Localizing braided fusion categories

Eric Rowell (Texas A\&M University, USA)

rowell@math.tamu.edu
In this talk I will introduce and discuss a physically-inspired notion of "localization" for braided fusion categories (BFC), which is reminiscent of fiber functors for fusion categories. Given an object X in a BFC one asks when the associated braid group representations can be "realized" via a braided vector space (R, V) in a certain precise sense (localized). Perhaps surprisingly, integrality of the BFC is not necessary for localizability. Time permitting I will describe an application to quantum computing (joint work with Zhenghan Wang) and some generalized types of localization (joint work with César Galindo and Seung-Moon Hong).

Localizing Braided Fusion Categories

Eric Rowell (Texas A\&M U.) with Z. Wang (Microsoft) C. Galindo (U. de los Andes) S.-M. Hong (U. Toledo, Ohio)

July 2011
based on arXiv:1009.0241 (to appear CMP) and arXiv:1105.5048

Outline

(1) Sequences of \mathcal{B}_{n}-representations and Localizability

- Sequences
- Localization
- Examples
(2) Speculations and Further Directions
- Preliminary Results and Conjectures
- Work with Galindo and Hong
(3) Motivation: Quantum Computation
- Quantum Circuit Model
- Topological Model

The Braid Group

A key role is played by the braid group:

Definition

\mathcal{B}_{n} has generators $\sigma_{i}, i=1, \ldots, n-1$ satisfying:
(R1) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$
(R2) $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $|i-j|>1$

General Context

$$
\text { Let } \iota: \mathcal{B}_{n} \rightarrow \mathcal{B}_{n+1}, \iota\left(\sigma_{i}\right)=\sigma_{i} \text { for } i \leq n-1 \text {. }
$$

Definition

A sequence of braid representations is a family of \mathcal{B}_{n}-reps $\left(\rho_{n}, V_{n}\right)$ and injective algebra maps τ_{n} such that the following diagram commutes:

$$
\begin{array}{cc}
\mathbb{C} \mathcal{B}_{n} \xrightarrow{\rho_{n}} \mathbb{C} \rho_{n}\left(\mathcal{B}_{n}\right) \\
\int_{\downarrow}^{\iota} \int^{\tau_{n}} \\
\mathbb{C} \mathcal{B}_{n+1} \xrightarrow{\rho_{n+1}} \mathbb{C} \rho_{n+1}\left(\mathcal{B}_{n+1}\right)
\end{array}
$$

Braided Vector Spaces

Definition

(R, V) is a braided vector space if $R \in \operatorname{Aut}(V \otimes V)$ satisfies $\left(R \otimes I_{V}\right)\left(I_{V} \otimes R\right)\left(R \otimes I_{V}\right)=\left(I_{V} \otimes R\right)\left(R \otimes I_{V}\right)\left(I_{V} \otimes R\right)$

Induces a sequence of \mathcal{B}_{n}-reps $\left(\rho^{R}, V^{\otimes n}\right)$ by

$$
\rho^{R}\left(\sigma_{i}\right)=I_{V}^{\otimes i-1} \otimes R \otimes I_{V}^{\otimes n-i-1}
$$

Braided Fusion Categories

Categorical construction:

- Fix $X \in \mathcal{C}$ (strict) braided fusion category
- Braiding isomorphism $c_{X, X} \in \operatorname{End}\left(X^{\otimes 2}\right)$ induces:

$$
\psi_{n}: \mathbb{C} \mathcal{B}_{n} \rightarrow \operatorname{End}\left(X^{\otimes n}\right) \text { via } \sigma_{i} \rightarrow I_{X}^{\otimes i-1} \otimes c_{X, X} \otimes I_{X}^{\otimes n-i-1}
$$

- $\mathbb{C B} \mathcal{B}_{n}$ acts via ψ_{n} on the $\operatorname{End}\left(X^{\otimes n}\right)$-module

$$
W_{n}^{X}:=\bigoplus_{Y \text { simple }} \operatorname{Hom}\left(Y, X^{\otimes n}\right)
$$

- Denote $\left(\rho_{X}, W_{n}^{X}\right)$.

Examples from Quantum Groups

Example

The (semisimple) subquotients $\mathcal{C}(\mathfrak{g}, \ell)$ of $\operatorname{Rep}\left(U_{q} \mathfrak{g}\right)$ for \mathfrak{g} a Lie algebra and $q=\exp (\pi i / \ell)$ are braided fusion categories.
E.g. $\mathfrak{g}=\mathfrak{s l}_{2}$ with X the "vector representation" corresp. to Jones representations of \mathcal{B}_{n}.

Notation

Denote by $\rho^{(\ell)}$ the \mathcal{B}_{n}-rep. associated with $X \in \mathcal{C}\left(\mathfrak{s l}_{2}, \ell\right)$.

Question: Square Peg, Round Hole?

Notice that $\left(\rho^{R}, V^{\otimes n}\right)$ is local: $\rho^{R}\left(\sigma_{i}\right)$ acts non-trivially only on adjacent tensor factors:
$v_{1} \otimes \cdots \otimes v_{i} \otimes v_{i+1} \otimes \cdots \otimes v_{n} \xrightarrow{\rho^{R}\left(\sigma_{i}\right)} v_{1} \otimes \cdots \otimes R\left(v_{i} \otimes v_{i+1}\right) \otimes \cdots \otimes v_{n}$

Question

Given a sequence (ρ_{n}, V_{n}), when can it be realized via braided v.s. (R, V) ? "Localized"

Formal Definition

Definition

A localization of a sequence of \mathcal{B}_{n}-reps. $\left(\rho_{n}, V_{n}\right)$ is a braided vector space (R, W) such that for all $n \geq 2$:There exist injective algebra maps $\varphi_{n}: \mathbb{C} \rho_{n}\left(\mathcal{B}_{n}\right) \rightarrow \operatorname{End}\left(W^{\otimes n}\right)$ such that the following diagram commutes:

$$
\mathbb{C} \rho_{n}\left(\mathcal{B}_{n}\right) \xrightarrow{\rho_{\rho}} \stackrel{\rho_{n}}{\rho_{n}} \operatorname{End}\left(W^{\otimes n}\right)
$$

Combinatorially...

If (R, W) localizes $\left(\rho_{n}, V_{n}\right)$,

- Decompose $\left(\rho_{n}, V_{n}\right): V_{n} \cong \bigoplus_{i \in J_{n}} V_{n}^{(i)}$ as a $\mathbb{C} \mathcal{B}_{n}$-module
- then $W^{\otimes n} \cong \bigoplus_{i \in J_{n}} \mu_{n}^{i} V_{n}^{(i)}$ as a $\mathbb{C} \mathcal{B}_{n}$-module
- with $\mu_{n}^{i}>0$ (multiplicities)

Remarks

- $\operatorname{dim}\left(V_{n}\right) \neq d^{n}$ (usually), so extra copies of some $V_{n}^{(i)}$ needed.
- (R, W) uniformly localizes for all n.
- $\vec{\mu}_{n}$ localization vector.

Obvious Examples: q.t. Hopf algebras

Theorem

Let $X \in \operatorname{Rep}(H)$, for (H, R) a f.d. s.s. quasi-triangular Hopf algebra. Then $\left(\rho_{X}, W_{n}^{X}\right)$ is localizable with localization $\left(\left.R\right|_{X \otimes 2}, X\right)$.

Proof.

Double-commutant argument: $X^{\otimes n} \cong \bigoplus_{Y} \operatorname{Hom}\left(Y, X^{\otimes n}\right) \otimes Y$.

Bratteli Diagrams

Consider irreducible \mathcal{B}_{n}-rep $V_{i}^{(n)}$.
How does $\left.V_{i}^{(n)}\right|_{\mathcal{B}_{n-1}}$ decompose?

$$
V_{i}^{(n)} \cong \bigoplus_{j} m_{i j}^{(n-1)} V_{j}^{(n-1)}
$$

Recorded in Inclusion Matrix $G^{(n-1)}:=\left[m_{i j}^{(n-1)}\right]_{i j}$ or

Bratteli diagram

$$
\begin{array}{rlll}
\mathcal{B}_{n-1}: & V_{1}^{(n-1)} & \cdots & V_{j}^{(n-1)} \\
\mathcal{B}_{n}: & V_{i}^{(n)} & m_{i j}^{(n-1)}
\end{array}
$$

Example: $\mathcal{C}\left(\mathfrak{s l}_{2}, 5\right)$

If (R, V) localizes ρ^{5}

Example: $C\left(\mathfrak{s l}_{2}, 5\right)$

> If (R, V) localizes ρ^{5} with mult. vectors $\left(a_{n}, b_{n}\right)$

Example: $\mathcal{C}\left(\mathfrak{s l}_{2}, 5\right)$

If (R, V) localizes ρ^{5}
with mult. vectors $\left(a_{n}, b_{n}\right)$ then by Perron-Frobenius Theorem
$G^{(3)} G^{(2)}\binom{a_{2}}{b_{2}}=\lambda\binom{a_{2}}{b_{2}}$
where $G^{(3)} G^{(2)}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$
$\lambda=\left(\frac{1+\sqrt{5}}{2}\right)^{2}, a_{2}, b_{2} \in \mathbb{Z}$.
Impossible!

Example:C($\left.\mathfrak{s L}_{2}, 6\right)$

If (R, V) localizes ρ^{6} with $\operatorname{dim}(V)=k$ then

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a_{4} \\
b_{4} \\
c_{4}
\end{array}\right)=\lambda\left(\begin{array}{l}
a_{4} \\
b_{4} \\
c_{4}
\end{array}\right) \\
& \text { and } 2 a_{4}+3 b_{4}+c_{4}=k^{4} \\
& k=\lambda=3, a_{4}=b_{4} / 2=c_{4}=9
\end{aligned}
$$

works!

Example: $\mathcal{C}\left(\mathfrak{s l}_{2}, 6\right)$

Is there a $9 \times 9 R$-matrix?

$$
\gamma\left(\begin{array}{ccccccccc}
\omega & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \omega \\
0 & \omega & 0 & 0 & 0 & \omega & 1 & 0 & 0 \\
0 & 0 & \omega & \omega^{2} & 0 & 0 & 0 & \omega^{2} & 0 \\
0 & 0 & \omega^{2} & \omega & 0 & 0 & 0 & \omega^{2} & 0 \\
\omega & 0 & 0 & 0 & \omega & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & \omega & \omega & 0 & 0 \\
0 & \omega & 0 & 0 & 0 & 1 & \omega & 0 & 0 \\
0 & 0 & \omega^{2} & \omega^{2} & 0 & 0 & 0 & \omega & 0 \\
1 & 0 & 0 & 0 & \omega & 0 & 0 & 0 & \omega
\end{array}\right)
$$

Localizes ρ^{6}.

Sequences of \mathcal{B}_{n}-representations and Localizability

Preliminary Results and Conjectures Work with Galindo and Hong

First Results

Theorem (R,Wang)

\mathcal{B}_{n} reps ρ^{ℓ} localizable if, and only if $\ell \in\{2,3,4,6\}$
Note: $\operatorname{FPdim}(X) \in\{1, \sqrt{2}, \sqrt{3}\}$

Theorem (R,Wang)

If $\psi_{n}: \mathbb{C B}_{n} \rightarrow \operatorname{End}\left(X^{\otimes n}\right)$ is surjective and $\left(\rho_{X}, W_{n}^{X}\right)$ is localizable then $\operatorname{FPdim}(X)^{2} \in \mathbb{N}$.

Localization Conjecture

Conjecture (R,Wang)

For unitary $\left(\rho_{X}, W_{n}^{X}\right)$ TFAE:
(L) ρ_{X} is localizable, with R finite order
(F) $\left|\rho_{X}\left(B_{n}\right)\right|<\infty$
(W) $\operatorname{FPdim}(X)^{2} \in \mathbb{N}$

Braided Vector Space Conjecture

Conjecture (R,Wang)

Suppose (R, V) is a braided v.s. with:

- R Unitary
- R finite order $\left(R^{k}=I\right)$

Then $\rho^{R}\left(\mathcal{B}_{n}\right)$ is finite for all n.

Further Directions

With Galindo and Hong:
(1) realization free (categorical) version defined.
(2) quasi- and generalized localizations studied.
(3) Unitarity issues dealt with using Galindo's Clifford Theory.
(9) quasi-localizations are local up to conjugation, so $V \in \operatorname{Rep}(H)$ for a quasi-triangluar quasi-Hopf H leads to quasi-localizations.

Generalized Y-B equation

Definition

Fix $k>m$ integers, V a vector space. The generalized Yang-Baxter equation is:
$\left(R \otimes I_{V}^{\otimes m}\right)\left(I_{V}^{\otimes m} \otimes R\right)\left(R \otimes I_{V}^{\otimes m}\right)=\left(I_{V}^{\otimes m} \otimes R\right)\left(R \otimes I_{V}^{\otimes m}\right)\left(I_{V}^{\otimes m} \otimes R\right)$ where $R \in \operatorname{End}\left(V^{\otimes k}\right)$.

- R is a (k, m)-gYB operator if it also satisfies far commutivity, i.e. braid relation (R2).
- corresponds to generalized localizations.

QCM state space

Fix $d \in \mathbb{Z}$

Definition

Let $V=\mathbb{C}^{d}$. The n-qudit state space is the n-fold tensor product:

$$
\mathcal{H}(n):=V \otimes V \otimes \cdots \otimes V .
$$

Gates and Circuits

A quantum gate is a unitary operator $U_{i} \in \mathbf{U}\left(\mathcal{H}\left(n_{i}\right)\right)$
A gate set $S=\left\{U_{i}\right\}$ is a collection of gates.

Definition

A quantum circuit for $U \in \mathbf{U}(\mathcal{H}(n))$ on S is:

- $G_{1}, \ldots, G_{m} \in \mathbf{U}(\mathcal{H}(n))$
- where $G_{i}=I_{V}^{\otimes a} \otimes U_{j} \otimes I_{V}^{\otimes b}, U_{j} \in S$ and
- $G_{1} \cdot G_{2} \cdots G_{m}=U$

Schematic of a Quantum Circuit

Remark

Here input is $|000\rangle=|0\rangle^{\otimes 3} \in\left(\mathbb{C}^{2}\right)^{\otimes 3}$ and $H \in \mathbf{U}(2)$. vertical bars are other gates (controlled-phase).

Origins of Topological Model

Some History

Example: FQH Liquid Cartoon

Fractional Quantum Hall Liquid

Topological Model (non-adaptive)

Computation

Example: Fibonacci Theory

Input: modular category $\mathcal{C}\left(\mathfrak{g}_{2}, 15\right)$:

- $\mathcal{L}=\{0,1\}$
- Define: $V_{k}^{i}:=\mathcal{H}\left(D^{2} \backslash\left\{z_{i}\right\}_{i=1}^{k} ; i, 1, \cdots, 1\right)$
- $\operatorname{dim} V_{n}^{i}= \begin{cases}\operatorname{Fib}(n-2) & i=0 \\ \operatorname{Fib}(n-1) & i=1\end{cases}$

Example: V_{6}^{0}

Sequences of \mathcal{B}_{n}-representations and Localizability Speculations and Further Directions Motivation: Quantum Computation

Example: V_{6}^{0}

Example: V_{6}^{0}

Motivating Question

Question

When can a given topological quantum computation model be exactly and efficiently simulated by a quantum circuit model?

> Partial Answer
> If Localization Conjecture holds, only when NO quantum speedup is achieved (non-universal models).

Ask me later if you are interested in this angle....

Thank You!

