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Let k be an algebraically closed field of characteristic 0 and let Dm be the dihedral
group of order 2m with m = 4t; t ≥ 3. This talk will be based on a joint work with
Fernando Fantino [2], where we classify all finite-dimensional Nichols algebras over
Dm and all finite-dimensional pointed Hopf algebras whose group of group-likes is
Dm, by means of the lifting method. As a byproduct we obtain new examples of
finite-dimensional pointed Hopf algebras. In particular, we give an infinite family of
non-abelian groups with non-trivial examples of pointed Hopf algebras over them and
where the classification is completed. The difference with the case of the symmetric
groups S3 y S4, see [1] and [3], respectively, is that each dihedral group provide an
infinite family of new examples.
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Introduction

Joint work with F. Fantino.

On pointed Hopf algebras over dihedral groups, Paci�c J. Math, to
appear.
Preprint: arXiv:1007.0227v1.
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Introduction

Main result

Let m = 4t = 2n � 12 and recall that

Dm := hg ; h j g2 = 1 = hm; gh = h�1gi:

Theorem [FG]

Let H be a �nite-dimensional pointed Hopf algebra with
G (H) = Dm. Then H is isomorphic to

(a) B(MI )#|Dm with I = f(i ; k)g 2 I, k 6= n.

(b) B(ML)#|Dm with L 2 L.

(c) AI (�; ) with I 2 I, jI j > 1 or I = f(i ; n)g and  � 0.

(d) BI ;L(�; ; �; �) with (I ; L) 2 K, jI j > 0 and jLj > 0.

Conversely, any pointed Hopf algebra of the list above is a lifting
of a �nite-dimensional braided Hopf algebra in |Dm

|Dm
YD.

where
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� ! 2 Gm is an m-th primitive root of unity.

� I = fI =
`r

s=1f(is ; ks)g : !
isks = �1 and !iskt+itks = 1;

1 � is < n; 1 � ks < mg.

� L = fL =
`r

s=1f`sg : 1 � `1; : : : ; `r < n; oddg

� K = f(I ; L) : I 2 I; L 2 L and !i` = �1; k odd
8 (i ; k) 2 I ; ` 2 Lg.

� � = (�p;q;i ;k)(p;q);(i ;k)2I ,  = (p;q;i ;k)(p;q);(i ;k)2I ,
� = (�p;q;`)(p;q)2I ;`2L, and � = (�p;q;`)(p;q)2I ;`2L family of
parameters in | that satisfy:

�p;m�k;i ;k = �i ;k;p;m�k and p;k;i ;k = i ;k;p;k :
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B(MI )#|Dm

If I = f(i ; k)g; k 6= n, then B(MI )#|Dm is generated by g ; h; x ; y
which satisfy

g2 = 1 = hm; ghg = hm�1;

gx = yg ; hx = !kxh; hy = !�kyh;

x2 = 0; y2 = 0; xy + yx = 0

It is a Hopf algebra with

�(g) = g 
 g ; �(h) = h 
 h;

�(x) = x 
 1 + hi 
 x ; �(y) = y 
 1 + h�i 
 y :
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B(ML)#|Dm

Let L 2 L, B(ML)#|Dm is generated by z`;w`; ` 2 L which satisfy:

g2 = 1 = hm; ghg = hm�1;

gz` = w`g ; hz` = !`z`h; hw` = !�`w`h;

z2` = 0; w2
` = 0; z`w`0 + w`0z` = 0; z`z`0 + z`0z` = 0:

It is a Hopf algebra with

�(g) = g 
 g ; �(h) = h 
 h;

�(z`) = z` 
 1 + hn 
 z`; �(w`) = w` 
 1 + hn 
 w`:
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AI (�; )

For any I 2 I, AI (�; ) is the algebra generated by g ; h; xp;q; yp;q
with (p; q) 2 I satisfying:

g2 = 1 = hm; ghg = hm�1;

gxp;q = yp;qg ; hxp;q = !qxp;qh; hyp;q = !�qyp;qh;

xp;qxi ;k + xi ;kxp;q = �q;m�k�p;q;i ;k(1� hp+i );

xp;qyi ;k + yi ;kxp;q = �q;kp;q;i ;k(1� hp�i ):

It is a Hopf algebra with

�(g) = g 
 g ; �(h) = h 
 h;

�(xp;q) = xp;q 
 1 + hp 
 xp;q; �(yp;q) = yp;q 
 1 + h�p 
 yp;q:
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BI ;L(�; ; �; �)

Let (I ; L) 2 K, BI ;L(�; ; �; �) is the algebra generated by
g ; h; xp;q; yp;q; z`;w`, (p; q) 2 I ; ` 2 L, satisfying: g ; h as before &

gxp;q = yp;qg ; hxp;q = !qxp;qh;

gz` = w`g ; hz` = !`z`h;

x2p;q = 0 = y2p;q z`w`0 + w`0z` = 0 z`z`0 + z`0z` = 0

xp;qxi ;k + xi ;kxp;q = �q;m�k�p;q;i ;k(1� hp+i );

xp;qyi ;k + yi ;kxp;q = �q;kp;q;i ;k(1� hp�i );

xp;qz` + z`xp;q = �q;m�`�p;q;`(1� hn+p);

xp;qw` + w`xp;q = �q;`�p;q;`(1� hn+p):

It is a Hopf algebra with g ; h group-likes and

�(xp;q) = xp;q 
 1 + hp 
 xp;q; �(yp;q) = yp;q 
 1 + h�p 
 yp;q;

�(z`) = z` 
 1 + hn 
 z`; �(w`) = w` 
 1 + hn 
 w`:
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The Lifting Method

Let H be a pointed Hopf algebra, H0 = |G (H).

fHigi�0 coradical �ltration of H.

Fact: If H0 is a Hopf subalgebra, then
grH = �n�0 grH(n) is a graded Hopf algebra,
grH(n) = Hn=Hn�1, H�1 = 0.

If � : grH ! H0 denotes the homogeneous projection, then

R = (grH)co� = fh 2 H : (id
�)�(h) = h 
 1g

is the diagram of H; and grH ' R#|G (H).
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� R is a (braided) Hopf algebra in the category H0

H0
YD of

Yetter-Drinfel'd modules over H0.

� R is a graded subalgebra of grH.

� The linear subspace R(1), together with the braiding of H0

H0
YD,

is called the in�nitesimal braiding of H and coincides with

P(R) = fr 2 R : �R(r) = r 
 1 + 1
 rg:

� The subalgebra of R generated by P(R) = V is (isomorphic
to) the Nichols algebra B(V ).
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Main steps

Let G be a �nite group and H0 = |G . Main steps for classifying
�nite-dimensional pointed Hopf algebras over G are

(a) determine all Yetter-Drinfel'd modules V such that B(V ) is
�nite-dimensional,

(b) For such V , determine all Hopf algebras H such that
grH ' B(V )#H0, H is called a lifting of B(V ) over G .

(c) Prove that any �nite-dimensional pointed Hopf algebra over G
is generated by group-likes and skew-primitives.
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Main results obtained with the method

It was introduced by Andruskiewitsch and Schneider

Complete classi�cation of �nite-dimensional pointed Hopf algebras
over G (with non-trivial examples) where

� G �nite and abelian with (jG j; 210) = 1 [AS].

� G = S3, [AS & Heckenberger].

� G = S4, [AHS] and [G. & A. Garc��a Iglesias].
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Let G be a �nite group. Recall that a Yetter-Drinfel'd module
over |G is a G -module and a |G -comodule M such that

�(g :m) = ghg�1 
 g :m; 8 m 2 Mh; g ; h 2 G ;

where Mh = fm 2 M : �(m) = h 
mg, M = �h2GMh.

Proposition

� Finite-dimensional Yetter-Drinfel'd modules over G are
completely reducible.

� Irreducible modules are parametrized by pairs (O; �), where
O is a conjugacy class of G and (�;V ) is an irreducible
representation of the centralizer CG (�) of some � 2 O.

We denote by M(O; �) the Yetter-Drinfel'd module and by
B(O; �) the associated Nichols algebra.
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Conjugacy classes of Dm are

� Ohn = fhng, Chn = Dm.

� Ohi = fh�ig, Chi = hhi ' Z=m, Rep: �(k), �(k)(h) = !k .

� Og = fghj : j eveng, Ogh = fghj : j oddg

Recall the irreducible representations of Dm:

� n � 1 irred. repr. of degree 2, �` : Dm ! GL(2; |),

�`(g
ahb) =

�
0 1
1 0

�a�
!` 0
0 !�`

�b

; 1 � ` < n:

� 4 irred. repr. of degree 1:

� 1 hn hi , 1 � b � n � 1 g gh

�1 1 1 1 1 1

�2 1 1 1 �1 �1

�3 1 (�1)n (�1)i 1 �1

�4 1 (�1)n (�1)i �1 1
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Nichols algebras of irreducible Yetter-Drinfel'd modules

Andruskiewitsch & Fantino determined the dimension of
B(Ohn ; �) and B(Ohi ; �(k)).

For the others we have

Lemma [FG]

dimB(Og ; �) = dimB(Ogh; �) =1 for all � 2 \CDm
(g) and

� 2 \CDm
(gh).

Summarizing
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Nichols algebras of irreducible Yetter-Drinfel'd modules

Conj. class Centr. Rep. dimB(V )

e Dm any 1 [AF]

Ohn = fhng,
j Ohn j= 1

Dm �1, �2, �3, �4,
�`, ` even

1 [AF]

�`, ` odd 4 [AF]
B(M`)

Ohi = fh�ig, i 6= 0; n,
j Ohi j= 2

Z=m ' hhi �(k), !
ik = �1 4 [AF]

B(M(i ;k))

�(k), !
ik 6= �1 1 [AF]

Og = fghj : j eveng
j Og j= n

Z=2� Z=2 '
hgi � hhni

any 1

Ogh = fghj : j oddg
j Ogh j= n

Z=2� Z=2 '
hghi � hhni

any 1
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Nichols algebras of Yetter-Drinfel'd modules

I De�ne I = fI =
`r

s=1f(is ; ks)g : !
isks = �1 and !iskt+itks =

1; 1 � is < n; 1 � ks < mg and

MI =
M

(i ;k)2I

M(i ;k)

Then B(MI ) =
V
MI and dimB(MI ) = 4jI j.

I De�ne L = fL =
`r

s=1f`sg : 1 � `1; : : : ; `r < n; oddg and

ML =
M
`2L

M`:

Then B(ML) =
V
ML and dimB(ML) = 4jLj.
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Nichols algebras of Yetter-Drinfel'd modules

I De�ne K = f(I ; L) : I 2 I; L 2 L and !i` = �1; k odd,
8 (i ; k) 2 I ; ` 2 Lg and

MI ;L =

0
@ M

(i ;k)2I

M(i ;k)

1
A�

 M
`2L

M`

!
:

Then B(MI ;L) '
V
MI ;L and dimB(MI ;L) = 4jI j+jLj.

Theorem [FG]

Let B(M) be a �nite-dimensional Nichols algebra in |Dm

|Dm
YD. Then

B(M) '
V
M, with M isomorphic to MI with I 2 I, or ML with

L 2 L, or MI ;L with (I ; L) 2 K.
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Finite-dimensional pointed Hopf algebras over Dm

Using that all �nite-dimensional Nichols algebras are exterior
algebras one can prove the generation in degree one:

Theorem

Let H be a �nite-dimensional pointed Hopf algebra with
G (H) = Dm. Then H is generated by group-likes and
skew-primitives.

i. e. grH ' B(M)#|Dm for some M.
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Let M 2 |Dm

|Dm
YD. For all 1 � r ; s < m, let

Ms
r = fa 2 M : �(a) = hs 
 a; h � a = !rag. Then M =

L
r ;s M

s
r .

Using the description obtained above we �nd the possible
deformations of the relations of the Nichols algebras over Dm:

Proposition [FG]

Let H be a �nite-dimensional pointed Hopf algebra with
G (H) = Dm and in�nitesimal braiding M. Let a 2 Ms

r ; b 2 Mv
u

with 1 � r ; s; u; v < m and denote x = �(a#1), y = �(b#1).
Then there exists � 2 |� such that

xy + yx = �u;m�r�(1� hs+v ):
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Not all Nichols algebras admit deformations:

Lemma [FG]

Let H be a �nite-dimensional such that its in�nitesimal braiding M

is isomorphic to MI with I = (i ; k) � I; k 6= n or ML with
L 2 L.Then H ' B(MI )#|Dm or H ' B(ML)#|Dm, resp.

Using the proposition we de�ne the quadratic algebras AI (�; )
and BI ;L(�; ; �; �) as above and the �rst part of the main theorem
is proved.
To prove that these algebras are liftings one �rst shows that

dimAI (�; ) � jDmj dimB(MI ) and

dimBI ;L(�; ; �; �) � jDmj dimB(MI ;L):

The equality follows by �nding a representation whose restriction
to Dm is faithful and is not trivial on the skew-primitives.
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