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In SGA 1, Alexandre Grothendieck defines the algebraic fundamental group of
a scheme S. As is his wont, Grothendieck adopts a very general setting: given an
abstract category C (think of it as the category of étale coverings of S) endowed with
a functor ω to finite sets, satisfying certain conditions, Grothendieck constructs a
profinite group G, the group of automorphisms of ω, and shows that C is equivalent
to the category of continuous finite G-sets.

Similarly, Tannaka duality (in the larger sense) associates with a tensor category
C endowed with a fiber functor ω a sort of group G (affine group, gerbe in the com-
mutative setting, Hopf algebra, Hopf algebroid in the non-commutative setting) in
such a way that C is equivalent to the category of finite dimensional representations
of G.

We will propose a general setting which encompasses these two analogous sit-
uations; given a monoidal functor ω : C → B, we will show that, under general
conditions on C, B and ω, there exists a Hopf monad T on B such that the category
of ind-objects of C is equivalent to the category of ’representations’ of T , and C
itself, to the category of representations ’of finite type’ of T .

Hopf monads generalize groups and Hopf algebras in a non-braided setting.

We will also explain how this result yields Galois-Grothendieck duality as well
as Tannaka duality, and other results on tensor functors.
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Galois-Grothendieck duality and Tannaka duality

In SGA1 (1960) Grothendieck defined the étale fundamental group of a
scheme S as follows.
Let p be a geometric point of S. If E → S is a finite étale covering of S
denote by Ep the fibre of E above p. The assignment E 7→ Ep defines the
fibre functor

ωp : C → set

where C is the category of finite étale coverings of S and set the category
of finite sets.
The étale fundamental group of S is the ‘profinite group of automorphisms’
of ωp . It is the limit of the groups of automorphisms of ’Galois coverings’.
Grothendieck shows that

The category of finite étale coverings of S is equivalent to the category of
continuous finite G-sets.

However Grothendieck’s result is more general, pertaining not to algebraic
geometry...



Galois-Grothendieck duality and Tannaka duality

... but to category theory :

Theorem
Let C be a category and ω : C → set be a functor, and assume :

1 C has finite limits and colimits, and ω preserves them;
2 in C any morphism factorizes as an epi followed by a mono;
3 in C epis are strict;
4 in C monos are summands;
5 ω is conservative.

Then one constructs a profinite group G such that C is equivalent to the
category G − set of finite continuous G-sets.



Galois-Grothendieck duality and Tannaka duality

Tannaka theory in its algebraic form goes back to the thesis of
Grothendieck’s student Saavedra Rivano’s in 1972.

Theorem
Let C be a symmetric tensor category over a field k. Let B be a non-zero
commutative k algebra and let

ω : C → Mod B

be a symmetric fibre functor, that is, a strong monoidal symmetric k-linear
exact functor. Then one constructs an affine algebraic groupoid G with
base SpecB such that C is equivalent to the category repG of
representations of G of finite type.

This theorem has been given non-commutative (non-symmetric)
generalizations.



Galois-Grothendieck duality and Tannaka duality

We would like to provide a general setting unifying Galois-Grothendieck
duality and Tannaka duality (and non-commutative generalizations).

Question
Let F : C → B be a strong monoidal functor. Can one describe C as the
category of ‘representations’ of an algebraic structure, a sort of ‘group’,
living at the level of B?

An incomplete answer to this problem has been given by Xavier Rochard
in his unpublished thesis (1998).
Our first step to address this question will be to introduce (co) monads,
and more precisely Hopf (co) monads, which serve exactly that kind of
purpose.
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Hopf Monads - a sketchy survey Definition

Monads 8 / 30

Let C be a category. The category EndoFun(C) is strict monoidal
(⊗=composition, 1 = 1C)

A monad on C is an algebra (=monoid) in EndoFun(C) :

T : C → C, µ : T2 → T (product), η : 1C → T (unit)

A T -module is a pair (M, r), M ∈ Ob(C), r : T(M)→ M s. t.

rµM = rT(r) and rηM = idM .

 CT category of T -modules.

Example
A algebra in a monoidal category C
 T =? ⊗ A : X 7→ X ⊗ A is a monad on C and CT = Mod- A

T ′ = A⊗? is a monad on C and CT ′ = A - Mod



Hopf Monads - a sketchy survey Definition

Monads and adjunctions 9 / 30

A monad T on a category C an adjunction

CT

UT

��
C

FT

GG

where UT (M, r) = M and FT (X) = (T(X), µX ).

An adjunction
D

U
��
C

F

GG

 a monad T = (UF , µ := U(εF ), η) on C

where η : 1C → UF and ε : FU → 1D are the adjunction morphisms

 
D

U

��

CT

UTvvC
F

VV
FT

77
D

U

��

K
++
CT

UTvvC
F

VV
FT

77

K : D 7→ (U(D),U(εD))
(the comparison functor)

The adjunction (F ,U) is
monadic if K equivalence.



Hopf Monads - a sketchy survey Definition

Bimonads [Moerdijk] 10 / 30

C monoidal category, (T , µ, η) monad on C CT , UT : CT → C

T is a bimonad if and only if CT is monoidal and UT is strict monoidal. This
is equivalent to:

T is comonoidal endofunctor
(with ∆X ,Y : T(X ⊗ Y)→ TX ⊗ TY and ε : T1→ 1)

µ and η are comonoidal natural transformations.

Axioms similar to those of a bialgebra except the compatibility between µ
and ∆:

T2(X ⊗ Y)

µX⊗Y

��

T∆X ,Y// T(TX ⊗ TY)
∆TX ,TY // T2X ⊗ T2Y

µX⊗µY

��
T(X ⊗ Y)

∆X ,Y

// TX ⊗ TY

No braiding involved!



Hopf Monads - a sketchy survey Definition

Hopf monads 11 / 30

For a bimonad T define the (left and right) fusion morphisms
Hl(X ,Y) = (idTX ⊗ µY )∆X ,TY : T(X ⊗ TY)→ TX ⊗ TY ,
Hr(X ,Y) = (µX ⊗ idTY )∆TX ,Y : T(TX ⊗ Y)→ TX ⊗ TY .

A bimonad T is a Hopf monad if the fusion morphisms are isomorphisms.

Proposition
For T bimonad on C rigid, equivalence:

(i) CT is rigid;

(ii) T is a Hopf monad;

(iii) (older definition) T admits a left and a right (unary) antipode
s l

X : T(∨TX)→ ∨X and sr : T(TX∨)→ X∨.

There is a similar result for closed categories (monoidal categories with
internal Homs).



Hopf Monads - a sketchy survey Definition

Hopf comonads 12 / 30

The notion of a Hopf monad is not self-dual, unlike that of a Hopf algebra:
if you reverse the arrows in the definition, you obtain the notion of a Hopf
comonad. A Hopf comonad is a monoidal comonad such that the cofusion
operators are invertible.
All results about Hopf monads translate into results about Hopf comonads.
In particular, if T is a Hopf comonad on C,

1 the category CT of comodules over T is monoidal,

2 we have a Hopf monoidal adjunction: D
UT

77C
FT
vv

where UT is the forgetful functor and FT is its right adjoint, the cofree
comodule functor.



Hopf Monads - a sketchy survey Examples

Hopf monads from adjunctions 13 / 30

Let D
U
''
C

F
hh be a comonoidal adjunction (meaning C, D are monoidal

and U is strong monoidal)
Then F is comonoidal and T = UF is a bimonad on C.
There are canonical morphisms:

F(c ⊗ Ud)→ Fc ⊗ d
F(Ud ⊗ c)→ d ⊗ Fc

and (F ,U) is a Hopf adjunction if these morphisms are isos.

Proposition

If the adjunction is Hopf, T is a Hopf monad. Such is the case if either of
the following hold:

C, D are rigid;

C, D and U are closed.

A bimonad is Hopf iff its adjunction is Hopf!



Hopf Monads - a sketchy survey Examples

Hopf monads from Hopf algebras 14 / 30

Hopf monads generalize Hopf algebras in braided categories.
C monoidal category, (H, σ) a Hopf algebra in Z(C) (which is braided)
 a Hopf monad T = H⊗σ? on C, defined by X 7→ H ⊗ X . The
comonoidal structure of T is

∆X ,Y = (H ⊗ σX ⊗ Y)(∆ ⊗ X ⊗ Y)

ε = counit of H

Moreover T is equipped with a Hopf monad morphism

e = (ε⊗?) : T → idC

Theorem (BVL)

This construction defines an equivalence of categories

{{Hopf algebras in Z(C)}}
'
−→ {{Hopf monads on C}} / idC



Hopf Monads - a sketchy survey Examples

Hopf monads as ‘quantum groupoids’ 15 / 30

Let R be a unitary ring a monoidal category (RModR ,⊗R ,R RR).

Facts
linear bimonads on RModR with a right adjoint are bialgebroids in the
sense of Takeuchi [Szlacháni]

linear Hopf monads on RModR with a right adjoint are a Hopf
algebroids in the sense of Schauenburg.

Hopf algebroids are non-commutative avatars of groupoids. Complicated
axioms a Hopf adjunction a Hopf monad (much easier to
manipulate). Using Hopf monads one shows:

Theorem (BVL)

A finite tensor category C over a field k is tensor equivalent to the category
of A -modules for some bialgebroid A .

Given a k- equivalence C
k
'R mod for some finite dimensional k- algebra

R, one constructs a canonical Hopf algebroid A over R.



Hopf Monads - a sketchy survey Some aspects of the general theory

Outlook of General Theory of Hopf monads 16 / 30

Tannaka dictionary

Hopf modules and Sweedler decomposition theorem

Existence of universal integrals (with values in a certain
autoequivalence of C)

Semisimplicity, Maschke criterion

The Drinfeld double of a Hopf monad

Cross-products

Bosonization for Hopf monads

Applications to construction and comparison of quantum invariants
(non-braided setting)
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Main result

Let ω : C → B be a strong monoidal functor, with C small, and let B ⊂ B
be a full monoidal subcategory s. t. ω(C) ⊂ B. Assume that

1 C has sums of two, coequalizers, fibered products and equalizers,
and ω preserves all of them as well as monomorphisms;

2 C has functorial mono-epi factorizations and C is coartinian;
3 B has small filtered colimits which commute with equalizers, the

tensor product of B preserves them and the objects of B have finite
type in B (e. g. B = IndB);

4 ω is conservative.

Then

a) ω extends uniquely to a strong monoidal functor Ω : IndC → B which
preserves filtered colimits;

b) Ω is monadic, hence, denoting by T its bicomonad on B, a monoidal
equivalence IndC

∼
−→ BT ;

c) Moreover we have C
∼
−→ BT .



Main result

IndC

Ω
  

'⊗ // BT

��
B

C

ω
��

'⊗ // BT

~~
B

If in addition
1 C is rigid (or C as internal cohoms and ω preserves them),
2 for any mono i of C, ω(i) is a tensor-universal mono of B,

then T is a Hopf comonad.

Note that, if ω has a monoidal section, then the Hopf comonad T is
co-augmented, so there exists a Hopf algebra (H, σ) in Z(B) such that
T = H⊗σ? and C is the category of H-comodules in B.
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Applications

Galois-Grothendieck duality 21 / 30

Assume ω : C → set satisfies Grothendieck’s assumptions. Apply the main
result in its dual form (for monads); with B = set, B = Proset the category
of pro-objects of set, that is, the category of Hausdorf compact, totally
disconnected topological spaces. Then there exists a bimonad T on Proset
such that C ' setT .
Moreover T preserves finite sums and filtering limits. Such a bimonad is of
the form M⊗?, where M is a monoid in Proset.
From the assumption that monomorphisms in C are summands, one
deduces easily that C is closed and so is ω, hence T is a Hopf monad, and
M is a group in Proset, that is, a profinite group.



Applications

Tannaka duality 22 / 30

Let C be a symmetric tensor category, ω : C → ModB a fibre functor. Let
B = ModB, B ⊂ B the full subcategory of (projective) modules of finite
type.
Then the theorem applies, and one obtains a Hopf monad T on B such
that C = BT .
We have for N ∈ Mod B :

T(N) =

∫ c∈C

HomB(ω(c),N) ⊗k ω(c) = L ⊗B N

where L =
∫ c∈C

ω(c)∗ ⊗k ω(c) is the coend of ω. It is commutative Hopf
bialgebroid, that is, an affine groupoid with base SpecB.



Applications

Non-commutative tannaka duality 23 / 30

Let C be a tensor category. In particular, C is an abelian k- linear category
which is artinian and has finite dimensional Homs. Such a category is
equivalent to the category comodL of finite dimensional right comodules
over a coalgebra L .
The category C acts on itself by tensoring on the left, hence C acts on
comodL . Hence a strong monoidal functor ω : C → B, where
B ⊂ End(comodL) is the category LcomodL of L bicomodules.
Applying a (variant of) our main theorem, one obtains :

Theorem
Let C be a tensor category. There exists a Hopf coalgebroid Λ such that C
is tensor equivalent to comodΛ and IndC, to ComodΛ. The base of Λ is a
coalgebra s. t. C ≡k comodL .

A Hopf coalgebroid Λ is the dual notion of a Hopf algebroid (one may also
see it as a Hopf algebroid in the category of Pro-objects of the category of
finite dimensional vector spaces).
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Structure of Hopf modules on Hopf monads and applications

Hopf modules and Sweedler’s Theorem for Hopf
Monads 25 / 30

T Hopf monad on C T1 is a coalgebra in C (coproduct ∆1,1, counit ε)
 lifts to a coalgebra Ĉ = FT (1) in CT . Moreover we have a natural
isomorphism

σ : Ĉ⊗?→? ⊗ Ĉ .

Proposition (BVL)

σ is a half-braiding and (Ĉ , σ) is a cocommutative coalgebra in Z(CT )
called the induced central coalgebra of T .

A (right) T - Hopf module is a (right) Ĉ-comodule in CT , i. e. a data (M, r , ∂)
with (M, r) a T - module, (M, ∂) a T1- comodule + T - linearity of ∂.



Structure of Hopf modules on Hopf monads and applications

Under suitable exactness conditions (T is conservative, C has
coequalizers and T preserves them):

Theorem (BVL)

The assignment X 7→ (TX , µX ,∆X ,1) is an equivalence of categories

Q : C
'
−→ {{T - Hopf modules}}

with quasi-inverse the functor coinvariant part.
Moreover if C has equalizers and T preserves them, Q is a monoidal
equivalence, the category of Hopf modules (i.e. Ĉ- comodules) being
endowed with the cotensor product over Ĉ.
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Structure of Hopf modules on Hopf monads and applications

If C is a tensor category, its Ind-completion IndC is a monoidal abelian
category containing C as a full subcategory and whose objects are formal
filtering colimits of objects of C. For instance Ind vect = Vect, and
Ind comodH = ComodH. Note that these are no longer rigid.

Theorem
Let F : C → D be a tensor functor. There exists a k- linear left exact
comonad on IndC such that we have a commutative diagram:

C
F //

'⊗   

D

DT

==

where CT is the category of T -comoduleS whose underlying object is in C.



Structure of Hopf modules on Hopf monads and applications

Proof 29 / 30

The functor F : C → D extends to a linear faithful exact functor
IndF : IndC → IndD which preserves colimits and is strong monoidal.
IndF has a right adjoint, denoted by R.
It is also a monoidal adjunction, which is Hopf. Its comonad T = IndFR is
a Hopf comonad on IndC.
IndF being faithful exact, the adjunction (IndF ,R) is comonadic by Beck,
hence the theorem.

Example

If D = vect, a linear Hopf comonad on Vect is of the form H⊗? for some
Hopf algebra H, so we recover the classical tannakian result.



Structure of Hopf modules on Hopf monads and applications

Let F : C → D be a tensor functor. We say that F is dominant if the right
adjoint R of IndF is faithful exact.
Then applying the classification theorem for Hopf modules in its dual form
we obtain:

Theorem

If F is dominant, there exists a commutative algebra (A , σ) in Z(IndC) -
the induced central algebra of T - such that we have a commutative
diagram

C
FA //

F ��

A- mod C

D

'⊗

99

where A- mod is the category of ‘finite type’ A-modules in IndC
(=quotients of A ⊗ X, X ∈ C), with tensor product ⊗A ,σ, and FA is the
tensor functor X 7→ A ⊗ X.

If D = vectk and C, F are symmetric, then A is Deligne’s trivializing
algebra.
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