Generalized Hopf algebras by deforming identities

Abdenacer Makhlouf (Mulhouse University, France) abdenacer.makhlouf@uha.fr

The purpose of my talk is to summarize present recent developments and provide some key constructions of Hom-associative and Hom-Hopf algebraic structures. The main feature of Hom-algebras is that the classical identities are twisted by a homomorphism.

The Hom-Lie algebras arise naturally in discretizations and deformations of vector fields and differential calculus, to describe the structures on some q-deformations of the Witt and the Virasoro algebras. They were developed in a general framework by Larsson and Silvestrov. The Hom-associative algebras, Hom-coassociative coalgebras and Hom-Hopf algebra were introduced by Silvestrov and myself. Recently, the Hom-type algebras were intensively investigated. A categorical point of view were discussed by Caenepeel and Goyvaerts. Also Yau showed that the enveloping algebra of a Hom-Lie algebra may be endowed by a structure of Hom-bialgebra.

Generalized Bialgebras and Hopf algebras by deforming identities

Abdenacer MAKHLOUF

LMIA Mulhouse, France

Almeria, July 2011

Plan

(1) Hom-algebras
(2) Hom-coalgebras, Hom-bialgebras and Hom-Hopf algebras
(3) Representations of Hom-algebras

4 Module Hom-algebras
(5) Hom-Twistings
(6) Some other results

Paradigmatic example : quasi-deformation of $\mathfrak{s l}_{2}(\mathbb{K})$

$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H .
$$

In terms of first order differential operators acting on some vector space of functions in the variable t :

$$
E \mapsto \partial, \quad H \mapsto-2 t \partial, \quad F \mapsto-t^{2} \partial .
$$

To quasi-deform $\mathfrak{s l}_{2}(\mathbb{K})$ means that we replace ∂ by ∂_{σ} which is a σ-derivation.
Let \mathcal{A} be a commutative, associative \mathbb{K}-algebra with unity 1 . A σ-derivation on \mathcal{A} is a \mathbb{K}-linear map $\partial_{\sigma}: \mathcal{A} \rightarrow \mathcal{A}$ such that a σ-Leibniz rule holds:

$$
\partial_{\sigma}(a b)=\partial_{\sigma}(a) b+\sigma(a) \partial_{\sigma}(b) .
$$

Example : Jackson q-derivation operator on $\mathcal{A}=\mathbb{K}[t]$

$$
\partial_{\sigma}: P(t) \rightarrow\left(D_{q} P\right)(t)=\frac{P(q t)-P(t)}{q t-t},
$$

here $\sigma P(t):=P(q t)$. The operator satisfies
$\left(D_{q}(P Q)\right)(t)=\left(D_{q} P\right)(t) Q(t)+P(q t)\left(D_{q} Q\right)(t), \quad \sigma$-Leibniz rule
Assume $\sigma(1)=1, \sigma(t)=q t, \partial_{\sigma}(1)=0$ and $\partial_{\sigma}(t)=t$
Then : $\partial_{\sigma}\left(t^{2}\right)=\partial_{\sigma}(t \cdot t)=\sigma(t) \partial_{\sigma}(t)+\partial_{\sigma}(t) t=(\sigma(t)+t) \partial_{\sigma}(t)$.
The brackets become

$$
\begin{aligned}
& {[H, F]_{\sigma}=2 \sigma(t) t \partial_{\sigma}(t) \partial_{\sigma}=2 q t^{2} \partial_{\sigma}=-2 q F} \\
& {[H, E]_{\sigma}=2 \partial_{\sigma}(t) \partial_{\sigma}=2 E} \\
& {[E, F]_{\sigma}=-(\sigma(t)+t) \partial_{\sigma}(t) \partial_{\sigma}=-(q+1) t \partial_{\sigma}=\frac{1}{2}(1+q) H .}
\end{aligned}
$$

The new bracket satisfies

$$
\begin{equation*}
\circlearrowleft_{a, b, c}\left[\sigma(a) \cdot \partial_{\sigma},\left[b \cdot \partial_{\sigma}, c \cdot \partial_{\sigma}\right]_{\sigma}\right]_{\sigma}=0 \tag{1}
\end{equation*}
$$

Definition
A Hom-Lie algebra is a triple $(V,[\cdot, \cdot], \alpha)$ satisfying

$$
\begin{gathered}
{[x, y]=-[y, x] \quad \text { (skewsymmetry) }} \\
\circlearrowleft_{x, y, z}[\alpha(x),[y, z]]=0 \quad \text { (Hom-Jacobi condition) }
\end{gathered}
$$

for all $x, y, z \in V$, where $\circlearrowleft_{x, y, z}$ cyclic summation.

- Makhlouf and Silvestrov, Hom-algebra structures, Journal of Generalized Lie Theory and Applications, vol 2 (2) (2008)

Definition

A Hom-associative algebra is a triple (A, μ, α) consisting of a vector space A, a bilinear map $\mu: A \times A \rightarrow A$ and a homomorphism $\alpha: A \rightarrow A$ satisfying

$$
\mu(\alpha(x), \mu(y, z))=\mu(\mu(x, y), \alpha(z))
$$

A linear map $\phi: A \rightarrow A^{\prime}$ is a morphism of Hom-associative algebras if

$$
\mu^{\prime} \circ(\phi \otimes \phi)=\phi \circ \mu \quad \text { and } \quad \phi \circ \alpha=\alpha^{\prime} \circ \phi .
$$

A Hom-associative algebra is said to be weakly unital if there exists a unit 1 such that

$$
\mu(x, \mathbf{1})=\mu(\mathbf{1}, x)=\alpha(x) .
$$

A Hom-module is a pair $\left(M, \alpha_{M}\right)$ consisting of a \mathbb{K}-module and a linear self-map $\alpha_{M}: M \rightarrow M$. A morphism of Hom-modules $f:\left(M, \alpha_{M}\right) \rightarrow\left(N, \alpha_{N}\right)$ is a morphism of the underlying \mathbb{K}-modules that is compatible with the twisting maps, in the sense that

$$
\alpha_{N} \circ f=f \circ \alpha_{M} .
$$

The tensor product of two Hom-modules M and N is the pair $\left(M \otimes N, \alpha_{M} \otimes \alpha_{N}\right)$.

A Hom-Nonassociative algebra or a Hom-algebra is a triple $\left(A, \mu_{A}, \alpha_{A}\right)$ in which $\left(A, \alpha_{A}\right)$ is a Hom-module and $\mu_{A}: A \otimes A \rightarrow A$ is a multiplication.
A morphism of Hom-algebras and The tensor product of two Hom-algebras are as we expect.

Set

(1) HomMod: category of Hom-modules,
(2) HNA : category of Hom-Nonassociative algebras,
(3) HA : category of associative algebras (multiplicative),
(9) HL: category of Hom-Lie algebras (multiplicative)

There is the following adjoint pairs of functors in which F_{0}, F_{1}, F_{2} are $F_{2} \circ F_{1} \circ F_{0}$ are the left adjoint

Free Hom-associative algebra and enveloping algebra

- D. Yau, Enveloping algebras of Lie algebras, J. Gen. Lie Theory Appl 2 (2008)

Let (A, μ, α) be a Hom-Nonassociative algebra (Hom-algebra). The products are defined using the set of weighted trees $\left(T_{n}^{w t}\right)$. Consider the map

$$
\begin{array}{r}
\mathbb{K}\left[T_{n}^{w t}\right] \otimes A^{\otimes n} \longrightarrow A \\
\left(\tau ; x_{1}, \cdots, x_{n}\right) \longrightarrow\left(x_{1}, \cdots, x_{n}\right)_{\tau}
\end{array}
$$

inductively via the rules
(1) $(x)_{i}=x$ for $x \in A$, where i denote the 1-tree,
(2) If $\tau=\left(\tau_{1} \vee \tau_{2}\right)[r]$ then
$\left(x_{1}, \cdots, x_{n}\right)_{\tau}=\alpha^{r}\left(\left(x_{1}, \cdots, x_{p}\right)_{\tau_{1}}\left(x_{p+1}, \cdots, x_{p+q}\right)_{\tau_{2}}\right)$.

The free Hom-Nonassociative algebra is

$$
F_{H N A_{s}}(A)=\oplus_{n \geq 1} \oplus_{\tau \in T_{n}^{w t}} A_{\tau}^{\otimes n}
$$

where $A_{\tau}^{\otimes n}$ is a copy of $A^{\otimes n}$.
The multiplication μ_{F} is defined by

$$
\mu_{F}\left(\left(x_{1}, \cdots, x_{n}\right)_{\tau},\left(x_{n+1}, \cdots, x_{n+m}\right)_{\sigma}\right)=\left(x_{1}, \cdots, x_{n+m}\right)_{\tau \vee \sigma}
$$

and the linear map is defined by the rule
(1) $\alpha_{F \mid A}=\alpha_{V}$
(2) $\alpha_{F}\left(\left(x_{1}, \cdots, x_{n}\right)_{\tau}\right)=\left(x_{1}, \cdots, x_{n}\right)_{\tau[1]}$.

Consider two-sided ideals $I^{1} \subset I^{2} \subset \cdots I^{\infty} \subset F_{H N A s(A)}$ where

$$
I^{1}=<\operatorname{Im}\left(\mu_{F} \circ\left(\mu_{F} \circ \alpha_{F}-\alpha_{F} \circ \mu_{F}\right)>\right.
$$

and $I^{n+1}=<I^{n} \bigcup \alpha\left(I^{n}\right)>, I^{\infty}=\bigcup_{n \geq 1} I^{n}$.
The quotient module

$$
F_{H A s}(A)=F_{H N A s(A)} / I^{\infty} .
$$

equipped with μ_{F} and α_{F} is the free Hom-associative algebra.

The enveloping Lie algebra is obtained by considering the two-sided ideals J^{k} where
$J^{1}=<\operatorname{Im}\left(\mu_{F} \circ\left(\mu_{F} \circ \alpha-\alpha \circ \mu\right) ;[x, y]-(x y-y x)\right.$ for $x, y \in A>$.

Hom-coalgebras, Hom-bialgebras and Hom-Hopf algebras

(1) Makhlouf A. and Silvestrov S., Hom-Lie admissible Hom-Coalgebras and Hom-Hopf Algebras, In "Generalized Lie Theory in Math., Physics and Beyond", Springer (2008),
(2) Makhlouf A. and Silvestrov S., Hom-algebras and Hom-coalgebras , Journal of Algebra and Its Applications Vol. 9 (2010)
(3) Yau, Hom-bialgebras and comodule algebras, e-print arXiv 0810.4866 (2008)
(4) Caenepeel S. and Goyvaerts I., Monoidal Hopf algebras, e-print arXiv:0907.0187 (2010).

Definition

A Hom-coalgebra is a triple (C, Δ, β) where C is a \mathbb{K}-vector space and $\Delta: C \rightarrow C \otimes C, \beta: C \rightarrow C$ are linear maps.
A Hom-coassociative coalgebra is a Hom-coalgebra satisfying

$$
\begin{equation*}
(\beta \otimes \Delta) \circ \Delta=(\Delta \otimes \beta) \circ \Delta . \tag{2}
\end{equation*}
$$

A Hom-coassociative coalgebra is said to be counital if there exists a map $\varepsilon: C \rightarrow \mathbb{K}$ satisfying

$$
\begin{equation*}
(i d \otimes \varepsilon) \circ \Delta=i d \quad \text { and } \quad(\varepsilon \otimes i d) \circ \Delta=i d \tag{3}
\end{equation*}
$$

Hom-bialgebras

Definition

A Hom-bialgebra is a 7 -uple $(B, \mu, \alpha, \eta, \Delta, \beta, \varepsilon)$ where (B1) $\quad(B, \mu, \alpha, \eta)$ is a Hom-associative algebra with unit η.
(B2) $\quad(B, \Delta, \beta, \varepsilon)$ is a Hom-coassociative coalgebra with counit ε.
(B3) The linear maps Δ and ε are compatible with the multiplication μ, that is

$$
\left\{\begin{array}{l}
\Delta\left(e_{1}\right)=e_{1} \otimes e_{1} \quad \text { where } e_{1}=\eta(1) \\
\Delta(\mu(x \otimes y))=\Delta(x) \bullet \Delta(y)=\sum_{(x)(y)} \mu\left(x^{(1)} \otimes y^{(1)}\right) \otimes \mu\left(x^{(2)} \otimes y^{(2)}\right) \\
\varepsilon\left(e_{1}\right)=1 \\
\varepsilon(\mu(x \otimes y))=\varepsilon(x) \varepsilon(y)
\end{array}\right.
$$

Definition (2)

One can consider a more restrictive definition where linear maps Δ and ε are morphisms of Hom-associative algebras that is the condition (B3) becomes equivalent to

$$
\left\{\begin{array}{l}
\Delta\left(e_{1}\right)=e_{1} \otimes e_{1} \quad \text { where } e_{1}=\eta(1) \\
\Delta(\mu(x \otimes y))=\Delta(x) \bullet \Delta(y)=\sum_{(x)(y)} \mu\left(x^{(1)} \otimes y^{(1)}\right) \otimes \mu\left(x^{(2)} \otimes y^{(2)}\right) \\
\varepsilon\left(e_{1}\right)=1 \\
\varepsilon(\mu(x \otimes y))=\varepsilon(x) \varepsilon(y) \\
\Delta(\alpha(x))=\sum_{(x)} \alpha\left(x^{(1)}\right) \otimes \alpha\left(x^{(2)}\right) \\
\varepsilon \circ \alpha(x)=\varepsilon(x)
\end{array}\right.
$$

Given a Hom-bialgebra ($B, \mu, \alpha, \eta, \Delta, \beta, \varepsilon$), we show that the vector space $\operatorname{Hom}(B, B)$ with the multiplication given by the convolution product carries a structure of Hom-associative algebra.

Proposition

Let $(B, \mu, \alpha, \eta, \Delta, \beta, \varepsilon)$ be a Hom-bialgebra. Then the algebra $\operatorname{Hom}(B, B)$ with the multiplication given by the convolution product defined by

$$
f \star g=\mu \circ(f \otimes g) \circ \Delta
$$

and the unit being $\eta \circ \epsilon$, is a unital Hom-associative algebra with the homomorphism map defined by $\gamma(f)=\alpha \circ f \circ \beta$.

Hom-Hopf algebras

A Hom-Hopf algebra over a \mathbb{K}-vector space H is given by $(H, \mu, \alpha, \eta, \Delta, \beta, \varepsilon, S)$, where $(H, \mu, \alpha, \eta, \Delta, \beta, \varepsilon)$ is a bialgebra and S is the antipode that is the inverse of the identity over H for the convolution product.

We have the following properties :

- The antipode S is unique,
- $S(\eta(1))=\eta(1)$,
- $\varepsilon \circ S=\varepsilon$.
- Let x be a primitive element $(\Delta(x)=\eta(1) \otimes x+x \otimes \eta(1))$, then $\varepsilon(x)=0$.
- If x and y are two primitive elements in \mathcal{H}. Then we have $\varepsilon(x)=0$ and the commutator $[x, y]=\mu(x \otimes y)-\mu(y \otimes x)$ is also a primitive element.
- The set of all primitive elements of \mathcal{H}, denoted by $\operatorname{Prim}(\mathcal{H})$, has a structure of Hom-Lie algebra.

Generalized Hom-bialgebras

Definition

A generalized Hom-bialgebra is a 5 -uple ($B, \mu, \alpha, \Delta, \beta$) where (GB1) $\quad(B, \mu, \alpha)$ is a Hom-associative algebra.
(GB2) $\quad(B, \Delta, \beta)$ is a Hom-coassociative coalgebra.
(GB3) The linear maps Δ is compatible with the multiplication μ, that is
$\Delta(\mu(x \otimes y))=\Delta(x) \bullet \Delta(y)=\sum_{(x)(y)} \mu\left(x^{(1)} \otimes y^{(1)}\right) \otimes \mu\left(x^{(2)} \otimes y^{(2)}\right)$

We recover generalized bialgebra introduced by Loday when α and β are the identity map.

Theorem (Twisting Principle 1)

Let (A, μ) be an associative algebra and let $\alpha: A \rightarrow A$ be an algebra endomorphism. Then $\left(A, \mu_{\alpha}, \alpha\right)$, where $\mu_{\alpha}=\alpha \circ \mu$, is a Hom-associative algebra.

Let (C, Δ) be a coalgebra and let $\beta: C \rightarrow C$ be a coalgebra endomorphism. Then $\left(C, \Delta_{\beta}, \beta\right)$, where $\Delta_{\beta}=\Delta \circ \beta$, is a Hom-coassociative coalgebra.

Let (B, μ, Δ) be a generalized bialgebra and let $\alpha: B \rightarrow B$ be a generalized bialgebra endomorphism. Then $\left(B, \mu_{\alpha}, \Delta_{\alpha}, \alpha\right)$, where $\mu_{\alpha}=\alpha \circ \mu$ and $\Delta_{\alpha}=\Delta \circ \alpha$, is a generalized Hom-bialgebra.

Theorem (Twisting Principle 2 (Yau))

Let (A, μ, α) be a multiplicative Hom-associative algebra, (C, Δ, α) be a Hom-coalgebra and (B, μ, Δ, α) be a generalized Hom-bialgebra. Then for each integer $n \geq 0$
(1) $A^{n}=\left(A, \mu^{(n)}=\alpha^{2^{n}-1} \circ \mu, \alpha^{2^{n}}\right)$, is a Hom-associative algebra.
(2) $\left(C, \Delta^{(n)}=\Delta \circ \alpha^{2^{n}-1}, \alpha^{2^{n}}\right)$, is a Hom-coassociative coalgebra.
(3) $\left(B, \mu^{(n)}=\alpha^{2^{n}-1} \circ \mu, \Delta^{(n)}=\Delta \circ \alpha^{2^{n}-1}, \alpha^{2^{n}}\right)$, is a generalized Hom-bialgebra.

Example

Let $\mathbb{K} G$ be the group-algebra over the group G. As a vector space, $\mathbb{K} G$ is generated by $\left\{e_{g}: g \in G\right\}$. If $\alpha: G \rightarrow G$ is a group homomorphism, then it can be extended to an algebra endomorphism of $\mathbb{K} G$ by setting

$$
\alpha\left(\sum_{g \in G} a_{g} e_{g}\right)=\sum_{g \in G} a_{g} \alpha\left(e_{g}\right)=\sum_{g \in G} a_{g} e_{\alpha(g)} .
$$

Consider the usual bialgebra structure on $\mathbb{K} G$ and α a generalized bialgebra morphism. Then, we define over $\mathbb{K} G$ a generalized Hom-bialgebra ($\mathbb{K} G, \mu, \alpha, \Delta, \alpha$) by setting:

$$
\begin{gathered}
\mu\left(e_{g} \otimes e_{g^{\prime}}\right)=\alpha\left(e_{g \cdot g^{\prime}}\right), \\
\Delta\left(e_{g}\right)=\alpha\left(e_{g}\right) \otimes \alpha\left(e_{g}\right)
\end{gathered}
$$

Example

Consider the polynomial algebra $\mathcal{A}=\mathbb{K}\left[\left(X_{i j}\right)\right]$ in variables $\left(X_{i j}\right)_{i, j=1, \cdots, n}$. It carries a structure of generalized bialgebra with the comultiplication defined by $\delta\left(X_{i j}\right)=\sum_{k=1}^{n} X_{i k} \otimes X_{k j}$ and $\delta(1)=1 \otimes 1$. Let α be a generalized bialgebra morphism, it is defined by n^{2} polynomials $\alpha\left(X_{i j}\right)$. We define a generalized Hom-bialgebra $(\mathcal{A}, \mu, \alpha, \Delta, \alpha)$ by

$$
\begin{aligned}
\mu(f \otimes g) & =f\left(\alpha\left(X_{11}\right), \cdots, \alpha\left(X_{n n}\right)\right) g\left(\alpha\left(X_{11}\right), \cdots, \alpha\left(X_{n n}\right)\right), \\
\Delta\left(X_{i j}\right) & =\sum_{k=1}^{n} \alpha\left(X_{i k}\right) \otimes \alpha\left(X_{k j}\right), \\
\Delta(1) & =\alpha(1) \otimes \alpha(1) .
\end{aligned}
$$

Example

Let X be a set and consider the set of non-commutative polynomials $\mathcal{A}=\mathbb{K}\langle X\rangle$. It carries a generalized bialgebra structure with a comultiplication defined for $x \in X$ by $\delta(x)=1 \otimes x+x \otimes 1$ and $\delta(1)=1 \otimes 1$. Let α be a generalized bialgebra morphism. We define a generalized Hom-bialgebra $(\mathcal{A}, \mu, \alpha, \Delta, \alpha)$ by

$$
\begin{aligned}
\mu(f \otimes g) & =f(\alpha(X)) g(\alpha(X)), \\
\Delta(x) & =\alpha(1) \otimes \alpha(x)+\alpha(x) \otimes \alpha(1) \\
\Delta(1) & =\alpha(1) \otimes \alpha(1)
\end{aligned}
$$

Representations of Hom-algebras

Let $\left(A, \mu_{A}, \alpha_{A}\right)$ be a Hom-associative algebra.
An A-module is a Hom-module $\left(M, \alpha_{M}\right)$ together with a linear map $\rho: A \otimes M \rightarrow M$, such that

$$
\begin{array}{rll}
\alpha_{M} \circ \rho & =\rho \circ\left(\alpha_{A} \otimes \alpha_{M}\right) & \text { (multiplicativity) } \\
\rho \circ\left(\alpha_{A} \otimes \rho\right) & =\rho \circ\left(\mu_{A} \otimes \alpha_{M}\right) & \text { (Hom-associativity) }
\end{array}
$$

A morphism $f:\left(M, \alpha_{M}\right) \rightarrow\left(N, \alpha_{N}\right)$ of A-modules is a morphism of the underlying Hom-modules that is compatible with the structure maps, in the sense that

$$
f \circ \rho_{M}=\rho_{N} \circ\left(i d_{A} \circ f\right) .
$$

Multiplicativity is equivalent to ρ being a morphism of Hom-modules.

Let $\left(C, \Delta_{C}, \alpha_{C}\right)$ be a Hom-coassociative coalgebra.
A C-comodule is a Hom-module (M, α_{M}) together with a linear map $\rho: M \rightarrow C \otimes M$, such that

$$
\begin{array}{rll}
\rho \circ \alpha_{M} & =\left(\alpha_{C} \otimes \alpha_{M}\right) \circ \rho & \text { (comultiplicativity) } \\
\rho \circ\left(\alpha_{A} \otimes \rho\right) & =\rho \circ\left(\Delta_{C} \otimes \alpha_{M}\right) & \text { (Hom-coassociativity) }
\end{array}
$$

A morphism $f:\left(M, \alpha_{M}\right) \rightarrow\left(N, \alpha_{N}\right)$ of C-comodules is a morphism of the underlying Hom-modules that is compatible with the structure maps, in the sense that

$$
\left(i d_{C} \circ f\right) \circ \rho_{M}=\rho_{N} \circ f
$$

Twisting principle (Yau)

Let $\left(A, \mu_{A}, \alpha_{A}\right)$ be a Hom-associative algebra (multiplicative) and (M, α_{M}) be an A-module with structure map $\rho: A \otimes M \rightarrow M$. For each integer $n, k \geq 0$ define the map

$$
\rho^{n, k}=\alpha_{M}^{2^{k}-1} \circ \rho \circ\left(\alpha_{A}^{n} \otimes I d_{M}\right): A \otimes M \rightarrow M .
$$

Then each $\rho^{n, k}$ gives the Hom-module $M^{k}=\left(M, \alpha_{M}^{2^{k}}\right)$ the structure of an A^{k}-module, where A^{k} is the k-derived Hom-associative algebra $\left(A, \mu_{A}^{(k)}=\alpha_{A}^{2^{k}-1} \circ \mu_{A}, \alpha_{A}^{2^{k}}\right)$. Note that $\rho^{0,0}=\rho, \rho^{1,0}=\rho \circ\left(\alpha_{A} \otimes I d_{M}\right), \rho^{0,1}=\alpha_{M} \circ \rho$, $\rho^{n+1,0}=\rho^{n, 0} \circ\left(\alpha_{A} \otimes I d_{M}\right)$ and $\rho^{0, k+1}=\alpha_{M}^{2^{k}-1} \circ \rho$.
The A^{k}-module M^{k} with the structure $\rho^{n, k}$ is called the (n, k)-derived module of M.

Twisting principle (2)

Let $\left(A, \mu_{A}\right)$ be an associative algebra and M be an A-module (classical sense) with structure map $\rho: A \otimes M \rightarrow M$. Suppose $\alpha_{A}: A \rightarrow A$ is an algebra morphism and $\alpha_{M}: M \rightarrow M$ is a linear self-map such that

$$
\alpha_{M} \circ \rho=\rho \circ\left(\alpha_{\boldsymbol{A}} \otimes \alpha_{M}\right)
$$

For any integer $n, k \geq 0$ define the map

$$
\rho_{\alpha}^{n, k}=\alpha_{M}^{2^{k}} \circ \rho \circ\left(\alpha_{A}^{n} \otimes I d_{M}\right): A \otimes M \rightarrow M
$$

Then each $\rho^{n, k}$ gives the Hom-module $M_{\alpha}^{k}=\left(M, \alpha_{M}^{2^{k}}\right)$ the structure of an A_{β}-module, where $\beta=\alpha_{A}^{2^{k}}$ and A_{β} is the Hom-associative algebra $\left(A, \mu_{\beta}=\beta \circ \mu_{A}, \beta\right)$.

Hom-quantum group: $\mathcal{U}_{q}\left(\mathfrak{S L}_{2}\right)_{\alpha}$

Consider the quantum group $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ generated as usual by $E, F, K^{ \pm 1}$ satisfying the relations

$$
\begin{array}{r}
K K^{-1}=\mathbf{1}=K^{-1} K, \\
K E=q^{2} E K, K F=q^{-2} F K, \\
E F-F E=\frac{K-K^{-1}}{q-q^{-1}} .
\end{array}
$$

and the bialgebra morphism $\alpha_{\lambda}: \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ defined by

$$
\alpha_{\lambda}(E)=\lambda E, \alpha_{\lambda}(F)=\lambda^{-1} F, \alpha_{\lambda}\left(K^{ \pm 1}\right)=K^{ \pm 1}
$$

Then $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)_{\alpha}=\left(\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right), \mu_{\alpha_{\lambda}}, \Delta_{\alpha_{\lambda}}, \alpha_{\lambda}\right)$ is a Hom-bialgebra.

Finite-dimensional modules over $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)_{\alpha}$

Assume $q \in \mathbb{C}-\{0\}$ is not a root of unity.
For each integer $n \geq 0$ and $\epsilon \in\{ \pm 1\}$, there is an $(n+1)$-dimensional simple $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module $V(\epsilon, n)$. Let $\left\{v_{i}\right\}_{1 \leq i \leq n}$ be a basis of $V(\epsilon, n)$. The action is defined by

$$
K v_{i}=\epsilon q^{n-2 i} v_{i}, E v_{i}=\epsilon[n-i+1]_{q} v_{i-1}, \quad F v_{i}=[i+1]_{q} v_{i+1} .
$$

where $v_{-1}=0=v_{n+1}$.
Pick any scalar $\xi \in \mathbb{C}$ and define $\alpha_{\xi}: V(\epsilon, n) \rightarrow V(\epsilon, n)$ by setting

$$
\alpha_{\xi}\left(v_{i}\right)=\xi \lambda^{-i} v_{i}, \quad \forall i
$$

Then

$$
\alpha_{\xi}(U v)=\alpha_{\lambda}(U) \alpha_{\xi}(v) \quad \forall U \in \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right), v \in V(\epsilon, n) .
$$

Finite-dimensional modules over $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)_{\alpha}$ (2)

By twisting principle, one constructs an uncountable, four parameter family $V(\epsilon, n)_{\alpha}^{r, k}$ of $(n+1)$-dimensional derived $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)_{\beta^{\prime}}$-module, where $\beta=\alpha_{\lambda}^{2^{k}}=\alpha_{\lambda^{k}}$ and the structure map is given for any $r, k \geq 0$ by

$$
\begin{array}{r}
\rho_{\alpha}^{n, k}\left(K^{ \pm 1} \otimes v_{i}\right)=\left(\epsilon q^{n-2 i}\right)^{ \pm 1}\left(\xi \lambda^{-i}\right)^{2^{k}} v_{i} \\
\rho_{\alpha}^{n, k}\left(E \otimes v_{i}\right)=\epsilon[n-i+1]_{q} \xi^{2^{k}} \lambda^{r-2^{k}(i-1)} v_{i-1} \\
\rho_{\alpha}^{n, k}\left(F \otimes v_{i}\right)=\epsilon[i+1]_{q} \xi^{2^{k}} \lambda^{-r-2^{k}(i+1)} v_{i+1}
\end{array}
$$

Classical case corresponds to $\lambda=\xi=1$.

Module Hom-algebras

Definition

Let $\left(H, \mu, \Delta_{H}, \alpha_{H}\right)$ be a Hom-bialgebra and $\left(A, \mu_{A}, \alpha_{A}\right)$ be a Hom-associative algebra.
An H-module Hom-algebra structure on A consists of an H-module structure $\rho: H \otimes A \rightarrow A$ such that the module Hom-algebra axiom

$$
\alpha_{H}^{2}(x)(a b)=\sum_{(x)}\left(x_{(1)} a\right)\left(x_{(2)} b\right)
$$

is satisfied for all $x \in H$ and $a, b \in A$, where $\rho(x \otimes a)=x a$.
In element-free form the Hom-algebra axiom is

$$
\rho \circ\left(\alpha_{H}^{2} \otimes \mu_{A}\right)=\mu_{A} \circ \rho^{\otimes 2} \circ(23) \circ\left(\Delta_{H} \otimes i d_{A} \otimes i d_{A}\right) .
$$

Remark

Let $\left(H, \mu, \Delta_{H}, \alpha_{H}\right)$ be a Hom-bialgebra and let $\left(M, \alpha_{M}\right)$ and $\left(N, \alpha_{N}\right)$ be H-modules with structure maps ρ_{M} and ρ_{N}. Then $M \otimes N$ is an H-module with structure map
$\rho_{M N}=\left(\rho_{M} \otimes \rho_{N}\right) \circ(23) \circ\left(\Delta \otimes I d_{M} \otimes I d_{N}\right): H \otimes M \otimes N \rightarrow M \otimes N$

Theorem
Let $\left(H, \mu_{H}, \Delta_{H}, \alpha_{H}\right)$ be a Hom-bialgebra, $\left(A, \mu_{A}, \alpha_{A}\right)$ be a Hom-associative algebra and $\rho: H \otimes A \rightarrow A$ be an H-module structure on A
Then the module Hom-algebra axiom is satisfied if and only if $\mu_{A}: A \otimes A \rightarrow A$ is a morphism of H-modules, in which $A \otimes A$ and A are given the H-module structure maps $\rho_{A A}$ and $\rho^{2,0}$, respectively.

By twisting principle (2), every module Hom-algebra gives rise to a derived double-sequence of module Hom-algebras.
Twisting principle (1) for module Hom-algebras:
Theorem
Let $\left(H, \mu_{H}, \Delta_{H}\right)$ be a bialgebra, $\left(A, \mu_{A}\right)$ be an associative algebra and $\rho: H \otimes A \rightarrow A$ be an H-module structure on A. Suppose $\alpha_{H}: H \rightarrow H$ is a bialgebra morphism and $\alpha_{A}: A \rightarrow A$ is an algebra morphism such that $\alpha_{A} \circ \rho=\rho \circ\left(\alpha_{H} \otimes \alpha_{A}\right)$.
For any integer $n, k \geq 0$ define the map

$$
\rho_{\alpha}^{n, k}=\alpha_{A}^{2^{k}} \circ \rho \circ\left(\alpha_{H}^{n} \otimes I d_{A}\right): H \otimes A \rightarrow A .
$$

Then each $\rho^{n, k}$ gives A_{β} the structure of an H_{γ}-module Hom-algebra, where $\beta=\alpha_{A}^{2^{k}}, \gamma=\alpha_{H}^{2^{k}}, A_{\beta}$ is the Hom-associative algebra $\left(A, \mu_{\beta}=\beta \circ \mu_{A}, \beta\right)$ and H_{γ} is the Hom-bialgebra
$\left(H, \mu_{\gamma}=\gamma \circ \mu_{H}, \Delta_{\gamma}=\Delta \circ \gamma, \gamma\right)$.

Hom-quantum plane

Assume $q \in \mathbb{C}-\{0\}$ is not a root of unity. The $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module algebra structure on the quantum plane

$$
\mathbb{A}_{q}^{2 \mid 0}=\mathbb{K}<x, y>/(y x-q x y)
$$

is defined using the following quantum partial derivatives

$$
\partial_{q, x}\left(x^{n} y^{m}\right)=[m]_{q} x^{m-1} y^{n} \quad \text { and } \quad \partial_{q, y}\left(x^{n} y^{m}\right)=[n]_{q} x^{m} y^{n-1}
$$

and for $P=P(x, y) \in \mathbb{A}_{q}^{2 \mid 0}$ we define

$$
\sigma_{x}(P)=P(q x, y) \quad \text { and } \quad \sigma_{y}(P)=P(x, q y)
$$

$$
\rho: \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right) \otimes \mathbb{A}_{q}^{2 \mid 0} \rightarrow \mathbb{A}_{q}^{2 \mid 0}
$$

is determined by

$$
\begin{array}{r}
E P=x\left(\partial_{q, y} P\right), F P=\left(\partial_{q, x} P\right) y, \\
K P=\sigma_{x} \sigma_{y}^{-1}(P)=P\left(q x, q^{-1} y\right), \\
K^{-1} P=\sigma_{y} \sigma_{x}^{-1}(P)=P\left(q^{-1} x, q y\right)
\end{array}
$$

The bialgebra morphism $\alpha_{\lambda}: \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ defined by

$$
\alpha_{\lambda}(E)=\lambda E, \alpha_{\lambda}(F)=\lambda^{-1} F, \alpha_{\lambda}\left(K^{ \pm 1}\right)=K^{ \pm 1}
$$

and the algebra morphism $\alpha: \mathbb{A}_{q}^{2 \mid 0} \rightarrow \mathbb{A}_{q}^{2 \mid 0}$ defined

$$
\alpha(x)=\xi x \quad \text { and } \quad \alpha(y)=\xi \lambda^{-1} y
$$

satisfy

$$
\alpha \circ \rho=\rho \circ\left(\alpha_{\lambda} \otimes \alpha\right)
$$

By the Theorem, for any integer $I, k \geq 0$ the map

$$
\rho_{\alpha}^{I, k}=\alpha^{2^{k}} \circ \rho \circ\left(\alpha_{\lambda}^{\prime} \otimes I d\right): \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right) \otimes \mathbb{A}_{q}^{2 \mid 0} \rightarrow \mathbb{A}_{q}^{2 \mid 0}
$$

gives the Hom-quantum-plane $\left(\mathbb{A}_{q}^{2 \mid 0}\right)_{\beta}$ the structure of a $\left(\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)\right)_{\gamma}$-module. We have

$$
\begin{array}{r}
\rho_{\alpha}^{I, k}\left(E \otimes x^{m} y^{n}\right)=[n]_{q} \xi^{2^{k}(m+n)} \lambda^{I-2^{k}(n-1)} x^{m+1} y^{n-1} \\
\rho_{\alpha}^{I, k}\left(F \otimes x^{m} y^{n}\right)=[m]_{q} \xi^{2^{k}(m+n)} \lambda^{-I-2^{k}(n+1)} x^{m-1} y^{n+1} \\
\rho_{\alpha}^{I, k}\left(K^{ \pm 1} \otimes P\right)=P\left(q^{ \pm 1} \xi^{2^{k}} x, q^{\mp 1}\left(\xi \lambda^{-1}\right)^{2^{k}} y\right)
\end{array}
$$

Twistings

Drinfeld's: gauge transformations of quasi-Hopf algebras
Giaquinto-Zhang: twists of algebraic structures based on action of a bialgebra.
Definition
Let $\left(B, \mu_{B}, \Delta_{B}, \mathbf{1}_{B}, \varepsilon_{B}\right)$ be a bialgebra.
An element $F \in B \otimes B$ is a twisting element (based on B) if
(1) $\left(\varepsilon_{B} \otimes I d\right) F=1 \otimes 1=\left(I d \otimes \varepsilon_{B}\right) F$,
(2) $[(\Delta \otimes I d)(F)](F \otimes 1)=[(I d \otimes \Delta)(F)](1 \otimes F)$.

Theorem (Giaquinto-Zhang)

Let $F \in B \otimes B$ be a twisting element.
(1) If A is a left B-module algebra, then $A_{F}=\left(A, \mu_{A} \circ F_{l}, \mathbf{1}_{A}\right)$ is an associative algebra.
(2) If C is a right B-module coalgebra, then
$C_{F}=\left(C, F_{I} \circ \Delta_{C}, \varepsilon_{C}\right)$ is an coassociative algebra.

Hom-Twistings

Definition

Let $\left(B, \mu_{B}, \Delta_{B}, \mathbf{1}_{B}, \varepsilon_{B}, \alpha_{B}\right)$ be a Hom-bialgebra where α_{B} is invertible.
An element $F \in B \otimes B$ is a Hom-twisting element (based on B) if

$$
\begin{aligned}
& {\left[\left(\alpha_{B}^{-1} \otimes \alpha_{B}^{-1} \otimes I d\right)(\Delta \otimes I d)(F)\right]\left[\left(\alpha_{B}^{2} \otimes \alpha_{B}^{2} \otimes I d\right)(F \otimes \mathbf{1})\right]=} \\
& \quad\left[\left(I d \otimes \alpha_{B}^{-1} \otimes \alpha_{B}^{-1}\right)(\mathbf{1} \otimes \Delta)(F)\right]\left[\left(I d \otimes \alpha_{B}^{2} \otimes \alpha_{B}^{2}\right)(\mathbf{1} \otimes F)\right] .
\end{aligned}
$$

Theorem

Let $F \in B \otimes B$ be a Hom-twisting element. Let $\left(A, \mu_{A}, \mathbf{1}_{A}, \alpha_{A}\right)$ be a Hom-associative algebra, where α_{A} is surjective.
Assume that $b \mathbf{1}_{B}=\mathbf{1}_{B} b=\alpha_{B}(b)$ and a $\mathbf{1}_{A}=\mathbf{1}_{A} a=\alpha_{A}(a)$ If A is a left B-module Hom-algebra, where $\mathbf{1}_{B} a=\alpha_{A}(a)$, then

$$
A_{F}=\left(A, \mu_{A} \circ\left[\left(\alpha_{B}^{2} \otimes \alpha_{B}^{2}\right) F\right]_{I}, \alpha_{A}\right)
$$

is a Hom-associative algebra.

Let $\left(B, \mu_{B}, \Delta_{B}, \mathbf{1}_{B}, \varepsilon_{B}\right)$ be a bialgebra. and $F \in B \otimes B$ a twisting element.
Let $\left(A, \mu_{A}, \mathbf{1}_{A}\right)$ be a left B-module algebra.
Suppose $\alpha_{B}: B \rightarrow B$ is a bialgebra morphism which is involutive and $\alpha_{A}: A \rightarrow A$ is an algebra morphism such that

$$
\alpha_{A} \circ \rho=\rho \circ\left(\alpha_{H} \otimes \alpha_{A}\right)
$$

Then F is a twisting element of the Hom-bialgebra $B_{\alpha_{B}}$ and the Hom-associative algebra $A_{\alpha_{A}}$ deforms to $\left(A_{\alpha_{A}}\right)_{F}$

Hom-Yang-Baxter Equation

- D. Yau Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A 42 (2009).
The Hom-Yang-Baxter equation and Hom-Lie algebras, arXiv:0905.1887v2, (2009).
The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras, arXiv:0905.1890v1, (2009).
Hom-quantum groups I:quasi-triangular Hom-bialgebras, arXiv:0906.4128v1, (2009).
Hom-quantum groups II:cobraided Hom-bialgebras and Hom-quantum geometry, arXiv:0907.1880v1, (2009).
Hom-quantum groups III:representations and Module Hom-algebras, arXiv:0907.1880v1, (2009).
The Hom-Yang-Baxter Equation (HYBE) is

$$
(\alpha \otimes B) \circ(B \otimes \alpha) \circ(\alpha \otimes B)=(B \otimes \alpha) \circ(\alpha \otimes B) \circ(B \otimes \alpha)
$$

- Each solution of the HYBE can be extended to operators that satisfy the braid relations (Yau).
- Each quasi-triangular Hom-bialgebra comes with a solution of the quantum Hom-Yang-Baxter equation (Yau).
- Hochschild type cohomology of multipl. Hom-ass. algebras (Ammar, Ejbehi, Makhlouf, Silvestrov)
- Hochschild type cohomology of multipl. Hom-coassociative coalgebras (Dekkar, Makhlouf)

