space** if $R \in Aut(V \otimes V)$ satisfies $(R \otimes I_V)(I_V \otimes R)(R \otimes I_V) = (I_V \otimes R)(R \otimes I_V)(I_V \otimes R)$

Induces a sequence of \mathcal{B}_n -reps $(\rho^R, V^{\otimes n})$ by

$$\rho^{R}(\sigma_{i}) = I_{V}^{\otimes i-1} \otimes R \otimes I_{V}^{\otimes n-i-1}$$

Sequences Localization Examples

Braided Fusion Categories

Categorical construction:

- Fix $X \in C$ (strict) braided fusion category
- Braiding isomorphism $c_{X,X} \in \operatorname{End}(X^{\otimes 2})$ induces: $\psi_n : \mathbb{C}\mathcal{B}_n \to \operatorname{End}(X^{\otimes n})$ via $\sigma_i \to I_X^{\otimes i-1} \otimes c_{X,X} \otimes I_X^{\otimes n-i-1}$
- $\mathbb{C}\mathcal{B}_n$ acts via ψ_n on the $\mathrm{End}(X^{\otimes n})$ -module

$$W_n^X := \bigoplus_{Y ext{simple}} \operatorname{Hom}(Y, X^{\otimes n})$$

• Denote (ρ_X, W_n^X) .

Sequences Localization Examples

Examples from Quantum Groups

Example

The (semisimple) subquotients $C(\mathfrak{g}, \ell)$ of $\operatorname{Rep}(U_q\mathfrak{g})$ for \mathfrak{g} a Lie algebra and $q = \exp(\pi i/\ell)$ are braided fusion categories. E.g. $\mathfrak{g} = \mathfrak{sl}_2$ with X the "vector representation" corresp. to Jones representations of \mathcal{B}_n .

Notation

Denote by $\rho^{(\ell)}$ the \mathcal{B}_n -rep. associated with $X \in \mathcal{C}(\mathfrak{sl}_2, \ell)$.

Sequences Localization Examples

Question: Square Peg, Round Hole?

Notice that $(\rho^R, V^{\otimes n})$ is local: $\rho^R(\sigma_i)$ acts non-trivially only on adjacent tensor factors:

$$v_1 \otimes \cdots \otimes v_i \otimes v_{i+1} \otimes \cdots \otimes v_n \stackrel{\rho^R(\sigma_i)}{\longrightarrow} v_1 \otimes \cdots \otimes R(v_i \otimes v_{i+1}) \otimes \cdots \otimes v_n$$

Question

Given a sequence (ρ_n, V_n) , when can it be realized via braided v.s. (R, V)? "Localized"

Sequences Localization Examples

Formal Definition

Definition

A localization of a sequence of \mathcal{B}_n -reps. (ρ_n, V_n) is a braided vector space (R, W) such that for all $n \ge 2$: There exist injective algebra maps $\varphi_n : \mathbb{C}\rho_n(\mathcal{B}_n) \to \operatorname{End}(W^{\otimes n})$ such that the following diagram commutes:

Sequences Localization Examples

Combinatorially...

If (R, W) localizes (ρ_n, V_n) ,

- Decompose (ρ_n, V_n) : $V_n \cong \bigoplus_{i \in J_n} V_n^{(i)}$ as a $\mathbb{C}\mathcal{B}_n$ -module
- then $W^{\otimes n} \cong \bigoplus_{i \in J_n} \mu_n^i V_n^{(i)}$ as a $\mathbb{C}\mathcal{B}_n$ -module
- with $\mu_n^i > 0$ (multiplicities)

Remarks

- dim $(V_n) \neq d^n$ (usually), so extra copies of some $V_n^{(i)}$ needed.
- (R, W) uniformly localizes for all n.
- $\overrightarrow{\mu}_n$ localization vector.

Sequences Localization Examples

Obvious Examples: q.t. Hopf algebras

Theorem

Let $X \in \text{Rep}(H)$, for (H, R) a f.d. s.s. quasi-triangular Hopf algebra. Then (ρ_X, W_n^X) is localizable with localization $(R|_{X^{\otimes 2}}, X)$.

Proof.

Double-commutant argument: $X^{\otimes n} \cong \bigoplus_{Y} \operatorname{Hom}(Y, X^{\otimes n}) \otimes Y$.

Sequences Localization Examples

Bratteli Diagrams

Consider irreducible \mathcal{B}_n -rep $V_i^{(n)}$. How does $V_i^{(n)} |_{\mathcal{B}_{n-1}}$ decompose?

$$V_i^{(n)} \cong \bigoplus_j m_{ij}^{(n-1)} V_j^{(n-1)}$$

Recorded in Inclusion Matrix $G^{(n-1)} := [m_{ij}^{(n-1)}]_{ij}$ or

Sequences Localization Examples

Example: $C(\mathfrak{sl}_2, 5)$

Sequences Localization Examples

Example: $C(\mathfrak{sl}_2, 5)$

Example: $C(\mathfrak{sl}_2, 5)$

If (R, V) localizes ρ^5 with mult. vectors (a_n, b_n) then by Perron-Frobenius Theorem

Sequences

Examples

$$\begin{split} & G^{(3)}G^{(2)}\begin{pmatrix}a_2\\b_2\end{pmatrix} = \lambda \begin{pmatrix}a_2\\b_2\end{pmatrix}\\ \text{where } G^{(3)}G^{(2)} = \begin{pmatrix}1 & 1\\1 & 2\end{pmatrix}\\ & \lambda = \left(\frac{1+\sqrt{5}}{2}\right)^2, \ a_2, b_2 \in \mathbb{Z}. \end{split}$$

Impossible!

Example: $\mathcal{C}(\mathfrak{sl}_2, 6)$

If (R, V) localizes ρ^6 with dim(V) = k then $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_4 \\ b_4 \\ c_4 \end{pmatrix} = \lambda \begin{pmatrix} a_4 \\ b_4 \\ c_4 \end{pmatrix}$ and $2a_4 + 3b_4 + c_4 = k^4$ $k = \lambda = 3, a_4 = b_4/2 = c_4 = 9$ works!

Sequences

Examples

Sequences Localization Examples

Example: $C(\mathfrak{sl}_2, 6)$

Is there a 9×9 *R*-matrix?

First Results

Preliminary Results and Conjectures Work with Galindo and Hong

Theorem (R,Wang)

 \mathcal{B}_n reps ρ^ℓ localizable if, and only if $\ell \in \{2,3,4,6\}$

Note: $\operatorname{FPdim}(X) \in \{1, \sqrt{2}, \sqrt{3}\}$

Theorem (R,Wang)

If $\psi_n : \mathbb{C}\mathcal{B}_n \to \text{End}(X^{\otimes n})$ is surjective and (ρ_X, W_n^X) is localizable then $\text{FPdim}(X)^2 \in \mathbb{N}$.

Localization Conjecture

Preliminary Results and Conjectures Work with Galindo and Hong

Conjecture (R,Wang)

For unitary (ρ_X, W_n^X) TFAE: (L) ρ_X is localizable, with R finite order (F) $|\rho_X(B_n)| < \infty$ (W) FPdim $(X)^2 \in \mathbb{N}$

Preliminary Results and Conjectures Work with Galindo and Hong

Braided Vector Space Conjecture

Conjecture (R,Wang)

Suppose (R, V) is a braided v.s. with:

- R Unitary
- *R* finite order $(R^k = I)$

Then $\rho^R(\mathcal{B}_n)$ is finite for all *n*.

Further Directions

Preliminary Results and Conjectures Work with Galindo and Hong

With Galindo and Hong:

- realization free (categorical) version defined.
- **2** quasi- and generalized localizations studied.
- **1** Unitarity issues dealt with using Galindo's Clifford Theory.
- quasi-localizations are local up to conjugation, so V ∈ Rep(H) for a quasi-triangluar quasi-Hopf H leads to quasi-localizations.

Preliminary Results and Conjectures Work with Galindo and Hong

Generalized Y-B equation

Definition

Fix k > m integers, V a vector space. The generalized Yang-Baxter equation is:

$$(R \otimes I_V^{\otimes m})(I_V^{\otimes m} \otimes R)(R \otimes I_V^{\otimes m}) = (I_V^{\otimes m} \otimes R)(R \otimes I_V^{\otimes m})(I_V^{\otimes m} \otimes R)$$

where $R \in \text{End}(V^{\otimes k})$.

- R is a (k, m)-gYB operator if it also satisfies far commutivity, i.e. braid relation (R2).
- corresponds to generalized localizations.

QCM state space

Quantum Circuit Model Topological Model

Fix $d \in \mathbb{Z}$

Definition

Let $V = \mathbb{C}^d$. The *n*-qudit state space is the *n*-fold tensor product:

$$\mathcal{H}(n) := V \otimes V \otimes \cdots \otimes V.$$

Quantum Circuit Model Topological Model

Gates and Circuits

A quantum gate is a unitary operator $U_i \in \mathbf{U}(\mathcal{H}(n_i))$ A gate set $S = \{U_i\}$ is a collection of gates.

Definition

A quantum circuit for $U \in U(\mathcal{H}(n))$ on S is:

•
$$G_1, \ldots, G_m \in \mathbf{U}(\mathcal{H}(n))$$

• where
$$G_i = I_V^{\otimes a} \otimes U_j \otimes I_V^{\otimes b}$$
, $U_j \in S$ and

•
$$G_1 \cdot G_2 \cdots G_m = U$$

Quantum Circuit Model Topological Model

Schematic of a Quantum Circuit

Remark

Here input is $|000\rangle = |0\rangle^{\otimes 3} \in (\mathbb{C}^2)^{\otimes 3}$ and $H \in \mathbf{U}(2)$. vertical bars are other gates (controlled-phase).

Quantum Circuit Model Topological Model

Origins of Topological Model

Some History

Quantum Circuit Model Topological Model

Example: FQH Liquid Cartoon

Fractional Quantum Hall Liquid

Quantum Circuit Model Topological Model

Topological Model (non-adaptive)

Quantum Circuit Model Topological Model

Example: Fibonacci Theory

Input: modular category $C(\mathfrak{g}_2, 15)$:

•
$$\mathcal{L} = \{0, 1\}$$

• Define: $V_k^i := \mathcal{H}(D^2 \setminus \{z_i\}_{i=1}^k; i, 1, \cdots, 1)$
• dim $V_n^i = \begin{cases} Fib(n-2) & i = 0\\ Fib(n-1) & i = 1 \end{cases}$

Quantum Circuit Model Topological Model

Example: V_6^0

Quantum Circuit Model Topological Model

Example: V_6^0

Quantum Circuit Model Topological Model

Example: V_6^0

Motivating Question

Quantum Circuit Model Topological Model

Question

When can a given topological quantum computation model be exactly and efficiently simulated by a quantum circuit model?

Partial Answer

If Localization Conjecture holds, only when NO quantum speedup is achieved (non-universal models).

Ask me later if you are interested in this angle

Quantum Circuit Model Topological Model

Thank You!