Generalized Hopf algebras by deforming identities

Abdenacer Makhlouf (Mulhouse University, France) abdenacer.makhlouf@uha.fr

The purpose of my talk is to summarize present recent developments and provide some key constructions of Hom-associative and Hom-Hopf algebraic structures. The main feature of Hom-algebras is that the classical identities are twisted by a homomorphism.

The Hom-Lie algebras arise naturally in discretizations and deformations of vector fields and differential calculus, to describe the structures on some q-deformations of the Witt and the Virasoro algebras. They were developed in a general framework by Larsson and Silvestrov. The Hom-associative algebras, Hom-coassociative coalgebras and Hom-Hopf algebra were introduced by Silvestrov and myself. Recently, the Hom-type algebras were intensively investigated. A categorical point of view were discussed by Caenepeel and Goyvaerts. Also Yau showed that the enveloping algebra of a Hom-Lie algebra may be endowed by a structure of Hom-bialgebra.

Generalized Bialgebras and Hopf algebras by deforming identities

Abdenacer MAKHLOUF

LMIA Mulhouse, France

Almeria, July 2011

(ロ) (同) (E) (E) (E)

Plan

- Provide the second s
- 3 Representations of Hom-algebras
- 4 Module Hom-algebras
- 5 Hom-Twistings
- 6 Some other results

(ロ) (同) (E) (E) (E)

Paradigmatic example : quasi-deformation of $\mathfrak{sl}_2(\mathbb{K})$

$$[H, E] = 2E,$$
 $[H, F] = -2F,$ $[E, F] = H.$

In terms of first order differential operators acting on some vector space of functions in the variable t:

$$E\mapsto\partial, \qquad H\mapsto-2t\partial, \qquad F\mapsto-t^2\partial.$$

To **quasi-deform** $\mathfrak{sl}_2(\mathbb{K})$ means that we replace ∂ by ∂_{σ} which is a σ -derivation.

Let \mathcal{A} be a commutative, associative \mathbb{K} -algebra with unity 1. A σ -derivation on \mathcal{A} is a \mathbb{K} -linear map $\partial_{\sigma} : \mathcal{A} \to \mathcal{A}$ such that a σ -Leibniz rule holds:

$$\partial_{\sigma}(ab) = \partial_{\sigma}(a)b + \sigma(a)\partial_{\sigma}(b).$$

Example : Jackson *q*-derivation operator on $\mathcal{A} = \mathbb{K}[t]$

$$\partial_\sigma : P(t)
ightarrow (D_q P)(t) = rac{P(qt) - P(t)}{qt - t},$$

here $\sigma P(t) := P(qt)$. The operator satisfies

 $(D_q(PQ))(t) = (D_qP)(t)Q(t) + P(qt)(D_qQ)(t), \quad \sigma$ -Leibniz rule

Assume $\sigma(1) = 1$, $\sigma(t) = qt$, $\partial_{\sigma}(1) = 0$ and $\partial_{\sigma}(t) = t$ Then : $\partial_{\sigma}(t^2) = \partial_{\sigma}(t \cdot t) = \sigma(t)\partial_{\sigma}(t) + \partial_{\sigma}(t)t = (\sigma(t) + t)\partial_{\sigma}(t)$. The brackets become

$$egin{aligned} [H,F]_{\sigma}&=2\sigma(t)t\partial_{\sigma}(t)\partial_{\sigma}=2qt^{2}\partial_{\sigma}=-2qF\ [H,E]_{\sigma}&=2\partial_{\sigma}(t)\partial_{\sigma}=2E\ [E,F]_{\sigma}&=-(\sigma(t)+t)\partial_{\sigma}(t)\partial_{\sigma}=-(q+1)t\partial_{\sigma}=rac{1}{2}(1+q)H. \end{aligned}$$

The new bracket satisfies

$$\bigcirc_{\mathbf{a},\mathbf{b},\mathbf{c}} \ [\sigma(\mathbf{a}) \cdot \partial_{\sigma}, [\mathbf{b} \cdot \partial_{\sigma}, \mathbf{c} \cdot \partial_{\sigma}]_{\sigma}]_{\sigma} = \mathbf{0}.$$
(1)

Definition A **Hom-Lie algebra** is a triple $(V, [\cdot, \cdot], \alpha)$ satisfying

$$[x, y] = -[y, x] \quad (skewsymmetry) \\ \bigcirc_{x,y,z} [\alpha(x), [y, z]] = 0 \quad (Hom-Jacobi condition)$$

for all $x, y, z \in V$, where $\bigcirc_{x,y,z}$ cyclic summation.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 - つへで

• Makhlouf and Silvestrov, Hom-algebra structures, Journal of Generalized Lie Theory and Applications, vol **2** (2) (2008)

Definition

A **Hom-associative algebra** is a triple (A, μ, α) consisting of a vector space A, a bilinear map $\mu : A \times A \to A$ and a homomorphism $\alpha : A \to A$ satisfying

$$\mu(\alpha(x),\mu(y,z))=\mu(\mu(x,y),\alpha(z))$$

A linear map $\phi : A \rightarrow A'$ is a morphism of Hom-associative algebras if

$$\mu' \circ (\phi \otimes \phi) = \phi \circ \mu$$
 and $\phi \circ \alpha = \alpha' \circ \phi$.

A Hom-associative algebra is said to be weakly unital if there exists a unit ${\bf 1}$ such that

$$\mu(\mathbf{x},\mathbf{1})=\mu(\mathbf{1},\mathbf{x})=\alpha(\mathbf{x}).$$

A **Hom-module** is a pair (M, α_M) consisting of a K-module and a linear self-map $\alpha_M : M \to M$. A morphism of Hom-modules $f : (M, \alpha_M) \to (N, \alpha_N)$ is a morphism of the underlying K-modules that is compatible with the twisting maps, in the sense that

$$\alpha_N \circ f = f \circ \alpha_M.$$

The tensor product of two Hom-modules M and N is the pair $(M \otimes N, \alpha_M \otimes \alpha_N)$.

A **Hom-Nonassociative algebra** or a **Hom-algebra** is a triple (A, μ_A, α_A) in which (A, α_A) is a Hom-module and $\mu_A : A \otimes A \rightarrow A$ is a multiplication. A morphism of Hom-algebras and The tensor product of two Hom-algebras are as we expect.

(ロ) (同) (E) (E) (E)

Hom-coalgebras, Hom-bialgebras and Hom-Hopf algebras Representations of Hom-algebras Module Hom-algebras Hom-Twistings Some other results

Set

- HomMod : category of Hom-modules,
- 2 HNA : category of Hom-Nonassociative algebras,
- **③** HA : category of associative algebras (multiplicative),
- HL : category of Hom-Lie algebras (multiplicative)

There is the following adjoint pairs of functors in which F_0 , F_1 , F_2 are $F_2 \circ F_1 \circ F_0$ are the left adjoint

$$Mod \xrightarrow{F_0} HomMod \xrightarrow{F_1} HNA \xrightarrow{F_2} HLie$$
$$\bigcup U U U U_{HLie} HL$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Hom-coalgebras, Hom-bialgebras and Hom-Hopf algebras Representations of Hom-algebras Module Hom-algebras Hom-Twistings Some other results

Free Hom-associative algebra and enveloping algebra

• D. Yau, Enveloping algebras of Lie algebras, J. Gen. Lie Theory Appl 2 (2008)

Let (A, μ, α) be a Hom-Nonassociative algebra (Hom-algebra). The products are defined using the set of weighted trees (T_n^{wt}) . Consider the map

$$\mathbb{K}[T_n^{wt}] \otimes A^{\otimes n} \longrightarrow A$$
$$(\tau; x_1, \cdots, x_n) \longrightarrow (x_1, \cdots, x_n)_{\tau}$$

inductively via the rules

Hom-coalgebras, Hom-bialgebras and Hom-Hopf algebras Representations of Hom-algebras Module Hom-algebras Hom-Twistings Some other results

The free Hom-Nonassociative algebra is

$$F_{HNAs}(A) = \oplus_{n \geq 1} \oplus_{\tau \in T_n^{wt}} A_{\tau}^{\otimes n}$$

where $A_{\tau}^{\otimes n}$ is a copy of $A^{\otimes n}$. The multiplication μ_F is defined by

$$\mu_{\mathcal{F}}((x_1,\cdots,x_n)_{\tau},(x_{n+1},\cdots,x_{n+m})_{\sigma})=(x_1,\cdots,x_{n+m})_{\tau\vee\sigma}$$

and the linear map is defined by the rule

•
$$\alpha_{F|A} = \alpha_V$$

• $\alpha_F((x_1, \cdots, x_n)_{\tau}) = (x_1, \cdots, x_n)_{\tau[1]}$

(ロ) (同) (E) (E) (E)

Hom-coalgebras, Hom-bialgebras and Hom-Hopf algebras Representations of Hom-algebras Module Hom-algebras Hom-Twistings Some other results

Consider two-sided ideals $I^1 \subset I^2 \subset \cdots I^\infty \subset F_{HNAs(A)}$ where

$$I^1 = < Im(\mu_F \circ (\mu_F \circ \alpha_F - \alpha_F \circ \mu_F) >$$

and $I^{n+1} = \langle I^n \bigcup \alpha(I^n) \rangle$, $I^{\infty} = \bigcup_{n \ge 1} I^n$. The quotient module

$$F_{HAs}(A) = F_{HNAs(A)}/I^{\infty}.$$

equipped with μ_F and α_F is the free Hom-associative algebra.

The **enveloping Lie algebra** is obtained by considering the two-sided ideals J^k where

$$J^1 = < \mathit{Im}(\mu_{\mathit{F}} \circ (\mu_{\mathit{F}} \circ lpha - lpha \circ \mu); [x,y] - (xy - yx) ext{ for } x,y \in \mathit{A} > A$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Hom-coalgebras, Hom-bialgebras and Hom-Hopf algebras

(1) Makhlouf A. and Silvestrov S., Hom-Lie admissible Hom-Coalgebras and Hom-Hopf Algebras, In "Generalized Lie Theory in Math., Physics and Beyond", Springer (2008),

(2) Makhlouf A. and Silvestrov S., Hom-algebras and Hom-coalgebras, Journal of Algebra and Its Applications Vol. **9** (2010)

(3) Yau, Hom-bialgebras and comodule algebras, e-print arXiv 0810.4866 (2008)

(4) Caenepeel S. and Goyvaerts I., Monoidal Hopf algebras, e-print arXiv:0907.0187 (2010).

イロト イポト イヨト イヨト 二日

Definition

A Hom-coalgebra is a triple (C, Δ, β) where C is a \mathbb{K} -vector space and $\Delta : C \to C \otimes C$, $\beta : C \to C$ are linear maps.

A Hom-coassociative coalgebra is a Hom-coalgebra satisfying

$$(\beta \otimes \Delta) \circ \Delta = (\Delta \otimes \beta) \circ \Delta.$$
 (2)

A Hom-coassociative coalgebra is said to be *counital* if there exists a map $\varepsilon : C \to \mathbb{K}$ satisfying

$$(id \otimes \varepsilon) \circ \Delta = id$$
 and $(\varepsilon \otimes id) \circ \Delta = id$ (3)

(ロ) (同) (E) (E) (E)

Hom-bialgebras

Definition

A *Hom-bialgebra* is a 7-uple $(B, \mu, \alpha, \eta, \Delta, \beta, \varepsilon)$ where

(B1) (B, μ, α, η) is a Hom-associative algebra with unit η . (B2) $(B, \Delta, \beta, \varepsilon)$ is a Hom-coassociative coalgebra with counit ε .

(B3) The linear maps Δ and ε are compatible with the multiplication μ , that is

$$\begin{cases} \Delta(e_1) = e_1 \otimes e_1 & \text{where } e_1 = \eta(1) \\ \Delta(\mu(x \otimes y)) = \Delta(x) \bullet \Delta(y) = \sum_{(x)(y)} \mu(x^{(1)} \otimes y^{(1)}) \otimes \mu(x^{(2)} \otimes y^{(2)}) \\ \varepsilon(e_1) = 1 \\ \varepsilon(\mu(x \otimes y)) = \varepsilon(x) \varepsilon(y) \end{cases}$$

Definition (2)

One can consider a more restrictive definition where linear maps Δ and ε are morphisms of Hom-associative algebras that is the condition (B3) becomes equivalent to

$$\begin{cases} \Delta(e_1) = e_1 \otimes e_1 & \text{where } e_1 = \eta(1) \\ \Delta(\mu(x \otimes y)) = \Delta(x) \bullet \Delta(y) = \sum_{(x)(y)} \mu(x^{(1)} \otimes y^{(1)}) \otimes \mu(x^{(2)} \otimes y^{(2)}) \\ \varepsilon(e_1) = 1 \\ \varepsilon(\mu(x \otimes y)) = \varepsilon(x) \varepsilon(y) \\ \Delta(\alpha(x)) = \sum_{(x)} \alpha(x^{(1)}) \otimes \alpha(x^{(2)}) \\ \varepsilon \circ \alpha(x) = \varepsilon(x) \end{cases}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 - 釣 < ⊙

Given a Hom-bialgebra $(B, \mu, \alpha, \eta, \Delta, \beta, \varepsilon)$, we show that the vector space Hom(B, B) with the multiplication given by the convolution product carries a structure of Hom-associative algebra.

Proposition

Let $(B, \mu, \alpha, \eta, \Delta, \beta, \varepsilon)$ be a Hom-bialgebra. Then the algebra Hom (B, B) with the multiplication given by the convolution product defined by

$$f \star g = \mu \circ (f \otimes g) \circ \Delta$$

and the unit being $\eta \circ \epsilon$, is a unital Hom-associative algebra with the homomorphism map defined by $\gamma(f) = \alpha \circ f \circ \beta$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Hom-Hopf algebras

A Hom-Hopf algebra over a \mathbb{K} -vector space H is given by $(H, \mu, \alpha, \eta, \Delta, \beta, \varepsilon, S)$, where $(H, \mu, \alpha, \eta, \Delta, \beta, \varepsilon)$ is a bialgebra and S is the antipode that is the inverse of the identity over H for the convolution product.

(ロ) (同) (E) (E) (E)

We have the following properties :

- The antipode S is unique,
- $S(\eta(1)) = \eta(1)$,
- $\varepsilon \circ S = \varepsilon$.
- Let x be a primitive element (Δ(x) = η(1) ⊗ x + x ⊗ η(1)), then ε(x) = 0.
- If x and y are two primitive elements in H. Then we have
 ε(x) = 0 and the commutator [x, y] = μ(x ⊗ y) − μ(y ⊗ x) is also a primitive element.
- The set of all primitive elements of \mathcal{H} , denoted by $Prim(\mathcal{H})$, has a structure of Hom-Lie algebra.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Generalized Hom-bialgebras

Definition

A generalized Hom-bialgebra is a 5-uple $(B, \mu, \alpha, \Delta, \beta)$ where (GB1) (B, μ, α) is a Hom-associative algebra. (GB2) (B, Δ, β) is a Hom-coassociative coalgebra. (GB3) The linear maps Δ is compatible with the multiplication μ , that is

$$\Delta\left(\mu(x\otimes y)\right) = \Delta\left(x\right) \bullet \Delta\left(y\right) = \sum_{(x)(y)} \mu(x^{(1)} \otimes y^{(1)}) \otimes \mu(x^{(2)} \otimes y^{(2)})$$

We recover generalized bialgebra introduced by Loday when α and β are the identity map.

(ロ) (同) (E) (E) (E)

Theorem (Twisting Principle 1)

Let (A, μ) be an associative algebra and let $\alpha : A \to A$ be an algebra endomorphism. Then $(A, \mu_{\alpha}, \alpha)$, where $\mu_{\alpha} = \alpha \circ \mu$, is a Hom-associative algebra.

Let (C, Δ) be a coalgebra and let $\beta : C \to C$ be a coalgebra endomorphism. Then $(C, \Delta_{\beta}, \beta)$, where $\Delta_{\beta} = \Delta \circ \beta$, is a Hom-coassociative coalgebra.

Let (B, μ, Δ) be a generalized bialgebra and let $\alpha : B \to B$ be a generalized bialgebra endomorphism. Then $(B, \mu_{\alpha}, \Delta_{\alpha}, \alpha)$, where $\mu_{\alpha} = \alpha \circ \mu$ and $\Delta_{\alpha} = \Delta \circ \alpha$, is a generalized Hom-bialgebra.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Theorem (Twisting Principle 2 (Yau))

Let (A, μ, α) be a multiplicative Hom-associative algebra, (C, Δ, α) be a Hom-coalgebra and $(B, \mu, \Delta, , \alpha)$ be a generalized Hom-bialgebra. Then for each integer $n \ge 0$

- $A^n = (A, \mu^{(n)} = \alpha^{2^n 1} \circ \mu, \alpha^{2^n})$, is a Hom-associative algebra.
- 3 $(C, \Delta^{(n)} = \Delta \circ \alpha^{2^n-1}, \alpha^{2^n})$, is a Hom-coassociative coalgebra.
- 3 $(B, \mu^{(n)} = \alpha^{2^n-1} \circ \mu, \Delta^{(n)} = \Delta \circ \alpha^{2^n-1}, \alpha^{2^n})$, is a generalized Hom-bialgebra.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● 三 ● ● ● ●

Example

Let $\mathbb{K}G$ be the group-algebra over the group G. As a vector space, $\mathbb{K}G$ is generated by $\{e_g : g \in G\}$. If $\alpha : G \to G$ is a group homomorphism, then it can be extended to an algebra endomorphism of $\mathbb{K}G$ by setting

$$\alpha(\sum_{g\in G} a_g e_g) = \sum_{g\in G} a_g \alpha(e_g) = \sum_{g\in G} a_g e_{\alpha(g)}.$$

Consider the usual bialgebra structure on $\mathbb{K}G$ and α a generalized bialgebra morphism. Then, we define over $\mathbb{K}G$ a generalized Hom-bialgebra ($\mathbb{K}G, \mu, \alpha, \Delta, \alpha$) by setting:

$$\mu(\mathbf{e}_{\mathbf{g}}\otimes\mathbf{e}_{\mathbf{g}'})=\alpha(\mathbf{e}_{\mathbf{g}\cdot\mathbf{g}'}),$$

$$\Delta(e_g) = \alpha(e_g) \otimes \alpha(e_g), \quad \text{ for a product of } A = 0$$

Example

Consider the polynomial algebra $\mathcal{A} = \mathbb{K}[(X_{ij})]$ in variables $(X_{ij})_{i,j=1,\dots,n}$. It carries a structure of generalized bialgebra with the comultiplication defined by $\delta(X_{ij}) = \sum_{k=1}^{n} X_{ik} \otimes X_{kj}$ and $\delta(1) = 1 \otimes 1$. Let α be a generalized bialgebra morphism, it is defined by n^2 polynomials $\alpha(X_{ij})$. We define a generalized Hom-bialgebra $(\mathcal{A}, \mu, \alpha, \Delta, \alpha)$ by

$$\begin{split} \iota(f\otimes g) &= f(\alpha(X_{11}),\cdots,\alpha(X_{nn}))g(\alpha(X_{11}),\cdots,\alpha(X_{nn})),\\ \Delta(X_{ij}) &= \sum_{k=1}^{n} \alpha(X_{ik}) \otimes \alpha(X_{kj}),\\ \Delta(1) &= \alpha(1) \otimes \alpha(1). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Example

Let X be a set and consider the set of non-commutative polynomials $\mathcal{A} = \mathbb{K}\langle X \rangle$. It carries a generalized bialgebra structure with a comultiplication defined for $x \in X$ by $\delta(x) = 1 \otimes x + x \otimes 1$ and $\delta(1) = 1 \otimes 1$. Let α be a generalized bialgebra morphism. We define a generalized Hom-bialgebra $(\mathcal{A}, \mu, \alpha, \Delta, \alpha)$ by

$$\mu(f \otimes g) = f(\alpha(X))g(\alpha(X)),$$

$$\Delta(x) = \alpha(1) \otimes \alpha(x) + \alpha(x) \otimes \alpha(1),$$

$$\Delta(1) = \alpha(1) \otimes \alpha(1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Representations of Hom-algebras

Let (A, μ_A, α_A) be a Hom-associative algebra. An *A*-**module** is a Hom-module (M, α_M) together with a linear map $\rho : A \otimes M \to M$, such that

$$\alpha_{M} \circ \rho = \rho \circ (\alpha_{A} \otimes \alpha_{M}) \quad (\text{multiplicativity})$$

$$\rho \circ (\alpha_{A} \otimes \rho) = \rho \circ (\mu_{A} \otimes \alpha_{M}) \quad (\text{Hom-associativity})$$

A morphism $f : (M, \alpha_M) \to (N, \alpha_N)$ of A-modules is a morphism of the underlying Hom-modules that is compatible with the structure maps, in the sense that

$$f \circ \rho_M = \rho_N \circ (id_A \circ f).$$

Multiplicativity is equivalent to ρ being a morphism of Hom-modules.

Let (C, Δ_C, α_C) be a Hom-coassociative coalgebra. A *C*-comodule is a Hom-module (M, α_M) together with a linear map $\rho: M \to C \otimes M$, such that

$$\rho \circ \alpha_{M} = (\alpha_{C} \otimes \alpha_{M}) \circ \rho \quad \text{(comultiplicativity)}$$

$$\rho \circ (\alpha_{A} \otimes \rho) = \rho \circ (\Delta_{C} \otimes \alpha_{M}) \quad \text{(Hom-coassociativity)}$$

A morphism $f : (M, \alpha_M) \to (N, \alpha_N)$ of *C*-comodules is a morphism of the underlying Hom-modules that is compatible with the structure maps, in the sense that

$$(id_C \circ f) \circ \rho_M = \rho_N \circ f.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Twisting principle (Yau)

Let (A, μ_A, α_A) be a Hom-associative algebra (multiplicative) and (M, α_M) be an A-module with structure map $\rho : A \otimes M \to M$. For each integer $n, k \ge 0$ define the map

$$\rho^{n,k} = \alpha_M^{2^k-1} \circ \rho \circ (\alpha_A^n \otimes \operatorname{Id}_M) : A \otimes M \to M.$$

Then each $\rho^{n,k}$ gives the Hom-module $M^k = (M, \alpha_M^{2^k})$ the structure of an A^k -module, where A^k is the *k*-derived Hom-associative algebra $(A, \mu_A^{(k)} = \alpha_A^{2^k-1} \circ \mu_A, \alpha_A^{2^k})$. Note that $\rho^{0,0} = \rho$, $\rho^{1,0} = \rho \circ (\alpha_A \otimes Id_M)$, $\rho^{0,1} = \alpha_M \circ \rho$, $\rho^{n+1,0} = \rho^{n,0} \circ (\alpha_A \otimes Id_M)$ and $\rho^{0,k+1} = \alpha_M^{2^k-1} \circ \rho$. The A^k -module M^k with the structure $\rho^{n,k}$ is called the (n,k)-derived module of M.

Twisting principle (2)

Let (A, μ_A) be an associative algebra and M be an A-module (classical sense) with structure map $\rho : A \otimes M \to M$. Suppose $\alpha_A : A \to A$ is an algebra morphism and $\alpha_M : M \to M$ is a linear self-map such that

$$\alpha_{M} \circ \rho = \rho \circ (\alpha_{A} \otimes \alpha_{M})$$

For any integer $n, k \ge 0$ define the map

$$\rho_{\alpha}^{n,k} = \alpha_{M}^{2^{k}} \circ \rho \circ (\alpha_{A}^{n} \otimes Id_{M}) : A \otimes M \to M.$$

Then each $\rho^{n,k}$ gives the Hom-module $M_{\alpha}^{k} = (M, \alpha_{M}^{2^{k}})$ the structure of an A_{β} -module, where $\beta = \alpha_{A}^{2^{k}}$ and A_{β} is the Hom-associative algebra $(A, \mu_{\beta} = \beta \circ \mu_{A}, \beta)$.

Hom-quantum group: $\mathcal{U}_q(\mathfrak{sl}_2)_{\alpha}$

Consider the quantum group $U_q(\mathfrak{sl}_2)$ generated as usual by $E, F, K^{\pm 1}$ satisfying the relations

$$KK^{-1} = \mathbf{1} = K^{-1}K,$$

 $KE = q^{2}EK, \ KF = q^{-2}FK,$
 $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}.$

and the bialgebra morphism $\alpha_{\lambda} : \mathcal{U}_q(\mathfrak{sl}_2) \to \mathcal{U}_q(\mathfrak{sl}_2)$ defined by

$$\alpha_{\lambda}(E) = \lambda E, \ \alpha_{\lambda}(F) = \lambda^{-1}F, \ \alpha_{\lambda}(K^{\pm 1}) = K^{\pm 1}$$

Then $\mathcal{U}_q(\mathfrak{sl}_2)_{\alpha} = (\mathcal{U}_q(\mathfrak{sl}_2), \mu_{\alpha_{\lambda}}, \Delta_{\alpha_{\lambda}}, \alpha_{\lambda})$ is a Hom-bialgebra.

・ロ・・ 日・ ・ ヨ・ ・ ヨ・ ・ つくつ

Finite-dimensional modules over $\mathcal{U}_q(\mathfrak{sl}_2)_{\alpha}$

Assume $q \in \mathbb{C} - \{0\}$ is not a root of unity. For each integer $n \ge 0$ and $\epsilon \in \{\pm 1\}$, there is an (n + 1)-dimensional simple $\mathcal{U}_q(\mathfrak{sl}_2)$ -module $V(\epsilon, n)$. Let $\{v_i\}_{1 \le i \le n}$ be a basis of $V(\epsilon, n)$. The action is defined by

$$Kv_i = \epsilon q^{n-2i}v_i, \ Ev_i = \epsilon [n-i+1]_q v_{i-1}, \ Fv_i = [i+1]_q v_{i+1}.$$

where $v_{-1} = 0 = v_{n+1}$. Pick any scalar $\xi \in \mathbb{C}$ and define $\alpha_{\xi} : V(\epsilon, n) \to V(\epsilon, n)$ by setting $\alpha_{\xi}(v_i) = \xi \lambda^{-i} v_i, \quad \forall i$

Then

$$lpha_{\xi}(U\mathbf{v}) = lpha_{\lambda}(U)lpha_{\xi}(\mathbf{v}) \quad orall U \in \mathcal{U}_q(\mathfrak{sl}_2), \mathbf{v} \in V(\epsilon, n).$$

Finite-dimensional modules over $U_q(\mathfrak{sl}_2)_{\alpha}$ (2)

By twisting principle, one constructs an uncountable, four parameter family $V(\epsilon, n)_{\alpha}^{r,k}$ of (n + 1)-dimensional derived $\mathcal{U}_q(\mathfrak{sl}_2)_{\beta}$ -module, where $\beta = \alpha_{\lambda}^{2^k} = \alpha_{\lambda^{2^k}}$ and the structure map is given for any $r, k \geq 0$ by

$$\rho_{\alpha}^{n,k}(K^{\pm 1} \otimes v_{i}) = (\epsilon q^{n-2i})^{\pm 1} (\xi \lambda^{-i})^{2^{k}} v_{i},$$

$$\rho_{\alpha}^{n,k}(E \otimes v_{i}) = \epsilon [n-i+1]_{q} \xi^{2^{k}} \lambda^{r-2^{k}(i-1)} v_{i-1},$$

$$\rho_{\alpha}^{n,k}(F \otimes v_{i}) = \epsilon [i+1]_{q} \xi^{2^{k}} \lambda^{-r-2^{k}(i+1)} v_{i+1}.$$

Classical case corresponds to $\lambda = \xi = 1$.

(ロ) (同) (E) (E) (E)

Module Hom-algebras

Definition

Let $(H, \mu, \Delta_H, \alpha_H)$ be a Hom-bialgebra and (A, μ_A, α_A) be a Hom-associative algebra.

An H-module Hom-algebra structure on A consists of an H-module structure $\rho : H \otimes A \rightarrow A$ such that the module Hom-algebra axiom

$$\alpha_{H}^{2}(x)(ab) = \sum_{(x)} (x_{(1)}a)(x_{(2)}b)$$

is satisfied for all $x \in H$ and $a, b \in A$, where $\rho(x \otimes a) = xa$. In element-free form the Hom-algebra axiom is

$$\rho \circ (\alpha_H^2 \otimes \mu_A) = \mu_A \circ \rho^{\otimes 2} \circ (23) \circ (\Delta_H \otimes id_A \otimes id_A).$$

Generalized Bialgebras and Hopf algebras by deforming identiti

Remark

Let $(H, \mu, \Delta_H, \alpha_H)$ be a Hom-bialgebra and let (M, α_M) and (N, α_N) be H-modules with structure maps ρ_M and ρ_N . Then $M \otimes N$ is an H-module with structure map

$$\rho_{MN} = (\rho_M \otimes \rho_N) \circ (23) \circ (\Delta \otimes Id_M \otimes Id_N) : H \otimes M \otimes N \to M \otimes N$$

Theorem

Let $(H, \mu_H, \Delta_H, \alpha_H)$ be a Hom-bialgebra, (A, μ_A, α_A) be a Hom-associative algebra and $\rho : H \otimes A \rightarrow A$ be an H-module structure on A

Then the module Hom-algebra axiom is satisfied if and only if $\mu_A : A \otimes A \rightarrow A$ is a morphism of H-modules, in which $A \otimes A$ and A are given the H-module structure maps ρ_{AA} and $\rho^{2,0}$, respectively.

By twisting principle (2), every module Hom-algebra gives rise to a derived double-sequence of module Hom-algebras.

Twisting principle (1) for module Hom-algebras:

Theorem

Let (H, μ_H, Δ_H) be a bialgebra, (A, μ_A) be an associative algebra and $\rho: H \otimes A \rightarrow A$ be an H-module structure on A. Suppose $\alpha_H: H \to H$ is a bialgebra morphism and $\alpha_A: A \to A$ is an algebra morphism such that $\alpha_A \circ \rho = \rho \circ (\alpha_H \otimes \alpha_A)$. For any integer n, k > 0 define the map

$$\rho_{\alpha}^{n,k} = \alpha_A^{2^k} \circ \rho \circ (\alpha_H^n \otimes \mathit{Id}_A) : H \otimes A \to A.$$

Then each $\rho^{n,k}$ gives A_{β} the structure of an H_{γ} -module Hom-algebra, where $\beta = \alpha_A^{2^k}$, $\gamma = \alpha_H^{2^k}$, A_β is the Hom-associative algebra $(A, \mu_{\beta} = \beta \circ \mu_{A}, \beta)$ and H_{γ} is the Hom-bialgebra $(H, \mu_{\gamma} = \gamma \circ \mu_{H}, \Delta_{\gamma} = \Delta \circ \gamma, \gamma).$ <ロ> (四) (四) (三) (三) (三) (三) Generalized Bialgebras and Hopf algebras by deforming identiti

Hom-quantum plane

Assume $q \in \mathbb{C} - \{0\}$ is not a root of unity. The $U_q(\mathfrak{sl}_2)$ -module algebra structure on the quantum plane

$$\mathbb{A}_q^{2|0} = \mathbb{K} < x, y > /(yx - qxy)$$

is defined using the following quantum partial derivatives

$$\partial_{q,x}(x^ny^m)=[m]_qx^{m-1}y^n$$
 and $\partial_{q,y}(x^ny^m)=[n]_qx^my^{n-1}$

and for $P = P(x, y) \in \mathbb{A}_q^{2|0}$ we define

$$\sigma_x(P) = P(qx, y)$$
 and $\sigma_y(P) = P(x, qy).$

$$\rho: \mathcal{U}_q(\mathfrak{sl}_2) \otimes \mathbb{A}_q^{2|0} \to \mathbb{A}_q^{2|0}$$

is determined by

$$EP = x(\partial_{q,y}P), \ FP = (\partial_{q,x}P)y,$$

$$KP = \sigma_x \sigma_y^{-1}(P) = P(qx, q^{-1}y),$$

$$K^{-1}P = \sigma_y \sigma_x^{-1}(P) = P(q^{-1}x, qy).$$

The bialgebra morphism $\alpha_{\lambda}: \mathcal{U}_q(\mathfrak{sl}_2) \to \mathcal{U}_q(\mathfrak{sl}_2)$ defined by

$$\alpha_{\lambda}(E) = \lambda E, \ \alpha_{\lambda}(F) = \lambda^{-1}F, \ \alpha_{\lambda}(K^{\pm 1}) = K^{\pm 1},$$

and the algebra morphism $\alpha : \mathbb{A}_q^{2|0} \to \mathbb{A}_q^{2|0}$ defined $\alpha(x) = \xi x$ and $\alpha(y) = \xi \lambda^{-1} y$

satisfy

$$\alpha \circ \rho = \rho \circ (\alpha_{\lambda} \otimes \alpha).$$

By the Theorem, for any integer $l, k \ge 0$ the map

$$ho_{lpha}^{\prime,k}=lpha^{2^k}\circ
ho\circ(lpha_{\lambda}^{\prime}\otimes\mathit{Id}):\mathcal{U}_q(\mathfrak{sl}_2)\otimes\mathbb{A}_q^{2|0} o\mathbb{A}_q^{2|0},$$

gives the Hom-quantum-plane $(\mathbb{A}_q^{2|0})_{\beta}$ the structure of a $(\mathcal{U}_q(\mathfrak{sl}_2))_{\gamma}$ -module. We have

$$\rho_{\alpha}^{l,k}(E \otimes x^{m}y^{n}) = [n]_{q}\xi^{2^{k}(m+n)}\lambda^{l-2^{k}(n-1)}x^{m+1}y^{n-1},$$

$$\rho_{\alpha}^{l,k}(F \otimes x^{m}y^{n}) = [m]_{q}\xi^{2^{k}(m+n)}\lambda^{-l-2^{k}(n+1)}x^{m-1}y^{n+1},$$

$$\rho_{\alpha}^{l,k}(K^{\pm 1} \otimes P) = P(q^{\pm 1}\xi^{2^{k}}x, q^{\mp 1}(\xi\lambda^{-1})^{2^{k}}y).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Twistings

Drinfeld's: gauge transformations of quasi-Hopf algebras Giaquinto-Zhang: twists of algebraic structures based on action of a bialgebra.

Definition

Let $(B, \mu_B, \Delta_B, \mathbf{1}_B, \varepsilon_B)$ be a bialgebra. An element $F \in B \otimes B$ is a twisting element (based on B) if

$$\bullet (\varepsilon_B \otimes Id)F = \mathbf{1} \otimes \mathbf{1} = (Id \otimes \varepsilon_B)F,$$

 $(\Delta \otimes Id)(F)](F \otimes 1) = [(Id \otimes \Delta)(F)](1 \otimes F).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Theorem (Giaquinto-Zhang)

Let $F \in B \otimes B$ be a twisting element.

- If A is a left B-module algebra, then A_F = (A, μ_A ο F_I, 1_A) is an associative algebra.
- **2** If C is a right B-module coalgebra, then $C_F = (C, F_I \circ \Delta_C, \varepsilon_C)$ is an coassociative algebra.

(日) (同) (目) (日) (日) (日)

Hom-Twistings

Definition

Let $(B, \mu_B, \Delta_B, \mathbf{1}_B, \varepsilon_B, \alpha_B)$ be a Hom-bialgebra where α_B is invertible.

An element $F \in B \otimes B$ is a Hom-twisting element (based on B) if

$$[(\alpha_B^{-1} \otimes \alpha_B^{-1} \otimes Id)(\Delta \otimes Id)(F)][(\alpha_B^2 \otimes \alpha_B^2 \otimes Id)(F \otimes \mathbf{1})] = [(Id \otimes \alpha_B^{-1} \otimes \alpha_B^{-1})(\mathbf{1} \otimes \Delta)(F)][(Id \otimes \alpha_B^2 \otimes \alpha_B^2)(\mathbf{1} \otimes F)].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Theorem

Let $F \in B \otimes B$ be a Hom-twisting element. Let $(A, \mu_A, \mathbf{1}_A, \alpha_A)$ be a Hom-associative algebra, where α_A is surjective. Assume that b $\mathbf{1}_B = \mathbf{1}_B b = \alpha_B(b)$ and a $\mathbf{1}_A = \mathbf{1}_A a = \alpha_A(a)$ If A is a left B-module Hom-algebra, where $\mathbf{1}_B a = \alpha_A(a)$, then

$$A_{F} = (A, \mu_{A} \circ [(\alpha_{B}^{2} \otimes \alpha_{B}^{2})F]_{I}, \alpha_{A})$$

is a Hom-associative algebra.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□◆

Let $(B, \mu_B, \Delta_B, \mathbf{1}_B, \varepsilon_B)$ be a bialgebra. and $F \in B \otimes B$ a twisting element.

Let $(A, \mu_A, \mathbf{1}_A)$ be a left *B*-module algebra. Suppose $\alpha_B : B \to B$ is a bialgebra morphism which is involutive and $\alpha_A : A \to A$ is an algebra morphism such that

$$\alpha_{\mathcal{A}} \circ \rho = \rho \circ (\alpha_{\mathcal{H}} \otimes \alpha_{\mathcal{A}}).$$

Then *F* is a twisting element of the Hom-bialgebra B_{α_B} and the Hom-associative algebra A_{α_A} deforms to $(A_{\alpha_A})_F$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□◆

Hom-Yang-Baxter Equation

• D. Yau Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A 42 (2009). The Hom-Yang-Baxter equation and Hom-Lie algebras, arXiv:0905.1887v2, (2009). The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras, arXiv:0905.1890v1, (2009). Hom-quantum groups I:quasi-triangular Hom-bialgebras, arXiv:0906.4128v1, (2009). Hom-quantum groups II:cobraided Hom-bialgebras and Hom-quantum geometry, arXiv:0907.1880v1, (2009). Hom-quantum groups III:representations and Module Hom-algebras, arXiv:0907.1880v1, (2009).

The Hom-Yang-Baxter Equation (HYBE) is

 $(\alpha \otimes B) \circ (B \otimes \alpha) \circ (\alpha \otimes B) = (B \otimes \alpha) \circ (\alpha \otimes B) \circ (B \otimes \alpha)$

- Each solution of the HYBE can be extended to operators that satisfy the braid relations (Yau).
- Each quasi-triangular Hom-bialgebra comes with a solution of the quantum Hom-Yang-Baxter equation (Yau).
- Hochschild type cohomology of multipl. Hom-ass. algebras (Ammar, Ejbehi, Makhlouf, Silvestrov)
- Hochschild type cohomology of multipl. Hom-coassociative coalgebras (Dekkar, Makhlouf)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで