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The purpose of my talk is to summarize present recent developments and pro-
vide some key constructions of Hom-associative and Hom-Hopf algebraic structures.
The main feature of Hom-algebras is that the classical identities are twisted by a
homomorphism.

The Hom-Lie algebras arise naturally in discretizations and deformations of vec-
tor fields and differential calculus, to describe the structures on some q-deformations
of the Witt and the Virasoro algebras. They were developed in a general framework
by Larsson and Silvestrov. The Hom-associative algebras, Hom-coassociative coal-
gebras and Hom-Hopf algebra were introduced by Silvestrov and myself. Recently,
the Hom-type algebras were intensively investigated. A categorical point of view
were discussed by Caenepeel and Goyvaerts. Also Yau showed that the enveloping
algebra of a Hom-Lie algebra may be endowed by a structure of Hom-bialgebra.
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Paradigmatic example : quasi-deformation of sl2(K)

[H,E ] = 2E , [H,F ] = −2F , [E ,F ] = H.

In terms of first order differential operators acting on some vector
space of functions in the variable t:

E 7→ ∂, H 7→ −2t∂, F 7→ −t2∂.

To quasi-deform sl2(K) means that we replace ∂ by ∂σ which is a
σ-derivation.
Let A be a commutative, associative K-algebra with unity 1.
A σ-derivation on A is a K-linear map ∂σ : A→ A such that a
σ-Leibniz rule holds:

∂σ(ab) = ∂σ(a)b + σ(a)∂σ(b).
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Example : Jackson q-derivation operator on A = K[t]

∂σ : P(t)→ (DqP)(t) =
P(qt)− P(t)

qt − t
,

here σP(t) := P(qt). The operator satisfies

(Dq (PQ))(t) = (DqP)(t)Q(t) + P(qt)(DqQ)(t), σ-Leibniz rule

Assume σ(1) = 1, σ(t) = qt, ∂σ(1) = 0 and ∂σ(t) = t
Then : ∂σ(t

2) = ∂σ(t · t) = σ(t)∂σ(t) + ∂σ(t)t = (σ(t) + t)∂σ(t).
The brackets become

[H,F ]σ = 2σ(t)t∂σ(t)∂σ = 2qt2∂σ = −2qF

[H,E ]σ = 2∂σ(t)∂σ = 2E

[E ,F ]σ = −(σ(t) + t)∂σ(t)∂σ = −(q + 1)t∂σ =
1

2
(1 + q)H.
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The new bracket satisfies

	a,b,c [σ(a) · ∂σ, [b · ∂σ, c · ∂σ]σ]σ = 0. (1)

Definition
A Hom-Lie algebra is a triple (V , [·, ·], α) satisfying

[x , y ] = −[y , x ] (skewsymmetry)
	x ,y ,z [α(x), [y , z ]] = 0 (Hom-Jacobi condition)

for all x , y , z ∈ V , where 	x ,y ,z cyclic summation.
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• Makhlouf and Silvestrov, Hom-algebra structures, Journal of
Generalized Lie Theory and Applications, vol 2 (2) (2008)

Definition
A Hom-associative algebra is a triple (A, µ, α) consisting of a vector
space A, a bilinear map µ : A× A→ A and a homomorphism α : A→ A
satisfying

µ(α(x), µ(y , z)) = µ(µ(x , y), α(z))

A linear map φ : A→ A′ is a morphism of Hom-associative algebras if

µ′ ◦ (φ⊗ φ) = φ ◦ µ and φ ◦ α = α′ ◦ φ.

A Hom-associative algebra is said to be weakly unital if there exists a
unit 1 such that

µ(x , 1) = µ(1, x) = α(x).
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A Hom-module is a pair (M, αM) consisting of a K-module and a
linear self-map αM : M → M. A morphism of Hom-modules
f : (M, αM)→ (N, αN ) is a morphism of the underlying K-modules
that is compatible with the twisting maps, in the sense that

αN ◦ f = f ◦ αM .

The tensor product of two Hom-modules M and N is the pair
(M ⊗ N, αM ⊗ αN).

A Hom-Nonassociative algebra or a Hom-algebra is a triple
(A, µA, αA) in which (A, αA) is a Hom-module and
µA : A⊗ A→ A is a multiplication.
A morphism of Hom-algebras and The tensor product of two
Hom-algebras are as we expect.
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Set

1 HomMod : category of Hom-modules,

2 HNA : category of Hom-Nonassociative algebras,

3 HA : category of associative algebras (multiplicative),

4 HL : category of Hom-Lie algebras (multiplicative)

There is the following adjoint pairs of functors in which F0, F1, F2
are F2 ◦ F1 ◦ F0 are the left adjoint

Mod

F0
−→
←−
U

HomMod

F1
−→
←−
U

HNA

F2
−→
←−
U

HA

HLie
−→
←−
UHLie

HL
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Free Hom-associative algebra and enveloping algebra

• D. Yau, Enveloping algebras of Lie algebras, J. Gen. Lie Theory Appl 2

(2008)

Let (A, µ, α) be a Hom-Nonassociative algebra (Hom-algebra).
The products are defined using the set of weighted trees (Twt

n ).
Consider the map

K[Twt
n ]⊗ A⊗n −→ A

(τ ; x1, · · · , xn) −→ (x1, · · · , xn)τ

inductively via the rules

1 (x)i = x for x ∈ A, where i denote the 1-tree,

2 If τ = (τ1 ∨ τ2)[r ] then
(x1, · · · , xn)τ = αr ((x1, · · · , xp)τ1(xp+1, · · · , xp+q)τ2).
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The free Hom-Nonassociative algebra is

FHNAs(A) = ⊕n≥1 ⊕τ∈Twt
n

A⊗n
τ

where A⊗n
τ is a copy of A⊗n.

The multiplication µF is defined by

µF ((x1, · · · , xn)τ , (xn+1, · · · , xn+m)σ) = (x1, · · · , xn+m)τ∨σ

and the linear map is defined by the rule

1 αF |A = αV

2 αF ((x1, · · · , xn)τ ) = (x1, · · · , xn)τ [1].
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Consider two-sided ideals I 1 ⊂ I 2 ⊂ · · · I∞ ⊂ FHNAs(A)

where
I 1 =< Im(µF ◦ (µF ◦ αF − αF ◦ µF ) >

and I n+1 =< I n
⋃

α(I n) >, I∞ =
⋃

n≥1 I
n.

The quotient module

FHAs(A) = FHNAs(A)/I
∞.

equipped with µF and αF is the free Hom-associative algebra.

The enveloping Lie algebra is obtained by considering the
two-sided ideals Jk where

J1 =< Im(µF ◦ (µF ◦ α−α ◦ µ); [x , y ]− (xy − yx) for x , y ∈ A > .
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Hom-coalgebras, Hom-bialgebras and Hom-Hopf algebras

(1) Makhlouf A. and Silvestrov S., Hom-Lie admissible Hom-Coalgebras
and Hom-Hopf Algebras, In ”Generalized Lie Theory in Math., Physics
and Beyond”, Springer (2008),
(2) Makhlouf A. and Silvestrov S., Hom-algebras and Hom-coalgebras ,
Journal of Algebra and Its Applications Vol. 9 (2010)
(3) Yau, Hom-bialgebras and comodule algebras, e-print arXiv 0810.4866
(2008)

(4) Caenepeel S. and Goyvaerts I., Monoidal Hopf algebras, e-print

arXiv:0907.0187 (2010).
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Definition
A Hom-coalgebra is a triple (C ,∆, β) where C is a K-vector space
and ∆ : C → C ⊗ C , β : C → C are linear maps.
A Hom-coassociative coalgebra is a Hom-coalgebra satisfying

(β ⊗∆) ◦∆ = (∆⊗ β) ◦∆. (2)

A Hom-coassociative coalgebra is said to be counital if there exists
a map ε : C → K satisfying

(id ⊗ ε) ◦∆ = id and (ε⊗ id) ◦∆ = id (3)
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Hom-bialgebras

Definition
A Hom-bialgebra is a 7-uple (B , µ, α, η,∆, β, ε) where
(B1) (B , µ, α, η) is a Hom-associative algebra with unit η.
(B2) (B ,∆, β, ε) is a Hom-coassociative coalgebra with counit
ε.
(B3) The linear maps ∆ and ε are compatible with the
multiplication µ, that is















∆(e1) = e1 ⊗ e1 where e1 = η (1)

∆ (µ(x ⊗ y)) = ∆ (x) •∆(y) =
∑

(x)(y) µ(x
(1) ⊗ y (1))⊗ µ(x (2) ⊗ y (2))

ε (e1) = 1
ε (µ(x ⊗ y)) = ε (x) ε (y)
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Definition (2)
One can consider a more restrictive definition where linear maps ∆
and ε are morphisms of Hom-associative algebras that is the
condition (B3) becomes equivalent to































∆(e1) = e1 ⊗ e1 where e1 = η (1)

∆ (µ(x ⊗ y)) = ∆ (x) •∆(y) =
∑

(x)(y) µ(x
(1) ⊗ y (1))⊗ µ(x (2) ⊗ y (2))

ε (e1) = 1
ε (µ(x ⊗ y)) = ε (x) ε (y)

∆ (α(x)) =
∑

(x) α(x
(1))⊗ α(x (2))

ε ◦ α (x) = ε (x)
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Given a Hom-bialgebra (B , µ, α, η,∆, β, ε), we show that the
vector space Hom (B ,B) with the multiplication given by the
convolution product carries a structure of Hom-associative algebra.

Proposition

Let (B , µ, α, η,∆, β, ε) be a Hom-bialgebra. Then the algebra
Hom (B ,B) with the multiplication given by the convolution
product defined by

f ⋆ g = µ ◦ (f ⊗ g) ◦∆

and the unit being η ◦ ǫ, is a unital Hom-associative algebra with
the homomorphism map defined by γ(f ) = α ◦ f ◦ β.
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Hom-Hopf algebras

A Hom-Hopf algebra over a K-vector space H is given by
(H, µ, α, η,∆, β, ε,S), where (H, µ, α, η,∆, β, ε) is a bialgebra and
S is the antipode that is the inverse of the identity over H for the
convolution product.
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We have the following properties :

The antipode S is unique,

S(η(1)) = η(1),

ε ◦ S = ε.

Let x be a primitive element (∆(x) = η(1) ⊗ x + x ⊗ η(1)),
then ε(x) = 0.

If x and y are two primitive elements in H. Then we have
ε(x) = 0 and the commutator [x , y ] = µ(x ⊗ y)− µ(y ⊗ x) is
also a primitive element.

The set of all primitive elements of H, denoted by Prim(H),
has a structure of Hom-Lie algebra.
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Generalized Hom-bialgebras

Definition
A generalized Hom-bialgebra is a 5-uple (B , µ, α,∆, β) where
(GB1) (B , µ, α) is a Hom-associative algebra.
(GB2) (B ,∆, β) is a Hom-coassociative coalgebra.
(GB3) The linear maps ∆ is compatible with the multiplication
µ, that is

∆ (µ(x ⊗ y)) = ∆ (x)•∆(y) =
∑

(x)(y)

µ(x(1)⊗y (1))⊗µ(x(2)⊗y (2))

We recover generalized bialgebra introduced by Loday when α and
β are the identity map.
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Theorem (Twisting Principle 1)

Let (A, µ) be an associative algebra and let α : A→ A be an
algebra endomorphism. Then (A, µα, α), where µα = α ◦ µ, is a
Hom-associative algebra.

Let (C ,∆) be a coalgebra and let β : C → C be a coalgebra
endomorphism. Then (C ,∆β , β), where ∆β = ∆ ◦ β, is a
Hom-coassociative coalgebra.

Let (B , µ,∆) be a generalized bialgebra and let α : B → B be a
generalized bialgebra endomorphism. Then (B , µα,∆α, α), where
µα = α ◦ µ and ∆α = ∆ ◦ α, is a generalized Hom-bialgebra.
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Theorem (Twisting Principle 2 (Yau) )

Let (A, µ, α) be a multiplicative Hom-associative algebra,
(C ,∆, α) be a Hom-coalgebra and (B , µ,∆, , α) be a generalized
Hom-bialgebra. Then for each integer n ≥ 0

1 An = (A, µ(n) = α2n−1 ◦ µ, α2n), is a Hom-associative algebra.

2 (C ,∆(n) = ∆ ◦ α2n−1, α2n ), is a Hom-coassociative coalgebra.

3 (B , µ(n) = α2n−1 ◦ µ,∆(n) = ∆ ◦ α2n−1, α2n), is a generalized
Hom-bialgebra.
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Example

Let KG be the group-algebra over the group G . As a vector space,
KG is generated by {eg : g ∈ G}. If α : G → G is a group
homomorphism, then it can be extended to an algebra
endomorphism of KG by setting

α(
∑

g∈G

ageg ) =
∑

g∈G

agα(eg ) =
∑

g∈G

ageα(g).

Consider the usual bialgebra structure on KG and α a generalized
bialgebra morphism. Then, we define over KG a generalized
Hom-bialgebra (KG , µ, α,∆, α) by setting:

µ(eg ⊗ eg ′) = α(eg ·g ′),

∆(eg ) = α(eg )⊗ α(eg ).
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Example

Consider the polynomial algebra A = K[(Xij)] in variables
(Xij)i ,j=1,··· ,n. It carries a structure of generalized bialgebra with
the comultiplication defined by δ(Xij ) =

∑n
k=1 Xik ⊗ Xkj and

δ(1) = 1⊗ 1. Let α be a generalized bialgebra morphism, it is
defined by n2 polynomials α(Xij ). We define a generalized
Hom-bialgebra (A, µ, α,∆, α) by

µ(f ⊗ g) = f (α(X11), · · · , α(Xnn))g(α(X11), · · · , α(Xnn)),

∆(Xij) =
n

∑

k=1

α(Xik)⊗ α(Xkj ),

∆(1) = α(1) ⊗ α(1).
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Example

Let X be a set and consider the set of non-commutative
polynomials A = K〈X 〉. It carries a generalized bialgebra structure
with a comultiplication defined for x ∈ X by δ(x) = 1⊗ x + x ⊗ 1
and δ(1) = 1⊗ 1. Let α be a generalized bialgebra morphism. We
define a generalized Hom-bialgebra (A, µ, α,∆, α) by

µ(f ⊗ g) = f (α(X ))g(α(X )),

∆(x) = α(1) ⊗ α(x) + α(x) ⊗ α(1),

∆(1) = α(1) ⊗ α(1).
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Representations of Hom-algebras

Let (A, µA, αA) be a Hom-associative algebra.
An A-module is a Hom-module (M, αM) together with a linear
map ρ : A⊗M → M, such that

αM ◦ ρ = ρ ◦ (αA ⊗ αM) (multiplicativity)

ρ ◦ (αA ⊗ ρ) = ρ ◦ (µA ⊗ αM) (Hom-associativity)

A morphism f : (M, αM)→ (N, αN ) of A-modules is a morphism
of the underlying Hom-modules that is compatible with the
structure maps, in the sense that

f ◦ ρM = ρN ◦ (idA ◦ f ).

Multiplicativity is equivalent to ρ being a morphism of
Hom-modules.
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Let (C ,∆C , αC ) be a Hom-coassociative coalgebra.
A C -comodule is a Hom-module (M, αM) together with a linear
map ρ : M → C ⊗M, such that

ρ ◦ αM = (αC ⊗ αM) ◦ ρ (comultiplicativity)

ρ ◦ (αA ⊗ ρ) = ρ ◦ (∆C ⊗ αM) (Hom-coassociativity)

A morphism f : (M, αM)→ (N, αN ) of C -comodules is a
morphism of the underlying Hom-modules that is compatible with
the structure maps, in the sense that

(idC ◦ f ) ◦ ρM = ρN ◦ f .
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Twisting principle (Yau)

Let (A, µA, αA) be a Hom-associative algebra (multiplicative) and
(M, αM) be an A-module with structure map ρ : A⊗M → M. For
each integer n, k ≥ 0 define the map

ρn,k = α2k−1
M ◦ ρ ◦ (αn

A ⊗ IdM) : A⊗M → M.

Then each ρn,k gives the Hom-module Mk = (M, α2k

M ) the
structure of an Ak -module, where Ak is the k-derived
Hom-associative algebra (A, µ

(k)
A = α2k−1

A ◦ µA, α
2k

A ).
Note that ρ0,0 = ρ, ρ1,0 = ρ ◦ (αA ⊗ IdM), ρ0,1 = αM ◦ ρ,

ρn+1,0 = ρn,0 ◦ (αA ⊗ IdM) and ρ0,k+1 = α2k−1
M ◦ ρ.

The Ak-module Mk with the structure ρn,k is called the
(n, k)-derived module of M.
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Twisting principle (2)

Let (A, µA) be an associative algebra and M be an A-module
(classical sense) with structure map ρ : A⊗M → M. Suppose
αA : A→ A is an algebra morphism and αM : M → M is a linear
self-map such that

αM ◦ ρ = ρ ◦ (αA ⊗ αM)

For any integer n, k ≥ 0 define the map

ρn,kα = α2k

M ◦ ρ ◦ (α
n
A ⊗ IdM) : A⊗M → M.

Then each ρn,k gives the Hom-module Mk
α = (M, α2k

M ) the

structure of an Aβ-module, where β = α2k

A and Aβ is the
Hom-associative algebra (A, µβ = β ◦ µA, β).
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Hom-quantum group: Uq(sl2)α

Consider the quantum group Uq(sl2) generated as usual by
E ,F ,K±1 satisfying the relations

KK−1 = 1 = K−1K ,

KE = q2EK , KF = q−2FK ,

EF − FE =
K − K−1

q − q−1
.

and the bialgebra morphism αλ : Uq(sl2)→ Uq(sl2) defined by

αλ(E ) = λE , αλ(F ) = λ−1F , αλ(K
±1) = K±1.

Then Uq(sl2)α = (Uq(sl2), µαλ
,∆αλ

, αλ) is a Hom-bialgebra.
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Finite-dimensional modules over Uq(sl2)α

Assume q ∈ C− {0} is not a root of unity.
For each integer n ≥ 0 and ǫ ∈ {±1},
there is an (n + 1)-dimensional simple Uq(sl2)-module V (ǫ, n).
Let {vi}1≤i≤n be a basis of V (ǫ, n). The action is defined by

Kvi = ǫqn−2ivi , Evi = ǫ[n − i + 1]qvi−1, Fvi = [i + 1]qvi+1.

where v−1 = 0 = vn+1.
Pick any scalar ξ ∈ C and define αξ : V (ǫ, n)→ V (ǫ, n) by setting

αξ(vi ) = ξλ−ivi , ∀i

Then

αξ(Uv) = αλ(U)αξ(v) ∀U ∈ Uq(sl2), v ∈ V (ǫ, n).
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Finite-dimensional modules over Uq(sl2)α (2)

By twisting principle, one constructs an uncountable, four
parameter family V (ǫ, n)r ,kα of (n + 1)-dimensional derived

Uq(sl2)β-module, where β = α2k

λ = α
λ2k and the structure map is

given for any r , k ≥ 0 by

ρn,kα (K±1 ⊗ vi ) = (ǫqn−2i )±1(ξλ−i )2
k

vi ,

ρn,kα (E ⊗ vi) = ǫ[n − i + 1]qξ
2kλr−2k(i−1)vi−1,

ρn,kα (F ⊗ vi) = ǫ[i + 1]qξ
2kλ−r−2k(i+1)vi+1.

Classical case corresponds to λ = ξ = 1.
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Module Hom-algebras

Definition
Let (H, µ,∆H , αH) be a Hom-bialgebra and (A, µA, αA) be a
Hom-associative algebra.
An H-module Hom-algebra structure on A consists of an
H-module structure ρ : H ⊗ A→ A such that the module
Hom-algebra axiom

α2
H(x)(ab) =

∑

(x)

(x(1)a)(x(2)b)

is satisfied for all x ∈ H and a, b ∈ A, where ρ(x ⊗ a) = xa.

In element-free form the Hom-algebra axiom is

ρ ◦ (α2
H ⊗ µA) = µA ◦ ρ

⊗2 ◦ (23) ◦ (∆H ⊗ idA ⊗ idA).
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Remark
Let (H, µ,∆H , αH) be a Hom-bialgebra and let (M, αM) and
(N, αN ) be H-modules with structure maps ρM and ρN . Then
M ⊗ N is an H-module with structure map

ρMN = (ρM ⊗ ρN) ◦ (23) ◦ (∆⊗ IdM ⊗ IdN) : H ⊗M ⊗N → M ⊗N

Theorem
Let (H, µH ,∆H , αH) be a Hom-bialgebra, (A, µA, αA) be a
Hom-associative algebra and ρ : H ⊗ A→ A be an H-module
structure on A
Then the module Hom-algebra axiom is satisfied if and only if
µA : A⊗ A→ A is a morphism of H-modules, in which A⊗ A and
A are given the H-module structure maps ρAA and ρ2,0,
respectively.
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By twisting principle (2), every module Hom-algebra gives rise to a
derived double-sequence of module Hom-algebras.
Twisting principle (1) for module Hom-algebras:

Theorem
Let (H, µH ,∆H) be a bialgebra, (A, µA) be an associative algebra
and ρ : H ⊗ A→ A be an H-module structure on A. Suppose
αH : H → H is a bialgebra morphism and αA : A→ A is an algebra
morphism such that αA ◦ ρ = ρ ◦ (αH ⊗ αA).
For any integer n, k ≥ 0 define the map

ρn,kα = α2k

A ◦ ρ ◦ (α
n
H ⊗ IdA) : H ⊗ A→ A.

Then each ρn,k gives Aβ the structure of an Hγ-module

Hom-algebra, where β = α2k

A , γ = α2k

H , Aβ is the Hom-associative
algebra (A, µβ = β ◦ µA, β) and Hγ is the Hom-bialgebra
(H, µγ = γ ◦ µH ,∆γ = ∆ ◦ γ, γ).
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Hom-quantum plane

Assume q ∈ C− {0} is not a root of unity. The Uq(sl2)-module
algebra structure on the quantum plane

A
2|0
q = K < x , y > /(yx − qxy)

is defined using the following quantum partial derivatives

∂q,x(x
nym) = [m]qx

m−1yn and ∂q,y(x
nym) = [n]qx

myn−1

and for P = P(x , y) ∈ A
2|0
q we define

σx(P) = P(qx , y) and σy (P) = P(x , qy).
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ρ : Uq(sl2)⊗ A
2|0
q → A

2|0
q

is determined by

EP = x(∂q,yP), FP = (∂q,xP)y ,

KP = σxσ
−1
y (P) = P(qx , q−1y),

K−1P = σyσ
−1
x (P) = P(q−1x , qy).

The bialgebra morphism αλ : Uq(sl2)→ Uq(sl2) defined by

αλ(E ) = λE , αλ(F ) = λ−1F , αλ(K
±1) = K±1,

and the algebra morphism α : A
2|0
q → A

2|0
q defined

α(x) = ξx and α(y) = ξλ−1y

satisfy
α ◦ ρ = ρ ◦ (αλ ⊗ α).
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By the Theorem, for any integer l , k ≥ 0 the map

ρl ,kα = α2k ◦ ρ ◦ (αl
λ ⊗ Id) : Uq(sl2)⊗ A

2|0
q → A

2|0
q ,

gives the Hom-quantum-plane (A
2|0
q )β the structure of a

(Uq(sl2))γ-module. We have

ρl ,kα (E ⊗ xmyn) = [n]qξ
2k (m+n)λl−2k (n−1)xm+1yn−1,

ρl ,kα (F ⊗ xmyn) = [m]qξ
2k(m+n)λ−l−2k(n+1)xm−1yn+1,

ρl ,kα (K±1 ⊗ P) = P(q±1ξ2
k

x , q∓1(ξλ−1)2
k

y).
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Twistings

Drinfeld’s: gauge transformations of quasi-Hopf algebras
Giaquinto-Zhang: twists of algebraic structures based on action of
a bialgebra.

Definition
Let (B , µB ,∆B ,1B , εB) be a bialgebra.
An element F ∈ B ⊗ B is a twisting element (based on B) if

1 (εB ⊗ Id)F = 1⊗ 1 = (Id ⊗ εB)F ,

2 [(∆ ⊗ Id)(F )](F ⊗ 1) = [(Id ⊗∆)(F )](1 ⊗ F ).
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Theorem (Giaquinto-Zhang)

Let F ∈ B ⊗ B be a twisting element.

1 If A is a left B-module algebra, then AF = (A, µA ◦ Fl ,1A) is
an associative algebra.

2 If C is a right B-module coalgebra, then
CF = (C ,Fl ◦∆C , εC ) is an coassociative algebra.
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Hom-Twistings

Definition
Let (B , µB ,∆B ,1B , εB , αB ) be a Hom-bialgebra where αB is
invertible.
An element F ∈ B ⊗ B is a Hom-twisting element (based on B) if

[(α−1
B ⊗ α−1

B ⊗ Id)(∆ ⊗ Id)(F )][(α2
B ⊗ α2

B ⊗ Id)(F ⊗ 1)] =

[(Id ⊗ α−1
B ⊗ α−1

B )(1⊗∆)(F )][(Id ⊗ α2
B ⊗ α2

B)(1⊗ F )].
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Theorem
Let F ∈ B ⊗ B be a Hom-twisting element. Let (A, µA,1A, αA) be
a Hom-associative algebra, where αA is surjective.
Assume that b 1B = 1Bb = αB(b) and a 1A = 1Aa = αA(a)
If A is a left B-module Hom-algebra, where 1Ba = αA(a),
then

AF = (A, µA ◦ [(α
2
B ⊗ α2

B)F ]l , αA)

is a Hom-associative algebra.
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Let (B , µB ,∆B ,1B , εB) be a bialgebra. and F ∈ B ⊗ B a twisting
element.
Let (A, µA,1A) be a left B-module algebra.
Suppose αB : B → B is a bialgebra morphism which is involutive
and αA : A→ A is an algebra morphism such that

αA ◦ ρ = ρ ◦ (αH ⊗ αA).

Then F is a twisting element of the Hom-bialgebra BαB
and the

Hom-associative algebra AαA
deforms to (AαA

)F
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Hom-Yang-Baxter Equation

• D. Yau Hom-Yang-Baxter equation, Hom-Lie algebras, and
quasi-triangular bialgebras, J. Phys. A 42 (2009).
The Hom-Yang-Baxter equation and Hom-Lie algebras,
arXiv:0905.1887v2, (2009).
The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras,
arXiv:0905.1890v1, (2009).
Hom-quantum groups I:quasi-triangular Hom-bialgebras,
arXiv:0906.4128v1, (2009).
Hom-quantum groups II:cobraided Hom-bialgebras and Hom-quantum
geometry, arXiv:0907.1880v1, (2009).

Hom-quantum groups III:representations and Module Hom-algebras,

arXiv:0907.1880v1, (2009).

The Hom-Yang-Baxter Equation (HYBE) is

(α⊗ B) ◦ (B ⊗ α) ◦ (α⊗ B) = (B ⊗ α) ◦ (α⊗ B) ◦ (B ⊗ α)
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Each solution of the HYBE can be extended to operators that
satisfy the braid relations (Yau).

Each quasi-triangular Hom-bialgebra comes with a solution of
the quantum Hom-Yang-Baxter equation (Yau).

Hochschild type cohomology of multipl. Hom-ass. algebras
(Ammar, Ejbehi, Makhlouf, Silvestrov)

Hochschild type cohomology of multipl. Hom-coassociative
coalgebras (Dekkar, Makhlouf)
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