Gigel Militaru (University of Bucharest, Romania) gigel.militaru@gmail.com

Let A be a Hopf algebra and H a coalgebra. We shall describe and classify up to an isomorphism all Hopf algebras E that factorize through A and H: that is E is a Hopf algebra such that A is a Hopf subalgebra of E, H is a subcoalgebra in E with $1_E \in H$ and the multiplication map $A \otimes H \to E$ is bijective. The tool we use is a new product, we call it the unified product, in the construction of which A and H are connected by three coalgebra maps: two actions and a generalized cocycle. Both the crossed product of a Hopf algebra acting on an algebra and the bicrossed product of two Hopf algebras are special cases of the unified product. A Hopf algebra Efactorizes through A and H if and only if E is isomorphic to a unified product of A and H. All such Hopf algebras E are classified up to an isomorphism that stabilizes A and H by a Schreier type classification theorem. An equivalent description of the unified product from the extension of Hopf algebras point of view is given. A necessary and sufficient condition for the canonical morphism $i: A \to A \ltimes H$ to be a split monomorphism of Hopf algebras is proved, i.e. a conditions for the unified product $A \ltimes H$ to be isomorphic to a Radford biproduct L * A, for some bialgebra L in the category ${}^{A}_{A}\mathcal{Y}D$ of Yetter-Drinfel'd modules.

Joint work with A. L. Agore.

Bibliography

- [1] A.L. Agore and G. Militaru, *Extending structures II: the quantum version*. To appear in J. Algebra, arXiv:1011.2174.
- [2] —, Unified products and split extensions of Hopf algebras. Preprint 2011, arXiv:1105.1474.

The problem	Groups	Hopf algebras	The Classification	Split extensions

Gigel Militaru

University of Bucharest

Based on a joint work with Ana Agore

University of Bucharest

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

- AM 1 A. Agore, G. M. *Extending structures II: the quantum version*, J. Algebra, 336(2011), 321–341
- AM 2 — Unified products and split extensions of Hopf algebras, arXiv:1105.1474v1

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

• The starting point:

An elementary question: Let H be a group, E a set s.t. $H \subseteq E$.

Describe the set of all the group structures (E, \cdot) that can be defined on the set *E* such that $H \leq (E, \cdot)$.

Gigel Militaru

University of Bucharest

The problem	Groups	Hopf algebras	The Classification	Split extensions

• The starting point:

An elementary question: Let H be a group, E a set s.t. $H \subseteq E$.

Describe the set of all the group structures (E, \cdot) that can be defined on the set *E* such that $H \leq (E, \cdot)$.

Gigel Militaru

University of Bucharest

The problem	Groups	Hopf algebras	The Classification	Split extensions

• The general context:

C = a category whose objects are endowed with various algebraic structures (*S*).

 \mathcal{D} = a category such that there exists a **forgetful functor** $F : \mathcal{C} \to \mathcal{D}$.

Examples:

 $F: \mathcal{G}r \rightarrow \mathcal{S}et, \quad F: \mathcal{L}ie \rightarrow \mathcal{V}ec, \quad F: \mathcal{H}opf \rightarrow \mathcal{C}oAlg$

 $F: \mathcal{H}opf \rightarrow \mathcal{A}lg, \quad F: \mathcal{A}lg \rightarrow \mathcal{V}ec, \cdots$

University of Bucharest

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

• Extending structures (ES) problem:

Let $C \in C$, $D \in D$ be two objects such that F(C) is a subobject of D in D. Describe and classify all mathematical structures (S) that can be defined on D such that D becomes an object of Cand C is a subobject of D in the category C.

The classification – up to an isomorphism that stabilizes C and a certain type of '*fixed quotient*' D/C.

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

• Extending structures (ES) problem:

Let $C \in C$, $D \in D$ be two objects such that F(C) is a subobject of D in D. Describe and classify all mathematical structures (S) that can be defined on D such that D becomes an object of Cand C is a subobject of D in the category C.

The classification – up to an isomorphism that stabilizes C and a certain type of '*fixed quotient*' D/C.

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions
o Th	e droup cas	e		
•	e group oue			
Examp	le			
Consid	er the forgetf	ul functor <i>F</i> : <i>Gr</i>	$ ightarrow \mathcal{S}$ et.	
(G-S) E	S- problem	$H = a \operatorname{group}, E$	$E = a \text{ set s.t. } H \subseteq E$	E (and
H E)				
Describ	e and classi	fv all the group s	structures (E, \cdot) that	t can be

defined on the set *E* such that *H* is a **subgroup** of (E, \cdot) .

A. Agore, G.M. - *Extending Structures I: the group case*, arXiv:1011.1633

University of Bucharest

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions
• Tł	ne group cas	e		
Examp	le			
Consid	ler the forgetf	ul functor <i>F</i> : <i>Gr</i>	$ ightarrow \mathcal{S}$ et.	
(G-S) I <i>H</i> <i>E</i>	ES- problem).	H = a group, E	$F = a \text{ set s.t. } H \subseteq E$	(and
Descri defined	be and classi d on the set <i>E</i>	fy all the group s such that <i>H</i> is a	tructures (E, \cdot) that a subgroup of (E, \cdot)	t can be ·).

A. Agore, G.M. - *Extending Structures I: the group case*, arXiv:1011.1633

University of Bucharest

The problem	Groups	Hopf algebras	The Classification	Split extensions

Remark

The ES-problem generalizes and unifies the extension problem of Hölder (1895) and the factorization problem of Ore (1937).

Let *H* be a group, *E* be a set such that $H \subseteq E$. Then:

- Any group structures '.' that can be defined on the set *E* such that *H* ≤ *E* is isomorphic to a **unified product**.
- Both the **crossed product** of and the **bicrossed product** of two groups are special cases of the unified product.

The problem	Groups	Hopf algebras	The Classification	Split extensions

Remark

The ES-problem generalizes and unifies the extension problem of Hölder (1895) and the factorization problem of Ore (1937).

Let *H* be a group, *E* be a set such that $H \subseteq E$. Then:

- Any group structures '.' that can be defined on the set *E* such that *H* ≤ *E* is isomorphic to a **unified product**.
- Both the **crossed product** of and the **bicrossed product** of two groups are special cases of the unified product.

Unified products for Hopf algebras

Gigel Militaru

	Circups	nopi algebias		Opin exterioiono
• The u Let <i>H</i> be	nified produ e a group, (S	uct $H \ltimes S$: the gradient of $S, 1_S$ a pointed s	group level set and four maps	
	*: 5	$S \times S \rightarrow S$, f :	S imes S o H	
	⊳:5	$\mathcal{B} \times \mathcal{H} \to \mathcal{H}, \lhd$	$S \times H \rightarrow S$	
1 - 6 - 1 -				

satisfying axioms such that $H \ltimes S := H \times S$ with the multiplication

 $(h_1, s_1) \cdot (h_2, s_2) := (h_1(s_1 \triangleright h_2)f(s_1 \triangleleft h_2, s_2), (s_1 \triangleleft h_2) \star s_2)$

is a group on $H \ltimes S$ with $(1_H, 1_S)$ as a unit.

Groups

Split ovtoncione

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

Remark

Let $H \leq E$ be a subgroup of E. Then there exists a map $\pi : E \rightarrow H$ such that

$$\pi(h) = h, \quad \pi(hx) = h\pi(x)$$

for all $h \in H$ and $x \in E$.

University of Bucharest

Gigel Militaru

The p	oroblem	Groups	Hopf algebras	The Classification	Split extensions
	Remark				
	We define): 			
		S	$:= \{ x \in E \mid \pi(x) \}$) = 1 _{<i>H</i>} }	
	and the w	ell defined	$maps \star, f, \rhd, \lhd$	given by:	
	S	$\mathbf{s}_{2} := \pi(\mathbf{s}_{2})$	$(s_1 s_2)^{-1} s_1 s_2, i$	$f(s_1,s_2) := \pi(s_1s_2)$	
		$s \triangleright h :=$	π (<i>sh</i>), <i>s</i> < <i>h</i>	$x=\piig({\it sh}ig)^{-1}{\it sh}$	
	for all s, s	₁, <i>s</i> ₂ ∈ <i>S a</i> ι	nd $h \in H$. Then		
		arphi: H	$V \ltimes S ightarrow E, \varphi(V)$	h, s) := hs	
	for all $h \in \varphi^{-1}(x) =$	H and $s \in (\pi(x), \pi(x))$	S is an isomor , $x^{-1}x$.	ohism of groups wi	th
					◆ E → E → ○ < ○

Gigel Militaru

University of Bucharest

The problem	Groups	Hopf algebras	The Classification	Split extensions

• The Hopf algebra case

Example

Consider the forgetful functor $F : Hopf \rightarrow CoAlg$.

(H-C) ES-problem: Let A be a Hopf algebra and E a coalgebra such that A is a subcoalgebra of E. Describe and classify all Hopf algebra structures that can be defined on the coalgebra E such that A is a Hopf subalgebra of E.

There is of course a dual version of the ES-problem corresponding to the forgetful functor $F : Hopf \rightarrow Alg$.

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

• The Hopf algebra case

Example

Consider the forgetful functor $F : Hopf \rightarrow CoAlg$.

(H-C) ES-problem: Let *A* be a Hopf algebra and *E* a coalgebra such that *A* is a subcoalgebra of *E*. Describe and classify all Hopf algebra structures that can be defined on the coalgebra *E* such that *A* is a Hopf subalgebra of *E*.

There is of course a dual version of the ES-problem corresponding to the forgetful functor $F : Hopf \rightarrow Alg$.

Unified products for Hopf algebras

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

• The Hopf algebra case

Example

Consider the forgetful functor $F : Hopf \rightarrow CoAlg$.

(H-C) ES-problem: Let A be a Hopf algebra and E a coalgebra such that A is a subcoalgebra of E. Describe and classify all Hopf algebra structures that can be defined on the coalgebra E such that A is a Hopf subalgebra of E.

There is of course a dual version of the ES-problem corresponding to the forgetful functor $F : Hopf \rightarrow Alg$.

Image: A matched block of the second seco

Gigel Militaru

The pro	blem	Groups	Hopf algebras	The Classification	Split extensions
	-	1 C C C C C C C C C C C C C C C C C C C			

Remark

k = a field, A = a group, E = a set s.t. $A \subseteq E$ and the extension:

$k[A] \subseteq k[E]$

where k[A] is the group algebra that is a Hopf algebra and a subcoalgebra in the group-like coalgebra k[E].

Let $(E, \cdot) = a$ group structure on the set E such that A is a subgroup of (E, \cdot) .

Hence we obtain an extension of Hopf algebras $k[A] \subseteq k[E]$ that has a remarkable property:

Gigel Militaru

University of Bucharest

イロン イヨン イヨン イヨ

The	oroblem	Groups	Hopt algebras	The Classification	Split extensions

Remark

k = a field, A = a group, E = a set s.t. $A \subseteq E$ and the extension:

$k[A] \subseteq k[E]$

where k[A] is the group algebra that is a Hopf algebra and a subcoalgebra in the group-like coalgebra k[E].

Let $(E, \cdot) =$ a group structure on the set E such that A is a subgroup of (E, \cdot) .

Hence we obtain an extension of Hopf algebras $k[A] \subseteq k[E]$ that has a remarkable property:

Let $H \subseteq E$ be a system of representatives for the right cosets of the subgroup A in the group (E, \cdot) such that $1_E \in H$.

Then the multiplication map

$$k[A] \otimes k[H] \rightarrow k[E], \quad a \otimes h \mapsto a \cdot h$$

is bijective, i.e. the Hopf algebra k[E] factorizes through the Hopf subalgebra k[A] and the subcoalgebra k[H].

Gigel Militaru

University of Bucharest

We have to restrict the (H-C) extending structures problem as follows:

The restricted (H-C) ES-problem:

Let A be a Hopf algebra and H a coalgebra. Describe and classify up to an isomorphism all Hopf algebras E that factorize through A and H: that is E is a Hopf algebra such that A is a Hopf subalgebra of E, H is a subcoalgebra in E with $1_E \in H$ and the multiplication map $A \otimes H \rightarrow E$ is bijective.

We shall give a complete answer below.

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

Definition

Let *A* be a bialgebra. An **extending datum** of *A* is a system $\Omega(A) = (H, \triangleleft, \triangleright, f)$ where: $(H, \Delta_H, \varepsilon_H)$ is a coalgebra, $(H, 1_H, \cdot)$ is an unitary, not necessarily associative *k*-algebra, $\triangleleft : H \otimes A \rightarrow H, \triangleright : H \otimes A \rightarrow A, f : H \otimes H \rightarrow A$ are morphisms of coalgebras s.t.

$$\Delta_H(1_H) = 1_H \otimes 1_H, \quad h \triangleright 1_A = \varepsilon_H(h) 1_A$$
$$1_H \triangleright a = a, \quad 1_H \triangleleft a = \varepsilon_A(a) 1_H, \quad h \triangleleft 1_A = h$$
$$f(h, 1_H) = f(1_H, h) = \varepsilon_H(h) 1_A$$

University of Bucharest

Gigel Militaru

The problem Groups Hopf algebras The Classification Split extensions Let $\Omega(A) = (H, \triangleleft, \triangleright, f)$ be an extending datum of A and $A \ltimes_{\Omega(A)} H = A \ltimes H := A \otimes H$ with the multiplication: $(a \ltimes h) \bullet (c \ltimes g) := a(h_{(1)} \triangleright c_{(1)}) f(h_{(2)} \triangleleft c_{(2)}, g_{(1)}) \ltimes (h_{(3)} \triangleleft c_{(3)}) \cdot g_{(2)}$

Definition

 $A \ltimes H$ is called the **unified product** of A and $\Omega(A)$ if $A \ltimes H$ is a bialgebra with the unit $1_A \ltimes 1_H$ and the coalgebra structure given by the tensor product of coalgebras. In this case $\Omega(A) = (H, \triangleleft, \bowtie, f)$ is called a **bialgebra extending structure** of A. A bialgebra extending structure $\Omega(A) = (H, \triangleleft, \triangleright, f)$ is called a **Hopf algebra extending structure** of A if $A \ltimes H$ has an antipode.

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

Example

Let $\Omega(A) = (H, \triangleleft, \triangleright, f)$ be an extending datum of A such that the cocyle f is trivial, that is $f(g, h) = \varepsilon_H(g)\varepsilon_H(h)\mathbf{1}_A$.

Then $\Omega(A) = (H, \triangleleft, \triangleright, f)$ is a bialgebra extending structure of A if and only if H is a bialgebra and $(A, H, \triangleleft, \triangleright)$ is a **matched pair** of bialgebras.

In this case, the associated unified product $A \ltimes H = A \bowtie H$ is the **bicrossed product of bialgebras**.

Unified products for Hopf algebras

Gigel Militaru

The pro	blem	Groups	Hopf algebras	The Classification	Split extensions	
	Example					
	Let $\Omega(A) = (H, \triangleleft, \triangleright, f)$ be an extending datum of A such that the action \triangleleft is trivial, that is $h \triangleleft a = \varepsilon_A(a)h$.					
	Thon $O(A)$		f) is a bialgobra	ovtonding structure	of A	

Then $\Omega(A) = (H, \triangleleft, \triangleright, f)$ is a bialgebra extending structure of A if and only if H is an usual bialgebra and:

 (a) The *twisted module condition* and the *cocycle condition* hold (Blatter, Cohen, Montgomery);

(b)
$$g \triangleright (ab) = (g_{(1)} \triangleright a)(g_{(2)} \triangleright b)$$

(c)
$$g_{(1)} \otimes g_{(2)} \triangleright a = g_{(2)} \otimes g_{(1)} \triangleright a$$

(d)
$$g_{(1)}h_{(1)} \otimes f(g_{(2)}, h_{(2)}) = g_{(2)}h_{(2)} \otimes f(g_{(1)}, h_{(1)})$$

In this case, the associated unified product $A \ltimes H = A \#_f H$ is the **crossed product of two bialgebras**. Next talk!

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

• A challenging problem: Give an example of an unified product which is neither a crossed product nor a bicrossed product and nor ... a Radford biproduct.

There exists such an example!

Example

Let A_n be the alternating group on a set with *n* elements. Then $k[A_6]$ is a Hopf algebra which is neither a crossed product nor a bicrossed product of two Hopf algebras and

 $k[A_6] \cong [A_4] \ltimes k[S]$

Image: A matrix

University of Bucharest

where *S* is a set with thirty elements.

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

• A challenging problem: Give an example of an unified product which is neither a crossed product nor a bicrossed product and nor ... a Radford biproduct.

There exists such an example!

Example

Let A_n be the alternating group on a set with *n* elements. Then $k[A_6]$ is a Hopf algebra which is neither a crossed product nor a bicrossed product of two Hopf algebras and

 $k[A_6] \cong [A_4] \ltimes k[S]$

University of Bucharest

where *S* is a set with thirty elements.

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

Proposition

Let A be a Hopf algebra and $\Omega(A) = (H, \triangleleft, \triangleright, f)$ a bialgebra extending structure of A s.t. there exists an antimorphism of coalgebras $S_H : H \to H$ such that

$$h_{(1)} \cdot S_H(h_{(2)}) = S_H(h_{(1)}) \cdot h_{(2)} = \varepsilon_H(h) \mathbf{1}_H$$

Then $A \ltimes H$ is a Hopf algebra with the antipode

$$\mathcal{S}(a\ltimes g):= ig(\mathcal{S}_{\mathcal{A}}[fig(\mathcal{S}_{\mathcal{H}}(g_{(2)}),\,g_{(3)}ig)]\ltimes\mathcal{S}_{\mathcal{H}}(g_{(1)})ig)ulletig)ulletig)ig(\mathcal{S}_{\mathcal{A}}(a)\ltimes1_{\mathcal{H}}ig)$$

Gigel Militaru

The p	problem	Groups	Hopf algebras	The Classification	Split extensions

Theorem

Let $A \subseteq E$ be an extension of Hopf algebras, H a subcoalgebra of E such that $1_E \in H$. The following are equivalent:

- E factorizes through A and H, i.e. the multiplication map A ⊗ H → E is bijective.
- Intere exists an isomorphism of Hopf algebras

$$E \cong A \ltimes H$$

for some bialgebra extending structure $\Omega(A) = (H, \triangleleft, \triangleright, f)$ of A.

Gigel Militaru

University of Bucharest

The problem	Groups	Hopf algebras	The Classification	Split extensions

The classification of unified products

Definition

A morphism of coalgebras $u : H \to A$ is called a *coalgebra lazy* 1-*cocyle* if $u(1_H) = 1_A$ and the following compatibility holds:

$$h_{(1)} \otimes u(h_{(2)}) = h_{(2)} \otimes u(h_{(1)})$$

We denote by $H_{l,c}^{1}(H, A)$ the **group** (with respect to the convolution product) of all coalgebra lazy 1-cocyles of *H* with coefficients in *A*.

University of Bucharest

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions
Theorem	n			
			and the second	

Let $\Omega(A) = (H, \triangleleft, \triangleright, f)$ and $\Omega'(A) = (H, \triangleleft', \nu', f')$ be two Hopf algebra extending structures of a Hopf algebra A. Then there exists $\varphi : A \ltimes' H \to A \ltimes H$ a left A-module, a right H-comodule and a Hopf algebra map **if and only if** $\triangleleft' = \triangleleft$ and there exists a coalgebra lazy 1-cocyle $u \in H^1_{l,c}(H, A)$ such that:

$$h \triangleright' c = u(h_{(1)})(h_{(2)} \triangleright c_{(1)})S_A(u(h_{(3)} \triangleleft c_{(2)}))$$
 (1)

$$h \cdot g = (h \triangleleft u(g_{(1)})) \cdot g_{(2)}$$
 (4)

In this case φ is given by $\varphi(a \ltimes h) = au(h_{(1)}) \ltimes' h_{(2)}$.

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

Remark

If $\varphi : A \ltimes H \to A \ltimes' H$ is a left A-module, a right H-comodule and Hopf algebra morphism between two unified products then the following diagram

$$\begin{array}{c} A \xrightarrow{i_{A}} A \bowtie H \xrightarrow{\pi_{H}} H \\ Id_{A} \downarrow \qquad \qquad \downarrow^{\varphi} \qquad \qquad \downarrow^{Id_{H}} \\ A \xrightarrow{i_{A}} A \bowtie' H \xrightarrow{\pi_{H}} H \end{array}$$

is commutative and φ is an **isomorphism**.

University of Bucharest

Gigel Militaru

The problem	Groups	Hopf algebras	The Classification	Split extensions

Let *A* be a Hopf algebra, *H* a coalgebra with a fixed group-like element $1_H \in H$ and $\triangleleft : H \otimes A \rightarrow H$ a morphism of coalgebras.

Let $\mathcal{ES}(A, H, \triangleleft)$ be the set of all triples $(\cdot, \triangleright, f)$ such that $((H, 1_X, \cdot), \triangleleft, \triangleright, f)$ is a Hopf algebra extending structure of *A*.

Definition

Two elements $(\cdot, \triangleright, f)$, $(\cdot', \triangleright', f')$ of $\mathcal{ES}(A, H, \triangleleft)$ are called **cohomologous** and we denote this by $(\cdot, \triangleright, f) \approx (\cdot', \triangleright', f')$ if there exists a coalgebra lazy 1-cocyle $u \in H^1_{l,c}(H, A)$ such that the compatibility conditions (1) - (4) are fulfilled.

The problem	Groups	Hopf algebras	The Classification	Split extensions

Remark

≈ is an equivalence relation on the set $\mathcal{E}S(A, H, \triangleleft)$. We denote by $H^2_{L_c}(H, A, \triangleleft)$ the quotient set $\mathcal{E}S(A, H, \triangleleft)/\approx$.

 $H^2_{l,c}(H, A, \triangleleft)$ is for the classification of the unified products the counterpart of the second cohomology group for the classification of an extension of an abelian group by a group.

The problem Groups Hopf algebras The Classification Split extensions

Let $C(A, H, \triangleleft)$ be the category whose class of objects is the set $\mathcal{E}S(A, H, \triangleleft)$.

A morphism $\varphi : (\triangleright, f) \rightarrow (\triangleright', f')$ in $\mathcal{C}(A, H, \triangleleft)$ is a Hopf algebra morphism $\varphi : A \ltimes H \rightarrow A \ltimes' H$ that is a left *A*-module and a right *H*-comodule map.

riopi digebido	Split extensions

Corollary

(Schreier theorem for unified products)

Let A be a Hopf algebra, H a coalgebra with a group-like element 1_H and $\triangleleft : H \otimes A \rightarrow H$ a morphism of coalgebras. There exists a bijection between the set of objects of the skeleton of the category $C(A, H, \triangleleft)$ and the quotient set $H^2_{l,c}(H, A, \triangleleft)$.

Gigel Militaru

• Split extensions of Hopf algebras

Radford's biproducts (1985) = smash product algebras + smash coproduct coalgebras.

Theorem

Let $i : A \to E$ be a split monomorphism of Hopf algebras. Then E is isomorphic as a Hopf algebra to a **Radford biproduct** G * A, for a bialgebra G in the braided category ${}^{A}_{A}\mathcal{YD}$ of left-left Yetter-Drinfel'd modules.

Remark

The theorem of Radford was generalized by:

• P. Schauenburg (1999)

Ardizzoni, Beatie, Menini, Stefan, Stumbo ... (2007, 2009, 2010) etc.

Gigel Militaru

Unified products for Hopf algebras

• Split extensions of Hopf algebras

Radford's biproducts (1985) = smash product algebras + smash coproduct coalgebras.

Theorem

Let $i : A \to E$ be a split monomorphism of Hopf algebras. Then E is isomorphic as a Hopf algebra to a **Radford biproduct** G * A, for a bialgebra G in the braided category ${}^{A}_{A}\mathcal{YD}$ of left-left Yetter-Drinfel'd modules.

Remark

The theorem of Radford was generalized by:

• P. Schauenburg (1999)

• Ardizzoni, Beatie, Menini, Stefan, Stumbo ... (2007, 2009, 2010) etc.

Gigel Militaru

University of Bucharest

• Properties of the Hopf algebas extension $A \subset A \ltimes H$. When is the unified product isomorphic to a Radford biproduct?

Definition

Let *A* and *E* be two bialgebras. A *coalgebra* map $\pi : E \to A$ is called **normal** (Andruskiewitsch and Devoto) if the space

 $\{x \in E \mid \pi(x_{(1)}) \otimes x_{(2)} = 1_A \otimes x\}$

is a subcoalgebra of *E*.

Let *G* and *H* be two groups. Then any coalgebra map $\pi : k[G] \to k[H]$ is normal. Moreover, assume that *G* is finite, $H \leq G$ be a subgroup of *G*. Then the restriction morphism $k[G]^* \to k[H]^*$ is a normal morphism if and only if *H* is a normal subgroup of *G*.

Gigel Militaru

University of Bucharest

• Properties of the Hopf algebas extension $A \subset A \ltimes H$. When is the unified product isomorphic to a Radford biproduct?

Definition

Let *A* and *E* be two bialgebras. A *coalgebra* map $\pi : E \to A$ is called **normal** (Andruskiewitsch and Devoto) if the space

$$\{x \in E \mid \pi(x_{(1)}) \otimes x_{(2)} = \mathbf{1}_{\mathcal{A}} \otimes x\}$$

is a subcoalgebra of E.

Let *G* and *H* be two groups. Then any coalgebra map $\pi : k[G] \to k[H]$ is normal. Moreover, assume that *G* is finite, $H \leq G$ be a subgroup of *G*. Then the restriction morphism $k[G]^* \to k[H]^*$ is a normal morphism if and only if *H* is a normal subgroup of *G*.

・ロト ・回 ト ・ヨト ・ヨ

• Properties of the Hopf algebas extension $A \subset A \ltimes H$. When is the unified product isomorphic to a Radford biproduct?

Definition

Let *A* and *E* be two bialgebras. A *coalgebra* map $\pi : E \to A$ is called **normal** (Andruskiewitsch and Devoto) if the space

$$\{x \in E \mid \pi(x_{(1)}) \otimes x_{(2)} = \mathbf{1}_A \otimes x\}$$

is a subcoalgebra of E.

Let *G* and *H* be two groups. Then any coalgebra map $\pi : k[G] \to k[H]$ is normal. Moreover, assume that *G* is finite, $H \leq G$ be a subgroup of *G*. Then the restriction morphism $k[G]^* \to k[H]^*$ is a normal morphism if and only if *H* is a normal subgroup of *G*.

Gigel Militaru

イロン イロン イヨン イヨ

The problem Groups Hopf algebras The Classification Split extensions

Proposition

Let A be a bialgebra, $\Omega(A) = (H, \triangleleft, \triangleright, f)$ a bialgebra extending structure of A and the k-linear maps:

 $i_A: A \to A \ltimes H, i_A(a) = a \ltimes 1_H, \ \pi_A: A \ltimes H \to A, \ \pi_A(a \ltimes h) = \varepsilon_H(h)a$

for all $a \in A$, $h \in H$. Then:

- i_A is a biagebra map, π_A is a normal left A-module coalgebra morphism and $\pi_A \circ i_A = Id_A$.
- 2 π_A is a right A-module map if and only if \triangleright is the trivial action.
- If and only if ▷ and f are the trivial maps, i.e. the unified product A ⋉ H = A#H, the right version of the smash product of bialgebras.

University of Bucharest

イロン イヨン イヨン イヨン

Gigel Militaru

The problemGroupsHopf algebrasThe ClassificationSplit extensionsTheoremLet $i: A \rightarrow E$ be a Hopf algebra morphism such that there

Let $i : A \to E$ be a Hopf algebra morphism such that there exists $\pi : E \to A$ a **normal** left A-module coalgebra morphism for which $\pi \circ i = \text{Id}_A$. Let $H := \{x \in E \mid \pi(x_{(1)}) \otimes x_{(2)} = 1_A \otimes x\}$. Then there exists a bialgebra extending structure $\Omega(A) = (H, \triangleleft, \triangleright, f)$ of A, given by:

$$h \cdot g := i \Big(S_A(\pi(h_{(1)}g_{(1)})) \Big) h_{(2)}g_{(2)}, \qquad f(h,g) := \pi(hg)$$

$$h \lhd a := i \Big(S_A(\pi(h_{(1)}i(a_{(1)}))) \Big) h_{(2)}i(a_{(2)}), \qquad h \rhd a := \pi(hi(a))$$

for all $h, g \in H$, $a \in A$ such that

$$\varphi: \mathbf{A} \ltimes \mathbf{H} \to \mathbf{E}, \quad \varphi(\mathbf{a} \ltimes \mathbf{h}) = \mathbf{i}(\mathbf{a})\mathbf{h}$$

is an isomorphism of Hopf algebras.

Gigel Militaru

University of Bucharest

The problem	Groups	Hopf algebras	The Classification	Split extensions
Remark	c: Any Hopf	algebra extendin	o structure of a Ho	of
algebra	A is constru	cted as in the at	ove theorem	P.
algobia				
0 "				
Corollai	ſУ			
Let A al	nd E be two	Hopf algebras.	The following are	
equivale	ent:			
, G Fi	s isomornhia	to a unified pro	duct A ⊭ H	
	3 13011101 p1110			
2 The	en there exis	sts a morphism o	t Hopt algebras i :	$A \rightarrow E$

which has a retraction $\pi : E \to A$ that is a **normal** left A-module coalgebra morphism.

Gigel Militaru

The problem Groups Hopf algebras The Classification Split extensions Proposition

Let A be a Hopf algebra and $\Omega(A) = (H, \triangleleft, \triangleright, f)$ a bialgebra extending structure of A. The following are equivalent:

- (1) $i_A : A \rightarrow A \ltimes H$ is a split monomorphism in the category of bialgebras;
- (2) There exists $\gamma: H \rightarrow A$ a unitary coalgebra map such that

$$\begin{array}{rcl} h \triangleright a & = & \gamma(h_{(1)}) \, a_{(1)} \, \gamma^{-1}(h_{(2)} \lhd a_{(2)}) \\ f(h, \, g) & = & \gamma(h_{(1)}) \, \gamma(g_{(1)}) \, \gamma^{-1}(h_{(2)} \cdot g_{(2)}) \end{array}$$

for all $h, g \in H$ and $a \in A$, where $\gamma^{-1} = S_A \circ \gamma$.

In this case, there exists an isomorphism of bialgebras $A \ltimes H \cong L * A$, where L * A is the **Radford biproduct** for a bialgebra L in the braided category ${}^{A}_{A}\mathcal{Y}D$ of Yetter-Drinfel'd modules.

Gigel Militaru

University of Bucharest

The problem	Groups	Hopf algebras	The Classification	Split extensions

• Back to the starting point – the conclusion of the talk:

An answer of a college level question was given!

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Gigel Militaru

University of Bucharest

The problem	Groups	Hopf algebras	The Classification	Split extensions

• Back to the starting point – the conclusion of the talk:

An answer of a college level question was given!

Gigel Militaru

University of Bucharest

e problem

Groups

Hopf algebras

The Classification

< 口 > < 🗗

Split extensions

Thank you!

Gigel Militaru

University of Bucharest