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Let A be a Hopf algebra and H a coalgebra. We shall describe and classify up to
an isomorphism all Hopf algebras E that factorize through A and H: that is E is a
Hopf algebra such that A is a Hopf subalgebra of E, H is a subcoalgebra in E with
1E ∈ H and the multiplication map A⊗H → E is bijective. The tool we use is a new
product, we call it the unified product, in the construction of which A and H are
connected by three coalgebra maps: two actions and a generalized cocycle. Both the
crossed product of a Hopf algebra acting on an algebra and the bicrossed product
of two Hopf algebras are special cases of the unified product. A Hopf algebra E
factorizes through A and H if and only if E is isomorphic to a unified product of A
and H. All such Hopf algebras E are classified up to an isomorphism that stabilizes
A and H by a Schreier type classification theorem. An equivalent description of
the unified product from the extension of Hopf algebras point of view is given. A
necessary and sufficient condition for the canonical morphism i : A→ AnH to be
a split monomorphism of Hopf algebras is proved, i.e. a conditions for the unified
product AnH to be isomorphic to a Radford biproduct L ∗ A, for some bialgebra
L in the category A

AYD of Yetter-Drinfel’d modules.
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The starting point:

An elementary question: Let H be a group, E a set s.t. H ⊆ E .

Describe the set of all the group structures (E , ·) that can be
defined on the set E such that H ≤ (E , ·).
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The general context:

C = a category whose objects are endowed with various
algebraic structures (S).

D = a category such that there exists a forgetful functor
F : C → D.

Examples:

F : Gr → Set , F : Lie→ Vec, F : Hopf → CoAlg

F : Hopf → Alg, F : Alg → Vec, · · ·

Gigel Militaru University of Bucharest
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Extending structures (ES) problem:

Let C ∈ C, D ∈ D be two objects such that F (C) is a subobject
of D in D. Describe and classify all mathematical structures (S)
that can be defined on D such that D becomes an object of C
and C is a subobject of D in the category C.

The classification – up to an isomorphism that stabilizes C and
a certain type of ’fixed quotient’ D/C.
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The group case

Example
Consider the forgetful functor F : Gr → Set .

(G-S) ES- problem: H = a group, E = a set s.t. H ⊆ E (and
|H|||E |).
Describe and classify all the group structures (E , ·) that can be
defined on the set E such that H is a subgroup of (E , ·).

A. Agore, G.M. - Extending Structures I: the group case,
arXiv:1011.1633
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Remark
The ES-problem generalizes and unifies the extension problem
of Hölder (1895) and the factorization problem of Ore (1937).

Let H be a group, E be a set such that H ⊆ E . Then:

Any group structures ’·’ that can be defined on the set E
such that H ≤ E is isomorphic to a unified product.

Both the crossed product of and the bicrossed product
of two groups are special cases of the unified product.
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• The unified product H n S: the group level
Let H be a group, (S,1S) a pointed set and four maps

? : S × S → S, f : S × S → H

B : S × H → H, C : S × H → S

satisfying axioms such that H n S := H × S with the
multiplication

(h1, s1) · (h2, s2) :=
(
h1(s1 . h2)f (s1 / h2, s2), (s1 / h2) ? s2

)
is a group on H n S with (1H ,1S) as a unit.
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Remark
Let H ≤ E be a subgroup of E. Then there exists a map
π : E → H such that

π(h) = h, π(h x) = h π(x)

for all h ∈ H and x ∈ E.
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Remark
We define:

S := {x ∈ E |π(x) = 1H}

and the well defined maps ?, f , B, C given by:

s1 ∗ s2 := π(s1s2)−1 s1s2, f (s1, s2) := π(s1s2)

s B h := π(sh), s C h := π
(
sh

)−1 sh

for all s, s1, s2 ∈ S and h ∈ H. Then

ϕ : H n S → E , ϕ(h, s) := hs

for all h ∈ H and s ∈ S is an isomorphism of groups with
ϕ−1(x) =

(
π(x), π(x)−1 x

)
.

Gigel Militaru University of Bucharest
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The Hopf algebra case

Example
Consider the forgetful functor F : Hopf → CoAlg.

(H-C) ES-problem: Let A be a Hopf algebra and E a coalgebra
such that A is a subcoalgebra of E .
Describe and classify all Hopf algebra structures that can be
defined on the coalgebra E such that A is a Hopf subalgebra of
E .

There is of course a dual version of the ES-problem
corresponding to the forgetful functor F : Hopf → Alg.
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Remark
k = a field, A = a group, E = a set s.t. A ⊆ E and the
extension:

k [A] ⊆ k [E ]

where k [A] is the group algebra that is a Hopf algebra and a
subcoalgebra in the group-like coalgebra k [E ].

Let (E , ·) = a group structure on the set E such that A is a
subgroup of (E , ·).

Hence we obtain an extension of Hopf algebras k [A] ⊆ k [E ]
that has a remarkable property:
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Let H ⊆ E be a system of representatives for the right cosets of
the subgroup A in the group (E , ·) such that 1E ∈ H.

Then the multiplication map

k [A]⊗ k [H]→ k [E ], a⊗ h 7→ a · h

is bijective, i.e. the Hopf algebra k [E ] factorizes through the
Hopf subalgebra k [A] and the subcoalgebra k [H].

Gigel Militaru University of Bucharest
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We have to restrict the (H-C) extending structures problem as
follows:

The restricted (H-C) ES-problem:
Let A be a Hopf algebra and H a coalgebra. Describe and
classify up to an isomorphism all Hopf algebras E that factorize
through A and H: that is E is a Hopf algebra such that A is a
Hopf subalgebra of E, H is a subcoalgebra in E with 1E ∈ H
and the multiplication map A⊗ H → E is bijective.

We shall give a complete answer below.

Gigel Militaru University of Bucharest
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Definition
Let A be a bialgebra. An extending datum of A is a system
Ω(A) =

(
H, /, ., f

)
where:

(
H,∆H , εH

)
is a coalgebra,(

H,1H , ·
)

is an unitary, not necessarily associative k -algebra,
/ : H ⊗ A→ H, . : H ⊗ A→ A, f : H ⊗ H → A are morphisms of
coalgebras s.t.

∆H(1H) = 1H ⊗ 1H , h . 1A = εH(h)1A

1H . a = a, 1H / a = εA(a)1H , h / 1A = h

f (h,1H) = f (1H ,h) = εH(h)1A
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Let Ω(A) =
(
H, /, ., f

)
be an extending datum of A and

A nΩ(A) H = A n H := A⊗ H with the multiplication:

(anh)•(cng) := a(h(1).c(1))f
(
h(2)/c(2), g(1)

)
n (h(3)/c(3))·g(2)

Definition
A n H is called the unified product of A and Ω(A) if A n H is a
bialgebra with the unit 1A n 1H and the coalgebra structure
given by the tensor product of coalgebras. In this case
Ω(A) = (H, /, ., f ) is called a bialgebra extending structure
of A. A bialgebra extending structure Ω(A) = (H, /, ., f ) is
called a Hopf algebra extending structure of A if A n H has
an antipode.

Gigel Militaru University of Bucharest
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Theorem
A n H is an unified product if and only if ∆H : H → H ⊗ H,
εH : H → k are k-algebra maps, (H,C) is a right A-module
coalgebra and the following compatibilities hold:

(BE1) (g · h) · l =
(
g / f (h(1), l(1))

)
·(h(2) · l(2))

(BE2) g . (ab) = (g(1) . a(1))[(g(2) / a(2)) . b]

(BE3) (g · h) / a = [g / (h(1) . a(1))] · (h(2) / a(2))

(BE4) [g(1) . (h(1) . a(1))]f
(

g(2) / (h(2) . a(2)), h(3) / a(3)

)
=

f (g(1), h(1))[(g(2) · h(2)) . a]

(BE5)
(

g(1) . f (h(1), l(1))
)

f
(

g(2) / f (h(2), l(2)), h(3) · l(3)

)
=

f (g(1), h(1))f (g(2) · h(2), l)
(BE6) g(1) / a(1) ⊗ g(2) . a(2) = g(2) / a(2) ⊗ g(1) . a(1)

(BE7) g(1) · h(1) ⊗ f (g(2), h(2)) = g(2) · h(2) ⊗ f (g(1), h(1))
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Example

Let Ω(A) =
(
H, /, ., f

)
be an extending datum of A such that the

cocyle f is trivial, that is f (g, h) = εH(g)εH(h)1A.

Then Ω(A) =
(
H, /, ., f

)
is a bialgebra extending structure of A

if and only if H is a bialgebra and (A,H, /, .) is a matched pair
of bialgebras.

In this case, the associated unified product A n H = A ./ H is
the bicrossed product of bialgebras.

Gigel Militaru University of Bucharest
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Example

Let Ω(A) =
(
H, /, ., f

)
be an extending datum of A such that

the action C is trivial, that is h C a = εA(a)h.

Then Ω(A) =
(
H, /, ., f

)
is a bialgebra extending structure of A

if and only if H is an usual bialgebra and:
(a) The twisted module condition and the cocycle condition

hold (Blatter, Cohen, Montgomery);
(b) g . (ab) = (g(1) . a)(g(2) . b)

(c) g(1) ⊗ g(2) . a = g(2) ⊗ g(1) . a
(d) g(1)h(1) ⊗ f (g(2), h(2)) = g(2)h(2) ⊗ f (g(1), h(1))

In this case, the associated unified product A n H = A#f H is
the crossed product of two bialgebras. Next talk!

Gigel Militaru University of Bucharest
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A challenging problem: Give an example of an unified
product which is neither a crossed product nor a bicrossed
product and nor ... a Radford biproduct.

There exists such an example!

Example
Let An be the alternating group on a set with n elements.
Then k [A6] is a Hopf algebra which is neither a crossed product
nor a bicrossed product of two Hopf algebras and

k [A6] ∼= [A4] n k [S]

where S is a set with thirty elements.

Gigel Militaru University of Bucharest
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Proposition

Let A be a Hopf algebra and Ω(A) = (H, /, ., f ) a bialgebra
extending structure of A s.t. there exists an antimorphism of
coalgebras SH : H → H such that

h(1) · SH(h(2)) = SH(h(1)) · h(2) = εH(h)1H

Then A n H is a Hopf algebra with the antipode

S(a n g) :=
(

SA[f
(
SH(g(2)), g(3)

)
] n SH(g(1))

)
•
(
SA(a) n 1H

)

Gigel Militaru University of Bucharest
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Theorem
Let A ⊆ E be an extension of Hopf algebras, H a subcoalgebra
of E such that 1E ∈ H. The following are equivalent:

1 E factorizes through A and H, i.e. the multiplication map
A⊗ H → E is bijective.

2 There exists an isomorphism of Hopf algebras

E ∼= A n H

for some bialgebra extending structure Ω(A) =
(
H, /, ., f

)
of A.

Gigel Militaru University of Bucharest
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The classification of unified products

Definition
A morphism of coalgebras u : H → A is called a coalgebra lazy
1-cocyle if u(1H) = 1A and the following compatibility holds:

h(1) ⊗ u(h(2)) = h(2) ⊗ u(h(1))

We denote by H1
l,c(H,A) the group (with respect to the

convolution product) of all coalgebra lazy 1-cocyles of H with
coefficients in A.

Gigel Militaru University of Bucharest
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Theorem

Let Ω(A) =
(
H, /, ., f

)
and Ω′(A) =

(
H, /′, .′, f ′

)
be two Hopf

algebra extending structures of a Hopf algebra A.
Then there exists ϕ : A n′ H → A n H a left A-module, a right
H-comodule and a Hopf algebra map if and only if /′ = / and
there exists a coalgebra lazy 1-cocyle u ∈ H1

l,c(H,A) such that:

h .′ c = u(h(1))(h(2) . c(1))SA

(
u
(
h(3) / c(2)

))
(1)

f ′(h, g) = u(h(1))(h(2) . u(g(1)))f (h(3) / u(g(2)), g(3)) (2)

SA

(
u
(
h(4) ·′ g(4)

))
(3)

h ·′ g =
(
h / u(g(1))

)
·g(2) (4)

In this case ϕ is given by ϕ(a n h) = au(h(1)) n′ h(2).

Gigel Militaru University of Bucharest
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Remark
If ϕ : A n H → A n′ H is a left A-module, a right H-comodule
and Hopf algebra morphism between two unified products then
the following diagram

A
iA //

IdA
��

A ./ H
πH //

ϕ

��

H

IdH
��

A
iA // A ./′ H

πH // H

is commutative and ϕ is an isomorphism.

Gigel Militaru University of Bucharest
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Let A be a Hopf algebra, H a coalgebra with a fixed group-like
element 1H ∈ H and / : H ⊗ A→ H a morphism of coalgebras.

Let ES(A,H, /) be the set of all triples (·, ., f ) such that(
(H,1X , ·), /, ., f

)
is a Hopf algebra extending structure of A.

Definition
Two elements (·, ., f ), (·′, .′, f ′) of ES(A,H, /) are called
cohomologous and we denote this by (·, ., f ) ≈ (·′, .′, f ′) if
there exists a coalgebra lazy 1-cocyle u ∈ H1

l,c(H,A) such that
the compatibility conditions (1) - (4) are fulfilled.

Gigel Militaru University of Bucharest
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Remark
≈ is an equivalence relation on the set ES(A,H, /).
We denote by H2

l,c(H,A, /) the quotient set ES(A,H, /)/ ≈.

H2
l,c(H,A, /) is for the classification of the unified products the

counterpart of the second cohomology group for the
classification of an extension of an abelian group by a group.

Gigel Militaru University of Bucharest
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Let C(A,H, /) be the category whose class of objects is the set
ES(A,H, /).

A morphism ϕ :
(
., f

)
→

(
.′, f ′

)
in C(A,H, /) is a Hopf algebra

morphism ϕ : A n H → A n′ H that is a left A-module and a
right H-comodule map.

Gigel Militaru University of Bucharest
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Corollary

(Schreier theorem for unified products)
Let A be a Hopf algebra, H a coalgebra with a group-like
element 1H and / : H ⊗ A→ H a morphism of coalgebras.
There exists a bijection between the set of objects of the
skeleton of the category C(A,H, /) and the quotient set
H2

l,c(H,A, /).

Gigel Militaru University of Bucharest
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Split extensions of Hopf algebras

Radford’s biproducts (1985) = smash product algebras + smash
coproduct coalgebras.

Theorem
Let i : A→ E be a split monomorphism of Hopf algebras.
Then E is isomorphic as a Hopf algebra to a Radford
biproduct G ∗ A, for a bialgebra G in the braided category A

AYD
of left-left Yetter-Drinfel’d modules.

Remark
The theorem of Radford was generalized by:
• P. Schauenburg (1999)
• Ardizzoni, Beatie, Menini, Stefan, Stumbo ... (2007, 2009,
2010) etc.
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• Properties of the Hopf algebas extension A ⊂ A n H. When is
the unified product isomorphic to a Radford biproduct?

Definition
Let A and E be two bialgebras. A coalgebra map π : E → A is
called normal (Andruskiewitsch and Devoto) if the space

{x ∈ E |π(x(1))⊗ x(2) = 1A ⊗ x}

is a subcoalgebra of E .

Let G and H be two groups. Then any coalgebra map
π : k [G]→ k [H] is normal. Moreover, assume that G is finite,
H ≤ G be a subgroup of G. Then the restriction morphism
k [G]∗ → k [H]∗ is a normal morphism if and only if H is a normal
subgroup of G.

Gigel Militaru University of Bucharest
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Proposition

Let A be a bialgebra, Ω(A) =
(
H, /, ., f

)
a bialgebra extending

structure of A and the k-linear maps:

iA : A→ AnH, iA(a) = an1H , πA : AnH → A, πA(anh) = εH(h)a

for all a ∈ A, h ∈ H. Then:
1 iA is a biagebra map, πA is a normal left A-module

coalgebra morphism and πA ◦ iA = IdA.
2 πA is a right A-module map if and only if B is the trivial

action.
3 πA is a bialgebra map if and only if B and f are the trivial

maps, i.e. the unified product A n H = A#H, the right
version of the smash product of bialgebras.

Gigel Militaru University of Bucharest
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Theorem
Let i : A→ E be a Hopf algebra morphism such that there
exists π : E → A a normal left A-module coalgebra morphism
for which π ◦ i = IdA. Let H := {x ∈ E |π(x(1))⊗ x(2) = 1A ⊗ x}.
Then there exists a bialgebra extending structure
Ω(A) =

(
H, /, ., f

)
of A, given by:

h · g := i
(

SA
(
π(h(1)g(1))

))
h(2)g(2), f (h,g) := π(hg)

h C a := i
(

SA
(
π(h(1)i(a(1)))

))
h(2)i(a(2)), h B a := π

(
hi(a)

)
for all h, g ∈ H, a ∈ A such that

ϕ : A n H → E , ϕ(a n h) = i(a)h

is an isomorphism of Hopf algebras.

Gigel Militaru University of Bucharest

Unified products for Hopf algebras



The problem Groups Hopf algebras The Classification Split extensions

Remark: Any Hopf algebra extending structure of a Hopf
algebra A is constructed as in the above theorem.

Corollary
Let A and E be two Hopf algebras. The following are
equivalent:

1 E is isomorphic to a unified product A n H.
2 Then there exists a morphism of Hopf algebras i : A→ E

which has a retraction π : E → A that is a normal left
A-module coalgebra morphism.

Gigel Militaru University of Bucharest

Unified products for Hopf algebras



The problem Groups Hopf algebras The Classification Split extensions

Proposition

Let A be a Hopf algebra and Ω(A) =
(
H, /, ., f

)
a bialgebra

extending structure of A. The following are equivalent:
(1) iA : A→ A n H is a split monomorphism in the category of

bialgebras;
(2) There exists γ : H → A a unitary coalgebra map such that

h . a = γ(h(1)) a(1) γ
−1(h(2) C a(2))

f (h, g) = γ(h(1)) γ(g(1)) γ−1(h(2) · g(2))

for all h, g ∈ H and a ∈ A, where γ−1 = SA ◦ γ.
In this case, there exists an isomorphism of bialgebras
A n H ∼= L ∗ A, where L ∗ A is the Radford biproduct for a
bialgebra L in the braided category A

AYD of Yetter-Drinfel’d
modules.
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Back to the starting point – the conclusion of the talk:

An answer of a college level question was given!
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An answer of a college level question was given!
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Thank you!
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